Class-II medications are fostriecin analogues and coumarin antibiotics.
Declarations
Acknowledgments
Authors would like to offer special thanks to Luqman College of pharmacy for allowing to carry out this work and other research projects. Advice given by Mr. Faheem IP and Dr. Mohammad Kamal has been a great help in our work. Authors particularly grateful for the assistance, and coordination support provided by Anuradha Madikeri, Shaikh Daniyal, and Gulzar Ahmed Rather.
Author contributions
MP, FP, AM, SD, MAK, GAR, and RS equally contributed to: Writing—original draft, Writing—review & editing, Conceptualization. All authors read and approved the final manuscript.
Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al. DNA, chromosomes, and genomes.In: Wilson J, Hunt T, editors. Molecular Biology of the Cell, 6th ed. New York: Garland Science; 2014.
Wang JC. Helical repeat of DNA in solution.Proc Natl Acad Sci U S A. 1979;76:200–3. [DOI] [PubMed] [PMC]
Patwekar FI, Patwekar MF, Muhammad A, Sanjeev H, Mohsin AA. Activity guided separation of phytoconstituents from the flowers of Ichnocarpus frutescens L. and evaluation for antioxidant property.Res J Pharm Biol Chem Sci. 2010;1:318–23.
Santini MT, Cametti C, Bonincontro A, Napolitano M, Indovina PL, Durante M, et al. Differences in membrane electrical properties between C3H 10T1/2 mouse embryo fibroblasts and their ionizing radiation and chemically transformed counterparts.Eur Biophys J. 1992;20:305–9. [DOI] [PubMed]
Dalal AK, Harding JD, Verdino RJ. Acquired long QT syndrome and monomorphic ventricular tachycardia after alternative treatment with cesium chloride for brain cancer.Mayo Clin Proc. 2004;79:1065–9. [DOI] [PubMed]
Rybalchenko V, Prevarskaya N, Van Coppenolle F, Legrand G, Lemonnier L, Le Bourhis X, et al. Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing K+ channel gating.Mol Pharmacol. 2001;59:1376–87. [DOI] [PubMed]
Trippett TM, Bertino JR. Therapeutic strategies targeting proteins that regulate folate and reduced folate transport.J Chemother. 1999;11:3–10. [DOI] [PubMed]
Dijkgraaf EM, Heusinkveld M, Tummers B, Vogelpoel LT, Goedemans R, Jha V, et al. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment.Cancer Res. 2013;73:2480–92. [DOI] [PubMed]
Sharom FJ. The P-glycoprotein multidrug transporter.Essays Biochem. 2011;50:161–78. [DOI] [PubMed]
Zoller MJ, Smith M. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template.DNA. 1984;3:479–88. [DOI] [PubMed]
Wang JC. DNA topoisomerases.Annu Rev Biochem. 1996;65:635–92. [DOI] [PubMed]
Nitiss JL. Investigating the biological functions of DNA topoisomerases in eukaryotic cells.Biochim Biophys Acta. 1998;1400:63–81. [DOI] [PubMed]
Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA.Science. 1998;279:1504–13. [DOI] [PubMed]
Berger JM, Gamblin SJ, Harrison SC, Wang JC. Structure and mechanism of DNA topoisomerase II.Nature. 1996;379:225–32. [DOI] [PubMed]
Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP. 1,8-naphthyridine derivatives. A new class of chemotherapeutic agents.J Med Pharm Chem. 1962;5:1063–5. [DOI] [PubMed]
Wall ME, Wani MC, Cook CE, Palmer KJ, McPhail A, Sim GA. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1,2.J Am Chem Soc. 1966;88:3888–90. [DOI]
Topcu Z. DNA topoisomerases as targets for anticancer drugs.J Clin Pharm Ther. 2001;26:405–16. [DOI] [PubMed]
Hsiang YH, Liu LF. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin.Cancer Res. 1988;48:1722–6. [PubMed]
Muggia FM, Creaven PJ, Hansen HH, Cohen MH, Selawry OS. Phase I clinical trial of weekly and daily treatment with camptothecin (NSC-100880): correlation with preclinical studies.Cancer Chemother Rep. 1972;56:515–21. [PubMed]
Hertzberg RP, Caranfa MJ, Holden KG, Jakas DR, Gallagher G, Mattern MR, et al. Modification of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity.J Med Chem. 1989;32:715–20. [DOI] [PubMed]
Masuda N, Fukuoka M, Kusunoki Y, Matsui K, Takifuji N, Kudoh S, et al. CPT-11: a new derivative of camptothecin for the treatment of refractory or relapsed small-cell lung cancer.J Clin Oncol. 1992;10:1225–9. [DOI] [PubMed]
Nelson EM, Tewey KM, Liu LF. Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4’-(9-acridinylamino)-methanesulfon-m-anisidide.Proc Natl Acad Sci U S A. 1984;81:1361–5. [DOI] [PubMed] [PMC]
Chow KC, Macdonald TL, Ross WE. DNA binding by epipodophyllotoxins and N-acyl anthracyclines: implications for mechanism of topoisomerase II inhibition.Mol Pharmacol. 1988;34:467–73. [PubMed]
Arguello F, Alexander MA, Greene JF Jr, Stinson SF, Jorden JL, Smith EM, et al. Preclinical evaluation of 9-chloro-2-methylellipticinium acetate alone and in combination with conventional anticancer drugs for the treatment of human brain tumor xenografts.J Cancer Res Clin Oncol. 1998;124:19–26. [DOI] [PubMed]
Bjornsti MA, Benedetti P, Viglianti GA, Wang JC. Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: restoration of sensitivity of the cells to the antitumor drug camptothecin.Cancer Res. 1989;49:6318–23. [PubMed]
Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y. Effect of genistein on topoisomerase activity and on the growth of [Val 12]Ha-ras-transformed NIH 3T3 cells.Biochem Biophys Res Commun. 1988;157:183–9. [DOI] [PubMed]
Gale RP, Foon KA. Therapy of acute myelogenous leukemia.Semin Hematol. 1987;24:40–54. [PubMed]
Muggia FM, Burris HA. Clinical development of topoisomerase-interactive drugs.Adv Pharmacol. 1994;29B:1–31. [DOI] [PubMed]
Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets.Nucleic Acids Res. 2008;36 Suppl 1:D901–6. [DOI] [PubMed] [PMC]
Clarysse A, Brugarolas A, Siegenthaler P, Abele R, Cavalli F, de Jager R, et al. Phase II study of 9-hydroxy-2N-methylellipticinium acetate.Eur J Cancer Clin Oncol. 1984;20:243–7. [DOI] [PubMed]
Osheroff N, Corbett AH, Robinson MJ. Mechanism of action of topoisomerase II-targeted antineoplastic drugs.Adv Pharmacol. 1994;29B:105–26. [DOI] [PubMed]
Butnariu M, Fratantonio D, Herrera-Bravo J, Sukreet S, Martorell M, Ekaterina Robertovna G, et al. Plant-food-derived bioactives in managing hypertension: from current findings to upcoming effective pharmacotherapies.Curr Top Med Chem. 2023;23:589–617. [DOI] [PubMed]
Graff JR, Konicek BW, Deddens JA, Chedid M, Hurst BM, Colligan B, et al. Expression of group IIa secretory phospholipase A2 increases with prostate tumor grade.Clin Cancer Res. 2001;7:3857–61. [PubMed]
Butnariu M, Quispe C, Herrera-Bravo J, Helon P, Kukula-Koch W, López V, et al. The effects of thymoquinone on pancreatic cancer: evidence from preclinical studies.Biomed Pharmacother. 2022;153:113364. [DOI] [PubMed]
Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression.J Cell Physiol. 2007;211:19–26. [DOI] [PubMed]
Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis.Annu Rev Cell Biol. 1993;9:541–73. [DOI] [PubMed]
Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis.J Natl Cancer Inst. 1997;89:1260–70. [DOI] [PubMed]
Merritt C, Chun EM, Fattah RJ, Silva LM, Ma QQ, Moayeri M, et al. Imaging of anthrax intoxication in mice reveals shared and individual functions of surface receptors CMG-2 and TEM-8 in cellular toxin entry.J Biol Chem. 2022;298:101467. [DOI] [PubMed] [PMC]
Duffy MJ. Urokinase-type plasminogen activator: a potent marker of metastatic potential in human cancers.Biochem Soc Trans. 2002;30:207–10. [PubMed]
Grinnell F, Zhu M. Fibronectin degradation in chronic wounds depends on the relative levels of elastase, alpha1-proteinase inhibitor, and alpha2-macroglobulin.J Invest Dermatol. 1996;106:335–41. [DOI] [PubMed]
Sato T, Takahashi S, Mizumoto T, Harao M, Akizuki M, Takasugi M, et al. Neutrophil elastase and cancer.Surg Oncol. 2006;15:217–22. [DOI] [PubMed]
Denmeade SR, Sokoll LJ, Chan DW, Khan SR, Isaacs JT. Concentration of enzymatically active prostate-specific antigen (PSA) in the extracellular fluid of primary human prostate cancers and human prostate cancer xenograft models.Prostate. 2001;48:1–6. [DOI] [PubMed]
Basu HS, Frydman B. Prostate-specific antigen: a diagnostic marker and a tool for targeted delivery of drugs to prostate tumours.Expert Opin Ther Pat. 2002;12:1035–46. [DOI]
Arcangeli A. Expression and role of hERG channels in cancer cells.Novartis Found Symp. 2005;266:225–32. [PubMed]
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration.Physiol Rev. 2014;94:461–518. [DOI] [PubMed] [PMC]
Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, et al. The pharmacological activities of Crocus sativus L.: a review based on the mechanisms and therapeutic opportunities of its phytoconstituents.Oxid Med Cell Longev. 2022;2022:8214821. [DOI] [PubMed] [PMC]
Prevarskaya N, Skryma R, Shuba Y. Ion channels and the hallmarks of cancer.Trends Mol Med. 2010;16:107–21. [DOI] [PubMed]
O’Grady SM, Lee SY. Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells.Int J Biochem Cell Biol. 2005;37:1578–94. [DOI] [PubMed]
Farias LM, Ocaña DB, Díaz L, Larrea F, Avila-Chávez E, Cadena A, et al. Ether a go-go potassium channels as human cervical cancer markers.Cancer Res. 2004;64:6996–7001. [DOI] [PubMed]
Pardo LA, del Camino D, Sánchez A, Alves F, Brüggemann A, Beckh S, et al. Oncogenic potential of EAG K(+) channels.EMBO J. 1999;18:5540–7. [DOI] [PubMed] [PMC]
Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V. TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression.Biochem Biophys Res Commun. 2004;322:1359–63. [DOI] [PubMed]
Gray LS, Perez-Reyes E, Gomora JC, Haverstick DM, Shattock M, McLatchie L, et al. The role of voltage gated T-type Ca2+ channel isoforms in mediating “capacitative” Ca2+ entry in cancer cells.Cell Calcium. 2004;36:489–97. [DOI] [PubMed]
Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. Overview of molecular relationships in the voltage-gated ion channel superfamily.Pharmacol Rev. 2005;57:387–95. [DOI] [PubMed]
Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels.Pharmacol Rev. 2005;57:473–508. [DOI] [PubMed]
Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel.Cell. 1995;81:299–307. [DOI] [PubMed]
Salavati‐Niasari M. Synthesis and characterization of host (nanodimensional pores of zeolite-Y)–guest [unsaturated 16-membered octaaza–macrocycle manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials.Chem Lett. 2005;34:1444–5. [DOI]
Devi GR. siRNA-based approaches in cancer therapy.Cancer Gene Ther. 2006;13:819–29. [DOI] [PubMed]
Inglis V, Karpinski E, Benishin C. Gamma-dendrotoxin blocks large conductance Ca2+-activated K+ channels in neuroblastoma cells.Life Sci. 2003;73:2291–305. [DOI] [PubMed]
Rouzaire-Dubois B, Gérard V, Dubois JM. Involvement of K+ channels in the quercetin-induced inhibition of neuroblastoma cell growth.Pflugers Arch. 1993;423:202–5. [DOI] [PubMed]
Abdul M, Santo A, Hoosein N. Activity of potassium channel-blockers in breast cancer.Anticancer Res. 2003;23:3347–51. [PubMed]
Quiney C, Billard C, Salanoubat C, Fourneron JD, Kolb JP. Hyperforin, a new lead compound against the progression of cancer and leukemia?Leukemia. 2006;20:1519–25. [DOI] [PubMed]
Debes JD, Roberts RO, Jacobson DJ, Girman CJ, Lieber MM, Tindall DJ, et al. Inverse association between prostate cancer and the use of calcium channel blockers.Cancer Epidemiol Biomarkers Prev. 2004;13:255–9. [DOI] [PubMed]
Fry DW, Jackson RC. Membrane transport alterations as a mechanism of resistance to anticancer agents.Cancer Surv. 1986;5:47–79. [PubMed]
Lodish H, Darnell J. Biología celular y molecular. Buenos Aires: Médica Panamericana; 2005. Spanish.
César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, et al. A call for systematic research on solute carriers.Cell. 2015;162:478–87. [DOI] [PubMed]
Goodman LS, Gilman AG, Rall TW, Murad F. Goodman and Gilman’s the pharmacological basis of therapeutics. Stallworthy J, Greenhalgh R, Ellis H, Raffle A, Willoughby D, editors. New York: McGraw-Hill; 1996.
Ahmed S, Khan H, Aschner M, Mirzae H, Küpeli Akkol E, Capasso R. Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects.Int J Mol Sci. 2020;21:5622. [DOI] [PubMed] [PMC]
Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants.Biochim Biophys Acta. 1976;455:152–62. [DOI] [PubMed]
Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine.Proc Natl Acad Sci U S A. 1987;84:3004–8. [DOI] [PubMed] [PMC]
Endicott JA, Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance.Annu Rev Biochem. 1989;58:137–71. [DOI] [PubMed]
Toyoda Y, Takada T, Suzuki H. Inhibitors of human ABCG2: from technical background to recent updates with clinical implications.Front Pharmacol. 2019;10:208. [DOI] [PubMed] [PMC]
Ambjørner SEB, Wiese M, Köhler SC, Svindt J, Lund XL, Gajhede M, et al. The pyrazolo[3,4-d]pyrimidine derivative, SCO-201, reverses multidrug resistance mediated by ABCG2/BCRP.Cells. 2020;9:613. [DOI] [PubMed] [PMC]
Gottesman MM, Hrycyna CA, Schoenlein PV, Germann UA, Pastan I. Genetic analysis of the multidrug transporter.Annu Rev Genet. 1995;29:607–49. [DOI] [PubMed]
Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs.Cell. 1994;77:491–502. [DOI] [PubMed]
Abdallah HM, Al-Abd AM, El-Dine RS, El-Halawany AM. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: a review.J Adv Res. 2015;6:45–62. [DOI] [PubMed] [PMC]
Ohtsuki S, Kamoi M, Watanabe Y, Suzuki H, Hori S, Terasaki T. Correlation of induction of ATP binding cassette transporter A5 (ABCA5) and ABCB1 mRNAs with differentiation state of human colon tumor.Biol Pharm Bull. 2007;30:1144–6. [DOI] [PubMed]
Oda Y, Saito T, Tateishi N, Ohishi Y, Tamiya S, Yamamoto H, et al. ATP-binding cassette superfamily transporter gene expression in human soft tissue sarcomas.Int J Cancer. 2005;114:854–62. [DOI] [PubMed]
Butnariu M, Quispe C, Koirala N, Khadka S, Salgado-Castillo CM, Akram M, et al. Bioactive effects of curcumin in human immunodeficiency virus infection along with the most effective isolation techniques and type of nanoformulations.Int J Nanomedicine. 2022;17:3619–32. [DOI] [PubMed] [PMC]
Pires MM, Emmert D, Hrycyna CA, Chmielewski J. Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers.Mol Pharmacol. 2009;75:92–100. [DOI] [PubMed] [PMC]
Zhang Y, Guo L, Huang J, Sun Y, He F, Zloh M, et al. Inhibitory effect of berberine on broiler P-glycoprotein expression and function: in situ and in vitro studies.Int J Mol Sci. 2019;20:1966. [DOI] [PubMed] [PMC]
Hosseini M, Amiri M, Ghanbari M, Mahdi MA, Abdulsahib WK, Salavati-Niasari M. Drug delivery based on chitosan, β-cyclodextrin and sodium carboxymethyl cellulose as well as nanocarriers for advanced leukemia treatment.Biomed Pharmacother. 2022;153:113369. [DOI] [PubMed]
Kumar A, Jaitak V. Natural products as multidrug resistance modulators in cancer.Eur J Med Chem. 2019;176:268–91. [DOI] [PubMed]
Gao J, Aisa HA. Terpenoids from Euphorbia soongarica and their multidrug resistance reversal activity.J Nat Prod. 2017;80:1767–75. [DOI] [PubMed]
Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance.Biochem Pharmacol. 2012;83:1084–103. [DOI] [PubMed] [PMC]
Fletcher JI, Williams RT, Henderson MJ, Norris MD, Haber M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology.Drug Resist Updat. 2016;26:1–9. [DOI] [PubMed]
Ferreira RJ, Baptista R, Moreno A, Madeira PG, Khonkarn R, Baubichon-Cortay H, et al. Optimizing the flavanone core toward new selective nitrogen-containing modulators of ABC transporters.Future Med Chem. 2018;10:725–41. [DOI] [PubMed]
Ahmed-Belkacem A, Pozza A, Muñoz-Martínez F, Bates SE, Castanys S, Gamarro F, et al. Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2.Cancer Res. 2005;65:4852–60. [DOI] [PubMed]
Li Y, Zhai Z, Li H, Wang X, Huang Y, Su X. Guajadial reverses multidrug resistance by inhibiting ABC transporter expression and suppressing the PI3K/Akt pathway in drug-resistant breast cancer cells.Chem Biol Interact. 2019;305:98–104. [DOI] [PubMed]
Durante M, Frosini M, Fusi F, Neri A, Sticozzi C, Saponara S. In vitro vascular toxicity of tariquidar, a potential tool for in vivo PET studies.Toxicol In Vitro. 2017;44:241–7. [DOI] [PubMed]
Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line.Science. 1992;258:1650–4. [DOI] [PubMed]
Aly AM, Alsedais N. Double-diffusive convection in a porous complex-shaped cavity suspended by nano-encapsulated phase change materials.Z Angew Math Mech. 2021;101:e202000376. [DOI]
Ni K, Yang L, Wan C, Xia Y, Kong L. Flavonostilbenes from Sophora alopecuroides L. as multidrug resistance associated protein 1 (MRP1) inhibitors.Nat Prod Res. 2014;28:2195–8. [DOI] [PubMed]
Chen JR, Jia XH, Wang H, Yi YJ, Wang JY, Li YJ. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway.Int J Oncol. 2016;48:2063–70. [DOI] [PubMed]
Lorendeau D, Dury L, Genoux-Bastide E, Lecerf-Schmidt F, Simões-Pires C, Carrupt PA, et al. Collateral sensitivity of resistant MRP1-overexpressing cells to flavonoids and derivatives through GSH efflux.Biochem Pharmacol. 2014;90:235–45. [DOI] [PubMed]
Salavati-Niasari M, Farzaneh F, Ghandi M. Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalyzed by alumina-supported manganese (II) complexes.J Mol Catal A Chem. 2002;186:101–7. [DOI]
Rask-Andersen M, Masuram S, Fredriksson R, Schiöth HB. Solute carriers as drug targets: current use, clinical trials and prospective.Mol Aspects Med. 2013;34:702–10. [DOI] [PubMed]
Matherly LH, Wilson MR, Hou Z. The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer.Drug Metab Dispos. 2014;42:632–49. [DOI] [PubMed] [PMC]
Desmoulin SK, Hou Z, Gangjee A, Matherly LH. The human proton-coupled folate transporter: biology and therapeutic applications to cancer.Cancer Biol Ther. 2012;13:1355–73. [DOI] [PubMed] [PMC]
van Dam H, Castellazzi M. Distinct roles of Jun : Fos and Jun : ATF dimers in oncogenesis.Oncogene. 2001;20:2453–64. [DOI] [PubMed]
Shaulian E, Karin M. AP-1 as a regulator of cell life and death.Nat Cell Biol. 2002;4:E131–6. [DOI] [PubMed]
Salavati-Niasari M, Banitaba SH. Alumina-supported Mn(II), Co(II), Ni(II) and Cu(II) bis(2-hydroxyanil)acetylacetone complexes as catalysts for the oxidation of cyclohexene with tert-butylhydroperoxide.J Mol Catal A Chem. 2003;201:43–54. [DOI]
Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer.Nat Rev Cancer. 2001;1:181–93. [DOI] [PubMed]
Salavati-Niasari M, Shaterian M, Ganjali M R, Norouzi P. Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn (II), Co (II), Ni (II) and Cu (II) complexes of N, N’-bis(salicylidene)phenylene-1,3-diamine) nanocomposite materials (HGNM).J Mol Catal A Chem. 2007;261:147–55.
Crowe DL. Receptor selective synthetic retinoids as potential cancer chemotherapy agents.Curr Cancer Drug Targets. 2002;2:77–86. [DOI] [PubMed]
Rabbitts TH, Appert A, Chung G, Collins EC, Drynan L, Forster A, et al. Mouse models of human chromosomal translocations and approaches to cancer therapy.Blood Cells Mol Dis. 2001;27:249–59. [DOI] [PubMed]
Rodriguez-García A, Sánchez-Martín M, Pérez-Losada J, Pérez-Mancera PA, Sagrera-Aparisi A, Gutiérrez-Cianca N, et al. Selective destruction of tumor cells through specific inhibition of products resulting from chromosomal translocations.Curr Cancer Drug Targets. 2001;1:109–19. [DOI] [PubMed]
Yeh JE, Toniolo PA, Frank DA. Targeting transcription factors: promising new strategies for cancer therapy.Curr Opin Oncol. 2013;25:652–8. [DOI] [PubMed]
Sansone P, Bromberg J. Targeting the interleukin-6/Jak/stat pathway in human malignancies.J Clin Oncol. 2012;30:1005–14. [DOI] [PubMed] [PMC]
Liang ZW, Guo BF, Li Y, Li XJ, Li X, Zhao LJ, et al. Plasmid-based Stat3 siRNA delivered by hydroxyapatite nanoparticles suppresses mouse prostate tumour growth in vivo.Asian J Androl. 2011;13:481–6. [DOI] [PubMed] [PMC]
Yousefi M, Gholamian F, Ghanbari D, Salavati-Niasari M. Polymeric nanocomposite materials: preparation and characterization of star-shaped PbS nanocrystals and their influence on the thermal stability of acrylonitrile-butadiene-styrene (ABS) copolymer.Polyhedron. 2011;30:1055–60. [DOI]
Su WP, Cheng FY, Shieh DB, Yeh CS, Su WC. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells.Int J Nanomedicine. 2012;7:4269–83. [DOI] [PubMed] [PMC]
Sen M, Thomas SM, Kim S, Yeh JI, Ferris RL, Johnson JT, et al. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy.Cancer Discov. 2012;2:694–705. [DOI] [PubMed] [PMC]
Raskatov JA, Nickols NG, Hargrove AE, Marinov GK, Wold B, Dervan PB. Gene expression changes in a tumor xenograft by a pyrrole-imidazole polyamide.Proc Natl Acad Sci U S A. 2012;109:16041–5. [DOI] [PubMed] [PMC]
Raskatov JA, Meier JL, Puckett JW, Yang F, Ramakrishnan P, Dervan PB. Modulation of NF-κB-dependent gene transcription using programmable DNA minor groove binders.Proc Natl Acad Sci U S A. 2012;109:1023–8. [DOI] [PubMed] [PMC]
Crittenden MR, Cottam B, Savage T, Nguyen C, Newell P, Gough MJ. Expression of NF-κB p50 in tumor stroma limits the control of tumors by radiation therapy.PLoS One. 2012;7:e39295. [DOI] [PubMed] [PMC]
Ble A, Mosca M, Di Loreto G, Guglielmotti A, Biondi G, Bombardieri S, et al. Antiproteinuric effect of chemokine C-C motif ligand 2 inhibition in subjects with acute proliferative lupus nephritis.Am J Nephrol. 2011;34:367–72. [DOI] [PubMed]
Bhatia M, Landolfi C, Basta F, Bovi G, Ramnath RD, de Joannon AC, et al. Treatment with bindarit, an inhibitor of MCP-1 synthesis, protects mice against trinitrobenzene sulfonic acid-induced colitis.Inflamm Res. 2008;57:464–71. [DOI] [PubMed]
Rulli NE, Rolph MS, Srikiatkhachorn A, Anantapreecha S, Guglielmotti A, Mahalingam S. Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis.J Infect Dis. 2011;204:1026–30. [DOI] [PubMed]
Zollo M, Di Dato V, Spano D, De Martino D, Liguori L, Marino N, et al. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models.Clin Exp Metastasis. 2012;29:585–601. [DOI] [PubMed]
Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy.Nat Rev Immunol. 2008;8:59–73. [DOI] [PubMed]
Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, et al. Nanoparticles and targeted drug delivery in cancer therapy.Immunol Lett. 2017;190:64–83. [DOI] [PubMed]
Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability.Am J Physiol Renal Physiol. 2005;288:F605–13. [DOI] [PubMed]
Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design.Nano Lett. 2009;9:1909–15. [DOI] [PubMed]
Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue.Proc Natl Acad Sci U S A. 2011;108:2426–31. [DOI] [PubMed] [PMC]
Hua S, Wu SY. The use of lipid-based nanocarriers for targeted pain therapies.Front Pharmacol. 2013;4:143. [DOI] [PubMed] [PMC]
Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy.Mol Ther. 2010;18:1650–6. [DOI] [PubMed] [PMC]
Jiang Y, Huo S, Hardie J, Liang XJ, Rotello VM. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems.Expert Opin Drug Deliv. 2016;13:547–59. [DOI] [PubMed] [PMC]
Han G, Ghosh P, Rotello VM. Functionalized gold nanoparticles for drug delivery.Nanomedicine (Lond). 2007;2:113–23. [DOI] [PubMed]
Hu CM, Kaushal S, Tran Cao HS, Aryal S, Sartor M, Esener S, et al. Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells.Mol Pharm. 2010;7:914–20. [DOI] [PubMed] [PMC]
Gao F, Zhang J, Fu C, Xie X, Peng F, You J, et al. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability.Int J Nanomedicine. 2017;12:4147–62. [DOI] [PubMed] [PMC]
Wang Q, Alshaker H, Böhler T, Srivats S, Chao Y, Cooper C, et al. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer.Sci Rep. 2017;7:5901. [DOI] [PubMed] [PMC]
Hu Y, Hoerle R, Ehrich M, Zhang C. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.Acta Biomater. 2015;28:149–59. [DOI] [PubMed] [PMC]
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases.Nature. 2000;407:249–57. [DOI] [PubMed]
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting.Adv Enzyme Regul. 2001;41:189–207. [DOI] [PubMed]
Sykes EA, Chen J, Zheng G, Chan WC. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency.ACS Nano. 2014;8:5696–706. [DOI] [PubMed]
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.Acc Chem Res. 2011;44:1123–34. [DOI] [PubMed]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery.ACS Nano. 2009;3:16–20. [DOI] [PubMed]
Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer.Oncogene. 2007;26:3279–90. [DOI] [PubMed]
Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signalling pathway and cancer.Gene. 2019;698:120–8. [DOI] [PubMed]