SZ: Conceptualization, Writing—original draft. XL and YL: Writing—review & editing. HL and ZZ: Supervision.
Conflicts of interest
The authors declare no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This work was supported by the National Natural Science Foundation of China [82003680, 82111530241], Shandong Provincial Natural Science Foundation [ZR2020QH350, ZR2021QH024, ZR2023YQ065], Open Projects Fund of NMPA Key Laboratory for Technology Research and Evaluation of Drug Products [No. 2022TREDP03], and the Chinese “post-doctoral international exchange program”. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin. 2021;71:209–49. [DOI] [PubMed]
Rawal S, Patel M. Bio-nanocarriers for lung cancer management: befriending the barriers.Nanomicro Lett. 2021;13:142. [DOI] [PubMed] [PMC]
Cryer AM, Thorley AJ. Nanotechnology in the diagnosis and treatment of lung cancer.Pharmacol Ther. 2019;198:189–205. [DOI] [PubMed]
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer.Nature. 2018;553:446–54. [DOI] [PubMed]
Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer.Chem Biol Interact. 2019;309:108720. [DOI] [PubMed]
Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R. New insights into designing hybrid nanoparticles for lung cancer: diagnosis and treatment.J Control Release. 2019;295:250–67. [DOI] [PubMed]
Ahmad J, Akhter S, Rizwanullah M, Amin S, Rahman M, Ahmad MZ, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art.Nanotechnol Sci Appl. 2015;8:55–66. [DOI] [PubMed] [PMC]
Cook M, Qorri B, Baskar A, Ziauddin J, Pani L, Yenkanchi S, et al. Small patient datasets reveal genetic drivers of non-small cell lung cancer subtypes using machine learning for hypothesis generation.Explor Med. 2023;4:428–40. [DOI]
Xie W, Liu S, Li G, Xu H, Zhou L. The evolving treatment paradigm of lung cancer in China.Acta Pharm Sin B. 2022;12:1536–7. [DOI] [PubMed] [PMC]
Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA. Paclitaxel: What has been done and the challenges remain ahead.Int J Pharm. 2017;526:474–95. [DOI] [PubMed]
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, et al. Diverse applications of nanomedicine.ACS Nano. 2017;11:2313–81. [DOI] [PubMed] [PMC]
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects.J Nanobiotechnology. 2018;16:71. [DOI] [PubMed] [PMC]
Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy.Nat Rev Drug Discov. 2021;20:689–709. [DOI] [PubMed] [PMC]
Sattar R, Shahzad F, Ishaq T, Mukhtar R, Naz A. Nano-drug carriers: a potential approach towards drug delivery methods.ChemistrySelect. 2022;7:e202200884. [DOI]
Larsen JE, Minna JD. Molecular biology of lung cancer: clinical implications.Clin Chest Med. 2011;32:703–40. [DOI] [PubMed] [PMC]
Ahrendt SA, Chow JT, Yang SC, Wu L, Zhang MJ, Jen J, et al. Alcohol consumption and cigarette smoking increase the frequency of p53 mutations in non-small cell lung cancer.Cancer Res. 2000;60:3155–9. [PubMed]
Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC.Nat Rev Cancer. 2017;17:637–58. [DOI] [PubMed]
Ciardiello F, Tortora G. EGFR antagonists in cancer treatment.N Engl J Med. 2008;358:1160–74. [DOI] [PubMed]
Ryslik GA, Cheng Y, Cheung KH, Modis Y, Zhao H. Utilizing protein structure to identify non-random somatic mutations.BMC Bioinformatics. 2013;14:190. [DOI] [PubMed] [PMC]
Marchetti A, Ardizzoni A, Papotti M, Crinò L, Rossi G, Gridelli C, et al. Recommendations for the analysis of ALK gene rearrangements in non-small-cell lung cancer: a consensus of the Italian Association of Medical Oncology and the Italian Society of Pathology and Cytopathology.J Thorac Oncol. 2013;8:352–8. [DOI] [PubMed]
Tomizawa K, Suda K, Onozato R, Kosaka T, Endoh H, Sekido Y, et al. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers.Lung Cancer. 2011;74:139–44. [DOI] [PubMed]
Klotz LV, Courty Y, Lindner M, Petit-Courty A, Stowasser A, Koch I, et al. Comprehensive clinical profiling of the Gauting locoregional lung adenocarcinoma donors.Cancer Med. 2019;8:1486–99. [DOI] [PubMed] [PMC]
Li BT, Ross DS, Aisner DL, Chaft JE, Hsu M, Kako SL, et al. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers.J Thorac Oncol. 2016;11:414–9. [DOI] [PubMed] [PMC]
Liu S, Li S, Hai J, Wang X, Chen T, Quinn MM, et al. Targeting HER2 aberrations in non-small cell lung cancer with osimertinib.Clin Cancer Res. 2018;24:2594–604. [DOI] [PubMed] [PMC]
Liao ZX, Huang KY, Kempson IM, Li HJ, Tseng SJ, Yang PC. Nanomodified strategies to overcome EGFR-tyrosine kinase inhibitors resistance in non-small cell lung cancer.J Control Release. 2020;324:482–92. [DOI] [PubMed]
Downward J. Targeting RAS signalling pathways in cancer therapy.Nat Rev Cancer. 2003;3:11–22. [DOI] [PubMed]
Wen Z, Jiang R, Huang Y, Wen Z, Rui D, Liao X, et al. Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7).Respir Res. 2019;20:194. [DOI] [PubMed] [PMC]
Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer.Lancet Oncol. 2008;9:962–72. [DOI] [PubMed]
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer.Nature. 2002;417:949–54. [DOI] [PubMed]
Leonetti A, Facchinetti F, Rossi G, Minari R, Conti A, Friboulet L, et al. BRAF in non-small cell lung cancer (NSCLC): pickaxing another brick in the wall.Cancer Treat Rev. 2018;66:82–94. [DOI] [PubMed]
Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland Å, et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial.Lancet Oncol. 2017;18:1307–16. [DOI] [PubMed]
Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, Look AT, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma.Science. 1994;263:1281–4. [DOI] [PubMed]
Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer.Nature. 2007;448:561–6. [DOI] [PubMed]
Guan J, Umapathy G, Yamazaki Y, Wolfstetter G, Mendoza P, Pfeifer K, et al. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase.Elife. 2015;4:e09811. [DOI] [PubMed] [PMC]
Katayama R. Therapeutic strategies and mechanisms of drug resistance in anaplastic lymphoma kinase (ALK)-rearranged lung cancer.Pharmacol Ther. 2017;177:1–8. [DOI] [PubMed]
Jiang W, Cai G, Hu P, Wang Y. Personalized medicine of non-gene-specific chemotherapies for non-small cell lung cancer.Acta Pharm Sin B. 2021;11:3406–16. [DOI] [PubMed] [PMC]
Satoh H, Yoshida MC, Matsushime H, Shibuya M, Sasaki M. Regional localization of the human c-ros-1 on 6q22 and flt on 13q12.Jpn J Cancer Res. 1987;78:772–5. [PubMed]
Acquaviva J, Wong R, Charest A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer.Biochim Biophys Acta. 2009;1795:37–52. [DOI] [PubMed]
Davies KD, Le AT, Theodoro MF, Skokan MC, Aisner DL, Berge EM, et al. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer.Clin Cancer Res. 2012;18:4570–9. [DOI] [PubMed] [PMC]
Uguen A, De Braekeleer M. ROS1 fusions in cancer: a review.Future Oncol. 2016;12:1911–28. [DOI] [PubMed]
Drilon A, Jenkins C, Iyer S, Schoenfeld A, Keddy C, Davare MA. ROS1-dependent cancers – biology, diagnostics and therapeutics.Nat Rev Clin Oncol. 2021;18:35–55. [DOI] [PubMed] [PMC]
Lin JJ, Shaw AT. Recent advances in targeting ROS1 in lung cancer.J Thorac Oncol. 2017;12:1611–25. [DOI] [PubMed] [PMC]
Jänne PA, Engelman JA, Johnson BE. Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology.J Clin Oncol. 2005;23:3227–34. [DOI] [PubMed]
Koch JP, Aebersold DM, Zimmer Y, Medová M. MET targeting: time for a rematch.Oncogene. 2020;39:2845–62. [DOI] [PubMed]
Feng J, Lian Z, Xia X, Lu Y, Hu K, Zhang Y, et al. Targeting metabolic vulnerability in mitochondria conquers MEK inhibitor resistance in KRAS-mutant lung cancer.Acta Pharm Sin B. 2023;13:1145–63. [DOI] [PubMed] [PMC]
Reungwetwattana T, Liang Y, Zhu V, Ou SI. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: the Why, the How, the Who, the Unknown, and the Inevitable.Lung Cancer. 2017;103:27–37. [DOI] [PubMed]
Schildhaus HU, Schultheis AM, Rüschoff J, Binot E, Merkelbach-Bruse S, Fassunke J, et al. MET amplification status in therapy-naïve adeno- and squamous cell carcinomas of the lung.Clin Cancer Res. 2015;21:907–15. [DOI] [PubMed]
Jenkins RW, Oxnard GR, Elkin S, Sullivan EK, Carter JL, Barbie DA. Response to crizotinib in a patient with lung adenocarcinoma harboring a MET splice site mutation.Clin Lung Cancer. 2015;16:e101–4. [DOI] [PubMed] [PMC]
Baltschukat S, Engstler BS, Huang A, Hao HX, Tam A, Wang HQ, et al. Capmatinib (INC280) is active against models of non-small cell lung cancer and other cancer types with defined mechanisms of MET activation.Clin Cancer Res. 2019;25:3164–75. [DOI] [PubMed]
Cooper WA, Lam DC, O’Toole SA, Minna JD. Molecular biology of lung cancer.J Thorac Dis. 2013;5:S479–90. [DOI] [PubMed] [PMC]
Zukin M, Barrios CH, Pereira JR, Ribeiro Rde A, Beato CA, do Nascimento YN, et al. Randomized phase III trial of single-agent pemetrexed versus carboplatin and pemetrexed in patients with advanced non-small-cell lung cancer and Eastern Cooperative Oncology Group performance status of 2.J Clin Oncol. 2013;31:2849–53. [DOI] [PubMed]
Arbour KC, Riely GJ. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review.JAMA. 2019;322:764–74. [DOI] [PubMed]
Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate.Cell. 1990;61:1303–13. [DOI] [PubMed]
Nabil G, Alzhrani R, Alsaab HO, Atef M, Sau S, Iyer AK, et al. CD44 targeted nanomaterials for treatment of triple-negative breast cancer.Cancers (Basel). 2021;13:898. [DOI] [PubMed] [PMC]
Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al.; KEYNOTE-042 Investigators. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial.Lancet. 2019;393:1819–30. [DOI] [PubMed]
Kong T, Ahn R, Yang K, Zhu X, Fu Z, Morin G, et al. CD44 promotes PD-L1 expression and its tumor-intrinsic function in breast and lung cancers.Cancer Res. 2020;80:444–57. [DOI] [PubMed]
Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies.J Hematol Oncol. 2013;6:74. [DOI] [PubMed] [PMC]
Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition.Science. 2017;355:1428–33. [DOI] [PubMed] [PMC]
Mauri FA, Pinato DJ, Trivedi P, Sharma R, Shiner RJ. Isogeneic comparison of primary and metastatic lung cancer identifies CX3CR1 as a molecular determinant of site-specific metastatic diffusion.Oncol Rep. 2012;28:647–53. [DOI] [PubMed]
Grinberg-Rashi H, Ofek E, Perelman M, Skarda J, Yaron P, Hajdúch M, et al. The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain.Clin Cancer Res. 2009;15:1755–61. [DOI] [PubMed]
Whitsett TG, Inge LJ, Dhruv HD, Cheung PY, Weiss GJ, Bremner RM, et al. Molecular determinants of lung cancer metastasis to the central nervous system.Transl Lung Cancer Res. 2013;2:273–83. [DOI] [PubMed] [PMC]
Chang H, Sung JH, Moon SU, Kim HS, Kim JW, Lee JS. EGF induced RET inhibitor resistance in CCDC6-RET lung cancer cells.Yonsei Med J. 2017;58:9–18. [DOI] [PubMed] [PMC]
Su T, Huang S, Zhang Y, Guo Y, Zhang S, Guan J, et al. miR-7/TGF-β2 axis sustains acidic tumor microenvironment-induced lung cancer metastasis.Acta Pharm Sin B. 2022;12:821–37. [DOI] [PubMed] [PMC]
Kumari R, Sunil D, Ningthoujam RS. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: an up-to-date review.J Control Release. 2020;319:135–56. [DOI] [PubMed]
Chen YL, Yang TY, Chen KC, Wu CL, Hsu SL, Hsueh CM. Hypoxia can impair doxorubicin resistance of non-small cell lung cancer cells by inhibiting MRP1 and P-gp expression and boosting the chemosensitizing effects of MRP1 and P-gp blockers.Cell Oncol (Dordr). 2016;39:411–33. [DOI] [PubMed]
Krzywinska E, Kantari-Mimoun C, Kerdiles Y, Sobecki M, Isagawa T, Gotthardt D, et al. Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis.Nat Commun. 2017;8:1597. [DOI] [PubMed] [PMC]
Li S, Huang L, Sun Y, Bai Y, Yang F, Yu W, et al. Slit2 promotes angiogenic activity via the Robo1-VEGFR2-ERK1/2 pathway in both in vivo and in vitro studies.Invest Ophthalmol Vis Sci. 2015;56:5210–7. [DOI] [PubMed]
Chen Y, Ma G, Su C, Wu P, Wang H, Song X, et al. Apatinib reverses alectinib resistance by targeting vascular endothelial growth factor receptor 2 and attenuating the oncogenic signaling pathway in echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene-positive lung cancer cell lines.Anticancer Drugs. 2018;29:935–43. [DOI] [PubMed]
Paz-Ares L, Hirsh V, Zhang L, de Marinis F, Yang JC, Wakelee HA, et al. Monotherapy administration of sorafenib in patients with non-small cell lung cancer (MISSION) trial: a phase III, multicenter, placebo-controlled trial of sorafenib in patients with relapsed or refractory predominantly nonsquamous non-small-cell lung cancer after 2 or 3 previous treatment regimens.J Thorac Oncol. 2015;10:1745–53. [DOI] [PubMed]
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer.Nature. 2013;500:415–21. [DOI] [PubMed] [PMC]
Kargl J, Busch SE, Yang GH, Kim KH, Hanke ML, Metz HE, et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer.Nat Commun. 2017;8:14381. [DOI] [PubMed] [PMC]
Brambilla E, Le Teuff G, Marguet S, Lantuejoul S, Dunant A, Graziano S, et al. Prognostic effect of tumor lymphocytic infiltration in resectable non-small-cell lung cancer.J Clin Oncol. 2016;34:1223–30. [DOI] [PubMed] [PMC]
Bremnes RM, Busund LT, Kilvær TL, Andersen S, Richardsen E, Paulsen EE, et al. The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer.J Thorac Oncol. 2016;11:789–800. [DOI] [PubMed]
Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma.N Engl J Med. 2010;363:711–23. [DOI] [PubMed] [PMC]
Parikh AR, Szabolcs A, Allen JN, Clark JW, Wo JY, Raabe M, et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial.Nat Cancer. 2021;2:1124–35. [DOI] [PubMed] [PMC]
Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden.N Engl J Med. 2018;378:2093–104. [DOI] [PubMed] [PMC]
Wang SS, Liu W, Ly D, Xu H, Qu L, Zhang L. Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer.Cell Mol Immunol. 2019;16:6–18. [DOI] [PubMed] [PMC]
Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment.J Immunother Cancer. 2014;2:3. [DOI] [PubMed] [PMC]
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment.Clin Ther. 2016;38:1551–66. [DOI] [PubMed]
Minami K, Hiwatashi K, Ueno S, Sakoda M, Iino S, Okumura H, et al. Prognostic significance of CD68, CD163 and Folate receptor-β positive macrophages in hepatocellular carcinoma.Exp Ther Med. 2018;15:4465–76. [DOI] [PubMed] [PMC]
Xu X, Jiang J, Yao L, Ji B. Silencing the FOLR2 gene inhibits cell proliferation and increases apoptosis in the NCI-H1650 non-small cell lung cancer cell line via inhibition of AKT/mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase 1 (S6K1) signaling.Med Sci Monit. 2018;24:8064–73. [DOI] [PubMed] [PMC]
O’Shannessy DJ, Somers EB, Wang LC, Wang H, Hsu R. Expression of folate receptors alpha and beta in normal and cancerous gynecologic tissues: correlation of expression of the beta isoform with macrophage markers.J Ovarian Res. 2015;8:29. [DOI] [PubMed] [PMC]
Tie Y, Zheng H, He Z, Yang J, Shao B, Liu L, et al. Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex.Signal Transduct Target Ther. 2020;5:6. [DOI] [PubMed] [PMC]
Tian Y, Wu G, Xing JC, Tang J, Zhang Y, Huang ZM, et al. A novel splice variant of folate receptor 4 predominantly expressed in regulatory T cells.BMC Immunol. 2012;13:30. [DOI] [PubMed] [PMC]
Shamsi A, Ahmed A, Khan MS, Husain FM, Amani S, Bano B. Investigating the interaction of anticancer drug temsirolimus with human transferrin: molecular docking and spectroscopic approach.J Mol Recognit. 2018;31:e2728. [DOI] [PubMed]
Kaur T, Upadhyay J, Pukale S, Mathur A, Ansari MN. Investigation of trends in the research on transferrin receptor-mediated drug delivery via a bibliometric and thematic analysis.Pharmaceutics. 2022;14:2574. [DOI] [PubMed] [PMC]
Lu Y, Zhu D, Gui L, Li Y, Wang W, Liu J, et al. A dual-targeting ruthenium nanodrug that inhibits primary tumor growth and lung metastasis via the PARP/ATM pathway.J Nanobiotechnology. 2021;19:115. [DOI] [PubMed] [PMC]
Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors.Cancer Cell. 2009;16:510–20. [DOI] [PubMed] [PMC]
Su Y, Hu Y, Wang Y, Xu X, Yuan Y, Li Y, et al. A precision-guided MWNT mediated reawakening the sunk synergy in RAS for anti-angiogenesis lung cancer therapy.Biomaterials. 2017;139:75–90. [DOI] [PubMed]
Szlenk CT, Gc JB, Natesan S. Membrane-facilitated receptor access and binding mechanisms of long-acting β2-adrenergic receptor agonists.Mol Pharmacol. 2021;100:406–27. [DOI] [PubMed] [PMC]
Johnson M. The β-adrenoceptor.Am J Respir Crit Care Med. 1998;158:S146–53. [DOI] [PubMed]
Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling.Pharmacol Rev. 2001;53:1–24. [PubMed]
Elfinger M, Geiger J, Hasenpusch G, Uzgün S, Sieverling N, Aneja MK, et al. Targeting of the β2-adrenoceptor increases nonviral gene delivery to pulmonary epithelial cells in vitro and lungs in vivo.J Control Release. 2009;135:234–41. [DOI] [PubMed]
Iaboni M, Russo V, Fontanella R, Roscigno G, Fiore D, Donnarumma E, et al. Aptamer-miRNA-212 conjugate sensitizes NSCLC cells to TRAIL.Mol Ther Nucleic Acids. 2016;5:e289. [DOI] [PubMed] [PMC]
Almasan A, Ashkenazi A. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy.Cytokine Growth Factor Rev. 2003;14:337–48. [DOI] [PubMed]
Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT, Shin BS, et al. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer.Biomaterials. 2013;34:6444–53. [DOI] [PubMed]
Snajdauf M, Havlova K, Vachtenheim J Jr, Ozaniak A, Lischke R, Bartunkova J, et al. The TRAIL in the treatment of human cancer: an update on clinical trials.Front Mol Biosci. 2021;8:628332. [DOI] [PubMed] [PMC]
Sancho V, Di Florio A, Moody TW, Jensen RT. Bombesin receptor-mediated imaging and cytotoxicity: review and current status.Curr Drug Deliv. 2011;8:79–134. [DOI] [PubMed] [PMC]
Moody TW, Sun LC, Mantey SA, Pradhan T, Mackey LV, Gonzales N, et al. In vitro and in vivo antitumor effects of cytotoxic camptothecin-bombesin conjugates are mediated by specific interaction with cellular bombesin receptors.J Pharmacol Exp Ther. 2006;318:1265–72. [DOI] [PubMed]
Du J, Li L. Which one performs better for targeted lung cancer combination therapy: pre- or post-bombesin-decorated nanostructured lipid carriers?Drug Deliv. 2016;23:1799–809. [DOI] [PubMed]
Pawar S, Vavia P. Glucosamine anchored cancer targeted nano-vesicular drug delivery system of doxorubicin.J Drug Target. 2016;24:68–79. [DOI] [PubMed]
Pawar SK, Vavia P. Efficacy interactions of PEG-DOX-N-acetyl glucosamine prodrug conjugate for anticancer therapy.Eur J Pharm Biopharm. 2015;97:454–63. [DOI] [PubMed]
Pawar SK, Badhwar AJ, Kharas F, Khandare JJ, Vavia PR. Design, synthesis and evaluation of N-acetyl glucosamine (NAG)-PEG-doxorubicin targeted conjugates for anticancer delivery.Int J Pharm. 2012;436:183–93. [DOI] [PubMed]
Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets.Nat Rev Cancer. 2005;5:526–42. [DOI] [PubMed]
Yang C, Cao M, Liu H, He Y, Xu J, Du Y, et al. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering.J Biol Chem. 2012;287:43094–107. [DOI] [PubMed] [PMC]
Shahriari M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Self-targeted polymersomal co-formulation of doxorubicin, camptothecin and FOXM1 aptamer for efficient treatment of non-small cell lung cancer.J Control Release. 2021;335:369–88. [DOI] [PubMed]
Toole BP. Hyaluronan: from extracellular glue to pericellular cue.Nat Rev Cancer. 2004;4:528–39. [DOI] [PubMed]
Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine.J Drug Target. 2015;23:605–18. [DOI] [PubMed]
Hsiao KY, Wu YJ, Liu ZN, Chuang CW, Huang HH, Kuo SM. Anticancer effects of sinulariolide-conjugated hyaluronan nanoparticles on lung adenocarcinoma cells.Molecules. 2016;21:297. [DOI] [PubMed] [PMC]
Bignotti E, Zanotti L, Calza S, Falchetti M, Lonardi S, Ravaggi A, et al. Trop-2 protein overexpression is an independent marker for predicting disease recurrence in endometrioid endometrial carcinoma.BMC Clin Pathol. 2012;12:22. [DOI] [PubMed] [PMC]
Fu Y, Jing Y, Gao J, Li Z, Wang H, Cai M, et al. Variation of Trop2 on non-small-cell lung cancer and normal cell membranes revealed by super-resolution fluorescence imaging.Talanta. 2020;207:120312. [DOI] [PubMed]
Lin JC, Wu YY, Wu JY, Lin TC, Wu CT, Chang YL, et al. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma.EMBO Mol Med. 2012;4:472–85. [DOI] [PubMed] [PMC]
Cubas R, Li M, Chen C, Yao Q. Trop2: a possible therapeutic target for late stage epithelial carcinomas.Biochim Biophys Acta. 2009;1796:309–14. [DOI] [PubMed]
Guerra E, Trerotola M, Aloisi AL, Tripaldi R, Vacca G, La Sorda R, et al. The Trop-2 signalling network in cancer growth.Oncogene. 2013;32:1594–600. [DOI] [PubMed]
Heist RS, Guarino MJ, Masters G, Purcell WT, Starodub AN, Horn L, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-anti-Trop-2 drug conjugate, sacituzumab govitecan.J Clin Oncol. 2017;35:2790–7. [DOI] [PubMed]
Thakur C. Chapter 2 - an overview, current challenges of drug resistance, and targeting metastasis associated with lung cancer. In: Kesharwani P, editor. Nanotechnology-based targeted drug delivery systems for lung cancer. Amsterdam: Academic Press; 2019. pp. 21–38.
Jiang W, Cai G, Hu PC, Wang Y. Personalized medicine in non-small cell lung cancer: a review from a pharmacogenomics perspective.Acta Pharm Sin B. 2018;8:530–8. [DOI] [PubMed] [PMC]
Jablonska PA, Bosch-Barrera J, Serrano D, Valiente M, Calvo A, Aristu J. Challenges and novel opportunities of radiation therapy for brain metastases in non-small cell lung cancer.Cancers (Basel). 2021;13:2141. [DOI] [PubMed] [PMC]
Hussain S. Nanomedicine for treatment of lung cancer. In: Ahmad A, Gadgeel S, editors. Lung cancer and personalized medicine: novel therapies and clinical management. Cham: Springer; 2016. pp. 137–47.
Sul J, Blumenthal GM, Jiang X, He K, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1.Oncologist. 2016;21:643–50. [DOI] [PubMed] [PMC]
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles.Sci Rep. 2020;10:11292. [DOI] [PubMed] [PMC]
Wilson CM, Magnaudeix A, Naves T, Vincent F, Lalloue F, Jauberteau MO. The ins and outs of nanoparticle technology in neurodegenerative diseases and cancer.Curr Drug Metab. 2015;16:609–32. [DOI] [PubMed]
Tzogani K, Penttilä K, Lapveteläinen T, Hemmings R, Koenig J, Freire J, et al. EMA review of daunorubicin and cytarabine encapsulated in liposomes (Vyxeos, CPX-351) for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia or acute myeloid leukemia with myelodysplasia-related changes.Oncologist. 2020;25:e1414–20. [DOI] [PubMed] [PMC]
Belgiovine C, D’Incalci M, Allavena P, Frapolli R. Tumor-associated macrophages and anti-tumor therapies: complex links.Cell Mol Life Sci. 2016;73:2411–24. [DOI] [PubMed]
Xue X, Qu H, Li Y. Stimuli-responsive crosslinked nanomedicine for cancer treatment.Exploration (Beijing). 2022;2:20210134. [DOI] [PubMed] [PMC]
Sun Z, Hou Y. Intelligent micro/nanorobots for improved tumor therapy.BMEMat. 2023;1:e12012. [DOI]
Yang G, Liu Y, Chen J, Ding J, Chen X. Self-adaptive nanomaterials for rational drug delivery in cancer therapy.Acc Mater Res. 2022;3:1232–47. [DOI]
Raju GSR, Benton L, Pavitra E, Yu JS. Multifunctional nanoparticles: recent progress in cancer therapeutics.Chem Commun. 2015;51:13248–59. [DOI] [PubMed]
Gindy ME, Prud’homme RK. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy.Expert Opin Drug Deliv. 2009;6:865–78. [DOI] [PubMed]
Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. In: Sezer AD, editor. Application of nanotechnology in drug delivery. London: IntechOpen; 2014.
Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer.Semin Cancer Biol. 2021;69:349–64. [DOI] [PubMed]
Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine.Nanoscale Res Lett. 2012;7:144. [DOI] [PubMed] [PMC]
Zhang T, Chen Y, Ge Y, Hu Y, Li M, Jin Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers.Acta Pharm Sin B. 2018;8:440–8. [DOI] [PubMed] [PMC]
Zhang W, Gong C, Chen Z, Li M, Li Y, Gao J. Tumor microenvironment-activated cancer cell membrane-liposome hybrid nanoparticle-mediated synergistic metabolic therapy and chemotherapy for non-small cell lung cancer.J Nanobiotechnology. 2021;19:339. [DOI] [PubMed] [PMC]
Hu M, Zhang J, Kong L, Yu Y, Hu Q, Yang T, et al. Immunogenic hybrid nanovesicles of liposomes and tumor-derived nanovesicles for cancer immunochemotherapy.ACS Nano. 2021;15:3123–38. [DOI] [PubMed]
Shanker M, Willcutts D, Roth JA, Ramesh R. Drug resistance in lung cancer.Lung Cancer: Targets Ther. 2010;1:23–36. [PubMed] [PMC]
Scagliotti GV, Novello S, Selvaggi G. Multidrug resistance in non-small-cell lung cancer.Ann Oncol. 1999;10:S83–6. [DOI] [PubMed]
Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T. Multidrug resistance: physiological principles and nanomedical solutions.Adv Drug Deliv Rev. 2013;65:1852–65. [DOI] [PubMed] [PMC]
Mamot C, Drummond DC, Hong K, Kirpotin DB, Park JW. Liposome-based approaches to overcome anticancer drug resistance.Drug Resist Updat. 2003;6:271–9. [DOI] [PubMed]
Qu MH, Zeng RF, Fang S, Dai QS, Li HP, Long JT. Liposome-based co-delivery of siRNA and docetaxel for the synergistic treatment of lung cancer.Int J Pharm. 2014;474:112–22. [DOI] [PubMed]
Saad M, Garbuzenko OB, Minko T. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer.Nanomedicine (Lond). 2008;3:761–76. [DOI] [PubMed] [PMC]
Li F, Mei H, Gao Y, Xie X, Nie H, Li T, et al. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer.Biomaterials. 2017;145:56–71. [DOI] [PubMed]
Xu W, Lee M. Development and evaluation of lipid nanoparticles for paclitaxel delivery: a comparison between solid lipid nanoparticles and nanostructured lipid carriers.J Pharm Invest. 2015;45:675–80. [DOI]
Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies.Int J Nanomedicine. 2016;11:4799–818. [DOI] [PubMed] [PMC]
Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art.Eur J Pharm Biopharm. 2014;86:7–22. [DOI] [PubMed]
Patil TS, Deshpande AS, Deshpande S. Critical review on the analytical methods for the estimation of clofazimine in bulk, biological fluids and pharmaceutical formulations.Crit Rev Anal Chem. 2018;48:492–502. [DOI] [PubMed]
Patil TS, Deshpande AS. Nanostructured lipid carriers-based drug delivery for treating various lung diseases: A State-of-the-Art Review.Int J Pharm. 2018;547:209–25. [DOI] [PubMed]
Patil TS, Deshpande AS, Deshpande S, Shende P. Targeting pulmonary tuberculosis using nanocarrier-based dry powder inhalation: current status and futuristic need.J Drug Target. 2019;27:12–27. [DOI] [PubMed]
Wen M, Xia J, Sun Y, Wang X, Fu X, Zhang Y, et al. Combination of EGFR-TKIs with chemotherapy versus chemotherapy or EGFR-TKIs alone in advanced NSCLC patients with EGFR mutation.Biologics. 2018;12:183–90. [DOI] [PubMed] [PMC]
Garbuzenko OB, Kuzmov A, Taratula O, Pine SR, Minko T. Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy.Theranostics. 2019;9:8362–76. [DOI] [PubMed] [PMC]
Yang Y, Huang Z, Li J, Mo Z, Huang Y, Ma C, et al. PLGA porous microspheres dry powders for codelivery of afatinib-loaded solid lipid nanoparticles and paclitaxel: novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer.Adv Healthc Mater. 2019;8:e1900965. [DOI] [PubMed]
Soni N, Soni N, Pandey H, Maheshwari R, Kesharwani P, Tekade RK. Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles.J Colloid Interface Sci. 2016;481:107–16. [DOI] [PubMed]
Mattoussi H, Rotello VM. Inorganic nanoparticles in drug delivery.Adv Drug Deliv Rev. 2013;65:605–6. [DOI] [PubMed]
Ju Y, Cortez-Jugo C, Chen J, Wang TY, Mitchell AJ, Tsantikos E, et al. Engineering of nebulized metal-phenolic capsules for controlled pulmonary deposition.Adv Sci (Weinh). 2020;7:1902650. [DOI] [PubMed] [PMC]
Saadat M, Manshadi MKD, Mohammadi M, Zare MJ, Zarei M, Kamali R, et al. Magnetic particle targeting for diagnosis and therapy of lung cancers.J Control Release. 2020;328:776–91. [DOI] [PubMed] [PMC]
Bao G, Mitragotri S, Tong S. Multifunctional nanoparticles for drug delivery and molecular imaging.Annu Rev Biomed Eng. 2013;15:253–82. [DOI] [PubMed] [PMC]
Orel V, Shevchenko A, Romanov A, Tselepi M, Mitrelias T, Barnes CH, et al. Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin.Nanomedicine. 2015;11:47–55. [DOI] [PubMed]
Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis.ACS Chem Neurosci. 2011;2:118–40. [DOI] [PubMed] [PMC]
Gaihre B, Khil MS, Kim HY. In vitro anticancer activity of doxorubicin-loaded gelatin-coated magnetic iron oxide nanoparticles.J Microencapsul. 2011;28:286–93. [DOI] [PubMed]
Tseng SJ, Huang KY, Kempson IM, Kao SH, Liu MC, Yang SC, et al. Remote control of light-triggered virotherapy.ACS Nano. 2016;10:10339–46. [DOI] [PubMed]
Sadhukha T, Wiedmann TS, Panyam J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy.Biomaterials. 2013;34:5163–71. [DOI] [PubMed] [PMC]
Huang H, Yuan G, Xu Y, Gao Y, Mao Q, Zhang Y, et al. Photoacoustic and magnetic resonance imaging-based gene and photothermal therapy using mesoporous nanoagents.Bioact Mater. 2022;9:157–67. [DOI] [PubMed] [PMC]
Ma Y, Chen L, Li X, Hu A, Wang H, Zhou H, et al. Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors.Biomaterials. 2021;275:120917. [DOI] [PubMed]
Li N, Liu S, Sun M, Chen W, Xu X, Zeng Z, et al. Chimeric antigen receptor-modified T cells redirected to EphA2 for the immunotherapy of non-small cell lung cancer.Transl Oncol. 2018;11:11–7. [DOI] [PubMed] [PMC]
Cao W, He L, Cao W, Huang X, Jia K, Dai J. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant.Acta Biomater. 2020;112:14–28. [DOI] [PubMed]
Liu W, Dong A, Wang B, Zhang H. Current advances in black phosphorus-based drug delivery systems for cancer therapy.Adv Sci (Weinh). 2021;8:2003033. [DOI] [PubMed] [PMC]
Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application.Biosens Bioelectron. 2015;74:562–74. [DOI] [PubMed]
Hamano N, Murata M, Kawano T, Piao JS, Narahara S, Nakata R, et al. Förster resonance energy transfer-based self-assembled nanoprobe for rapid and sensitive detection of postoperative pancreatic fistula.ACS Appl Mater Interfaces. 2016;8:5114–23. [DOI] [PubMed]
Wu D, Li BL, Zhao Q, Liu Q, Wang D, He B, et al. Assembling defined DNA nanostructure with nitrogen-enriched carbon dots for theranostic cancer applications.Small. 2020;16:e1906975. [DOI] [PubMed]
Saravanakumar G, Kim J, Kim WJ. Reactive-oxygen-species-responsive drug delivery systems: promises and challenges.Adv Sci (Weinh). 2016;4:1600124. [DOI] [PubMed] [PMC]
Zhang Q, Liu F, Nguyen KT, Ma X, Wang X, Xing B, et al. Multifunctional mesoporous silica nanoparticles for cancer‐targeted and controlled drug delivery.Adv Funct Mater. 2012;22:5144–56. [DOI]
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery.Adv Mater. 2012;24:1504–34. [DOI] [PubMed]
Zhou X, He X, Shi K, Yuan L, Yang Y, Liu Q, et al. Injectable thermosensitive hydrogel containing erlotinib-loaded hollow mesoporous silica nanoparticles as a localized drug delivery system for NSCLC therapy.Adv Sci (Weinh). 2020;7:2001442. [DOI] [PubMed] [PMC]
Cheng W, Liang C, Xu L, Liu G, Gao N, Tao W, et al. TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance.Small. 2017;13:1700623. [DOI] [PubMed]
Amreddy N, Babu A, Muralidharan R, Munshi A, Ramesh R. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment.Top Curr Chem (Cham). 2017;375:35. [DOI] [PubMed] [PMC]
Kim J, Wilson DR, Zamboni CG, Green JJ. Targeted polymeric nanoparticles for cancer gene therapy.J Drug Target. 2015;23:627–41. [DOI] [PubMed] [PMC]
Zhou L, Wang H, Li Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance.Theranostics. 2018;8:1059–74. [DOI] [PubMed] [PMC]
Paus C, van der Voort R, Cambi A. Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles.Explor Med. 2021;2:167–85. [DOI]
Hensing TA, Karrison T, Garmey EG, Hennessy MG, Salgia R. Randomized phase II study of IV topotecan versus CRLX101 in the second-line treatment of recurrent extensive-stage small cell lung cancer (ES-SCLC).J Clin Oncol. 2013;31:TPS7610. [DOI]
Tseng S, Kempson IM, Liao Z, Ho Y, Yang P. An acid degradable, lactate oxidizing nanoparticle formulation for non-small cell lung cancer virotherapy.Nano Today. 2022;46:101582. [DOI]
Wang S, Yu G, Wang Z, Jacobson O, Tian R, Lin LS, et al. Hierarchical tumor microenvironment-responsive nanomedicine for programmed delivery of chemotherapeutics.Adv Mater. 2018;30:e1803926. [DOI] [PubMed] [PMC]
Liao ZX, Kempson IM, Hsieh CC, Tseng SJ, Yang PC. Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer.Drug Discov Today. 2021;26:2508–14. [DOI] [PubMed]
Zhong G, Yang C, Liu S, Zheng Y, Lou W, Teo JY, et al. Polymers with distinctive anticancer mechanism that kills MDR cancer cells and inhibits tumor metastasis.Biomaterials. 2019;199:76–87. [DOI] [PubMed]
Iyer R, Nguyen T, Padanilam D, Xu C, Saha D, Nguyen KT, et al. Glutathione-responsive biodegradable polyurethane nanoparticles for lung cancer treatment.J Control Release. 2020;321:363–71. [DOI] [PubMed] [PMC]
Wang X, Chen H, Zeng X, Guo W, Jin Y, Wang S, et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system.Acta Pharm Sin B. 2019;9:167–76. [DOI] [PubMed] [PMC]
Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging.Stem Cells. 2009;27:2614–23. [DOI] [PubMed] [PMC]
Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma.Stem Cells. 2008;26:831–41. [DOI] [PubMed]
Chen Y, Chen C, Zhang X, He C, Zhao P, Li M, et al. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects.Acta Pharm Sin B. 2020;10:1106–21. [DOI] [PubMed] [PMC]
Wang L, Yu Y, Wei D, Zhang L, Zhang X, Zhang G, et al. A systematic strategy of combinational blow for overcoming cascade drug resistance via NIR-light-triggered hyperthermia.Adv Mater. 2021;33:e2100599. [DOI] [PubMed]
Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, et al. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis.Acta Pharm Sin B. 2023;13:916–41. [DOI] [PubMed] [PMC]
Kuerban K, Gao X, Zhang H, Liu J, Dong M, Wu L, et al. Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer.Acta Pharm Sin B. 2020;10:1534–48. [DOI] [PubMed] [PMC]
Li XQ, Liu JT, Fan LL, Liu Y, Cheng L, Wang F, et al. Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy.Oncotarget. 2016;7:24585–95. [DOI] [PubMed] [PMC]
Zhong YF, Cheng J, Liu Y, Luo T, Wang Y, Jiang K, et al. DNA nanostructures as Pt(IV) prodrug delivery systems to combat chemoresistance.Small. 2020;16:e2003646. [DOI] [PubMed]
Ye B, Zhao B, Wang K, Guo Y, Lu Q, Zheng L, et al. Neutrophils mediated multistage nanoparticle delivery for prompting tumor photothermal therapy.J Nanobiotechnology. 2020;18:138. [DOI] [PubMed] [PMC]
Chen J, Yang J, Ding J. Rational construction of polycystine-based nanoparticles for biomedical applications.J Mater Chem B. 2022;10:7173–82. [DOI] [PubMed]
Delk SC, Chattopadhyay A, Escola-Gil JC, Fogelman AM, Reddy ST. Apolipoprotein mimetics in cancer.Semin Cancer Biol. 2021;73:158–68. [DOI] [PubMed] [PMC]
Mottaghitalab F, Kiani M, Farokhi M, Kundu SC, Reis RL, Gholami M, et al. Targeted delivery system based on gemcitabine-loaded silk fibroin nanoparticles for lung cancer therapy.ACS Appl Mater Interfaces. 2017;9:31600–11. [DOI] [PubMed]
Elgohary MM, Helmy MW, Abdelfattah EA, Ragab DM, Mortada SM, Fang JY, et al. Targeting sialic acid residues on lung cancer cells by inhalable boronic acid-decorated albumin nanocomposites for combined chemo/herbal therapy.J Control Release. 2018;285:230–43. [DOI] [PubMed]
Guo M, Wu F, Hu G, Chen L, Xu J, Xu P, et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion.Sci Transl Med. 2019;11:eaat5690. [DOI] [PubMed]
Ghosh S, Javia A, Shetty S, Bardoliwala D, Maiti K, Banerjee S, et al. Triple negative breast cancer and non-small cell lung cancer: clinical challenges and nano-formulation approaches.J Control Release. 2021;337:27–58. [DOI] [PubMed]
Wilhelm S, Tavares A, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours.Nat Rev Mater. 2016;1:16014. [DOI]
Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?J Control Release. 2016;244:108–21. [DOI] [PubMed]
Pirollo KF, Nemunaitis J, Leung PK, Nunan R, Adams J, Chang EH. Safety and efficacy in advanced solid tumors of a targeted nanocomplex carrying the p53 gene used in combination with docetaxel: a phase 1b study.Mol Ther. 2016;24:1697–706. [DOI] [PubMed] [PMC]
Peng XH, Wang Y, Huang D, Wang Y, Shin HJ, Chen Z, et al. Targeted delivery of cisplatin to lung cancer using ScFvEGFR-heparin-cisplatin nanoparticles.ACS Nano. 2011;5:9480–93. [DOI] [PubMed] [PMC]
Ganesh S, Iyer AK, Gattacceca F, Morrissey DV, Amiji MM. In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles.J Control Release. 2013;172:699–706. [DOI] [PubMed] [PMC]
Chen Q, Wang X, Chen F, Zhang Q, Dong B, Yang H, et al. Functionalization of upconverted luminescent NaYF4:Yb/Er nanocrystals by folic acid-chitosan conjugates for targeted lung cancer cell imaging.J Mater Chem. 2011;21:7661–7. [DOI]