Structure-factor stimuli of pathogen-inducing NETs. Depending on the stimulus, neutrophils can become either suicidal (terminal) or vital “zombie” neutrophils
MY: Conceptualization, Writing—original draft, Writing—review & editing. CCY and MA: Validation, Supervision, Writing—review & editing. MHN: Writing—review & editing. All authors read and approved the submitted version.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This work was funded by the Universiti Sultan Zainal Abidin Research Centre Grant [UniSZA/2020/LABMAT/03] to support research projects in the Centre for Research in Infectious Diseases and Biotechnology (CeRIDB) at the Faculty of Medicine. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Haenni M, Lupo A, Madec JY. Antimicrobial Resistance in Streptococcus spp.Microbiol Spectr. 2018;6. [DOI] [PubMed]
Miranda PSD, Lannes-Costa PS, Pimentel BAS, Silva LG, Ferreira-Carvalho BT, Menezes GC, et al. Biofilm formation on different pH conditions by Streptococcus agalactiae isolated from bovine mastitic milk.Lett Appl Microbiol. 2018;67:235–43. [DOI] [PubMed]
Chan T, Tay MZ, Kyaw WM, Chow A, Ho HJ. Epidemiology, vaccine effectiveness, and risk factors for mortality for pneumococcal disease among hospitalised adults in Singapore: a case-control study.BMC Infect Dis. 2020;20:423. [DOI] [PubMed] [PMC]
Masomian M, Ahmad Z, Gew LT, Poh CL. Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection.Vaccines (Basel). 2020;8:132. [DOI] [PubMed] [PMC]
Wahl B, O’Brien KL, Greenbaum A, Majumder A, Liu L, Chu Y, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15.Lancet Glob Health. 2018;6:e744–57. [DOI] [PubMed] [PMC]
Sadowy E, Hryniewicz W. Identification of Streptococcus pneumoniae and other Mitis streptococci: importance of molecular methods.Eur J Clin Microbiol Infect Dis. 2020;39:2247–56. [DOI] [PubMed] [PMC]
Feldman C, Anderson R. Pneumococcal virulence factors in community-acquired pneumonia.Curr Opin Pulm Med. 2020;26:222–31. [DOI] [PubMed]
Lacks S, Greenberg B, Neuberger M. Role of a deoxyribonuclease in the genetic transformation of Diplococcus pneumoniae.Proc Natl Acad Sci U S A. 1974;71:2305–9. [DOI] [PubMed] [PMC]
Williams RJ. Restriction endonuclease.Mol Biotechnol. 2003;23:225–43. [DOI] [PubMed]
Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes.Nucleic Acids Res. 2003;31:1805–12. [DOI] [PubMed] [PMC]
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense.Microbiol Mol Biol Rev. 2013;77:53–72. [DOI] [PubMed] [PMC]
Milkman R, Raleigh EA, McKane M, Cryderman D, Bilodeau P, McWeeny K. Molecular evolution of the Escherichia coli chromosome. V. Recombination patterns among strains of diverse origin.Genetics. 1999;153:539–54. [DOI] [PubMed] [PMC]
Price C, Bickle TA. A possible role for DNA restriction in bacterial evolution.Microbiol Sci. 1986;3:296–9. [PubMed]
Kusano K, Sakagami K, Yokochi T, Naito T, Tokinaga Y, Ueda E, et al. A new type of illegitimate recombination is dependent on restriction and homologous interaction.J Bacteriol. 1997;179:5380–90. [DOI] [PubMed] [PMC]
Furuta Y, Abe K, Kobayashi I. Genome comparison and context analysis reveals putative mobile forms of restriction–modification systems and related rearrangements.Nucleic Acids Res. 2010;38:2428–43. [DOI] [PubMed] [PMC]
Asakura Y, Kojima H, Kobayashi I. Evolutionary genome engineering using a restriction–modification system.Nucleic Acids Res. 2011;39:9034–46. [DOI] [PubMed] [PMC]
Koonin EV, Makarova KS, Aravind L. Horizontal gene transfer in prokaryotes: quantification and classification.Annu Rev Microbiol. 2001;55:709–42. [DOI] [PubMed] [PMC]
Lerat E, Daubin V, Ochman H, Moran NA. Evolutionary origins of genomic repertoires in bacteria.PLoS Biol. 2005;3:e130. [DOI] [PubMed] [PMC]
Arber W. Genetic variation: molecular mechanisms and impact on microbial evolution.FEMS Microbiol Rev. 2000;24:1–7. [DOI] [PubMed]
Griffith F. The Significance of Pneumococcal Types.J Hyg (Lond). 1928;27:113–59. [DOI] [PubMed] [PMC]
Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types : induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III.J Exp Med. 1944;79:137–58. [DOI] [PubMed] [PMC]
Claverys JP, Martin B, Polard P. The genetic transformation machinery: composition, localization, and mechanism.FEMS Microbiol Rev. 2009;33:643–56. [DOI] [PubMed]
Krüger NJ, Stingl K. Two steps away from novelty – principles of bacterial DNA uptake.Mol Microbiol. 2011;80:860–7. [DOI] [PubMed]
Straume D, Stamsås GA, Håvarstein LS. Natural transformation and genome evolution in Streptococcus pneumoniae.Infect Genet Evol. 2015;33:371–80. [DOI] [PubMed]
Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, et al. Rapid pneumococcal evolution in response to clinical interventions.Science. 2011;331:430–4. [DOI] [PubMed] [PMC]
Engelmoer DJP, Donaldson I, Rozen DE. Conservative sex and the benefits of transformation in Streptococcus pneumoniae.PLoS Pathog. 2013;9:e1003758. [DOI] [PubMed] [PMC]
Sakwinska O, Bastic Schmid V, Berger B, Bruttin A, Keitel K, Lepage M, et al. Nasopharyngeal microbiota in healthy children and pneumonia patients.J Clin Microbiol. 2014;52:1590–4. [DOI] [PubMed] [PMC]
Muschiol S, Balaban M, Normark S, Henriques-Normark B. Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae.Bioessays. 2015;37:426–35. [DOI] [PubMed] [PMC]
Kohoutová DM. Mechanism of the transformation of the polysaccharide capsule in Pneumococcus.Nature. 1961;190:1171–3. [DOI] [PubMed]
Lacks S, Greenberg B. Competence for deoxyribonucleic acid uptake and deoxyribonuclease action external to cells in the genetic transformation of Diplococcus pneumoniae.J Bacteriol. 1973;114:152–63. [DOI] [PubMed] [PMC]
Lacks S, Greenberg B, Neuberger M. Identification of a deoxyribonuclease implicated in genetic transformation of Diplococcus pneumoniae.J Bacteriol. 1975;123:222–32. [DOI] [PubMed] [PMC]
Lacks S. Molecular fate of DNA in genetic transformation of Pneumococcus.J Mol Biol. 1962;5:119–31. [DOI] [PubMed]
Bergé MJ, Kamgoué A, Martin B, Polard P, Campo N, Claverys JP. Midcell recruitment of the DNA uptake and virulence nuclease, EndA, for pneumococcal transformation.PLoS Pathog. 2013;9:e1003596. [DOI] [PubMed] [PMC]
Méjean V, Claverys JP. DNA processing during entry in transformation of Streptococcus pneumoniae.J Biol Chem. 1993;268:5594–9. [DOI] [PubMed]
Moon AF, Midon M, Meiss G, Pingoud A, London RE, Pedersen LC. Structural insights into catalytic and substrate binding mechanisms of the strategic EndA nuclease from Streptococcus pneumoniae.Nucleic Acids Res. 2011;39:2943–53. [DOI] [PubMed] [PMC]
Rosenthal AL, Lacks SA. Complex structure of the membrane nuclease of Streptococcus pneumoniae revealed by two-dimensional electrophoresis.J Mol Biol. 1980;141:133–46. [DOI] [PubMed]
Bergé M, Moscoso M, Prudhomme M, Martin B, Claverys JP. Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae.Mol Microbiol. 2002;45:411–21. [DOI] [PubMed]
Zhu L, Kuang Z, Wilson BA, Lau GW. Competence-Independent Activity of Pneumococcal Enda Mediates Degradation of Extracellular DNA and Nets and Is Important for Virulence.PLoS One. 2013;8:e70363. [DOI] [PubMed] [PMC]
Peterson EJ, Kireev D, Moon AF, Midon M, Janzen WP, Pingoud A, et al. Inhibitors of Streptococcus pneumoniae surface endonuclease EndA discovered by high-throughput screening using a PicoGreen fluorescence assay.J Biomol Screen. 2013;18:247–57. [DOI] [PubMed] [PMC]
Ehrlich GD, Hiller NL, Hu FZ. What makes pathogens pathogenic.Genome Biol. 2008;9:225. [DOI] [PubMed] [PMC]
Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, Powell E, et al. Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome.J Bacteriol. 2007;189:8186–95. [DOI] [PubMed] [PMC]
Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity.Nat Rev Immunol. 2011;11:519–31. [DOI] [PubMed]
Borregaard N. Neutrophils, from marrow to microbes.Immunity. 2010;33:657–70. [DOI] [PubMed]
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria.Science. 2004;303:1532–5. [DOI] [PubMed]
von Köckritz-Blickwede M, Chow OA, Nizet V. Fetal calf serum contains heat-stable nucleases that degrade neutrophil extracellular traps.Blood. 2009;114:5245–6. [DOI] [PubMed] [PMC]
Pilsczek FH, Salina D, Poon KKH, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus.J Immunol. 2010;185:7413–25. [DOI] [PubMed]
Håvarstein LS, Coomaraswamy G, Morrison DA. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae.Proc Natl Acad Sci U S A. 1995;92:11140–4. [DOI] [PubMed] [PMC]
Grinberg N, Elazar S, Rosenshine I, Shpigel NY. β-hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli.Infect Immun. 2008;76:2802–7. [DOI] [PubMed] [PMC]
Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps.Curr Biol. 2006;16:396–400. [DOI] [PubMed]
Mori Y, Yamaguchi M, Terao Y, Hamada S, Ooshima T, Kawabata S. α-Enolase of Streptococcus pneumoniae induces formation of neutrophil extracellular traps.J Biol Chem. 2012;287:10472–81. [DOI] [PubMed] [PMC]
Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps.J Cell Biol. 2007;176:231–41. [DOI] [PubMed] [PMC]
Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps.J Innate Immun. 2010;2:576–86. [DOI] [PubMed] [PMC]
Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1.Cell Host Microbe. 2012;12:109–16. [DOI] [PubMed]
Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis.Am J Pathol. 2011;179:199–210. [DOI] [PubMed] [PMC]
Wardini AB, Guimarães-Costa AB, Nascimento MT, Nadaes NR, Danelli MG, Mazur C, et al. Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus.J Gen Virol. 2010;91:259–64. [DOI] [PubMed]
Jenne CN, Wong CH, Zemp FJ, McDonald B, Rahman MM, Forsyth PA, et al. Neutrophils Recruited to Sites of Infection Protect from Virus Challenge by Releasing Neutrophil Extracellular Traps.Cell Host Microbe. 2013;13:169–80. [DOI]
Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity.Blood. 2011;117:953–9. [DOI] [PubMed] [PMC]
Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S, Thywissen A, et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.PLoS Pathog. 2010;6:e1000873. [DOI] [PubMed] [PMC]
Bianchi M, Niemiec MJ, Siler U, Urban CF, Reichenbach J. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent.J Allergy Clin Immunol. 2011;127:1243–52.e7. [DOI] [PubMed]
Guimarães-Costa AB, Nascimento MT, Froment GS, Soares RP, Morgado FN, Conceição-Silva F, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps.Proc Natl Acad Sci U S A. 2009;106:6748–53. [DOI] [PubMed] [PMC]
Baker VS, Imade GE, Molta NB, Tawde P, Pam SD, Obadofin MO, et al. Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age.Malar J. 2008;7:41. [DOI] [PubMed] [PMC]
Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis.Nat Med. 2009;15:623–5. [DOI] [PubMed] [PMC]
Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus.Sci Transl Med. 2011;3:73ra20. [DOI] [PubMed] [PMC]
Lim MB, Kuiper JW, Katchky A, Goldberg H, Glogauer M. Rac2 is required for the formation of neutrophil extracellular traps.J Leukoc Biol. 2011;90:771–6. [DOI] [PubMed]
Oehmcke S, Mörgelin M, Herwald H. Activation of the human contact system on neutrophil extracellular traps.J Innate Immun. 2009;1:225–30. [DOI] [PubMed] [PMC]
Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.Nat Med. 2007;13:463–9. [DOI] [PubMed]
Neeli I, Khan SN, Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils.J Immunol. 2008;180:1895–902. [DOI] [PubMed]
Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps.J Cell Biol. 2010;191:677–91. [DOI] [PubMed] [PMC]
Branzk N, Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease.Semin Immunopathol. 2013;35:513–30. [DOI] [PubMed] [PMC]
Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps.Curr Biol. 2006;16:401–7. [DOI] [PubMed]
Van Avondt K, Hartl D. Mechanisms and disease relevance of neutrophil extracellular trap formation.Eur J Clin Invest. 2018;48:e12919. [DOI] [PubMed]
Ríos-López AL, González GM, Hernández-Bello R, Sánchez-González A. Avoiding the trap: Mechanisms developed by pathogens to escape neutrophil extracellular traps.Microbiol Res. 2021;243:126644. [DOI] [PubMed]
Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo.Nat Med. 2012;18:1386–93. [DOI]
Domínguez-Díaz C, Varela-Trinidad GU, Muñoz-Sánchez G, Solórzano-Castanedo K, Avila-Arrezola KE, Iñiguez-Gutiérrez L, et al. To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases.Cells. 2021;10:1469. [DOI] [PubMed] [PMC]
Zawrotniak M, Kozik A, Rapala‐Kozik M. Neutrophil Extracellular Traps in Infectious Human Diseases. In: Khajah M, editor. Role of Neutrophils in Disease Pathogenesis. IntechOpen; 2017.
von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps.J Mol Med (Berl). 2009;87:775–83. [DOI] [PubMed] [PMC]
Ebrahimi F, Giaglis S, Hahn S, Blum CA, Baumgartner C, Kutz A, et al. Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: secondary analysis of a randomised controlled trial.Eur Respir J. 2018;51:1701389. [DOI] [PubMed]
Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury.JCI Insight. 2018;3:e98178. [DOI] [PubMed] [PMC]
Czaikoski PG, Mota JM, Nascimento DC, Sônego F, Castanheira FV, Melo PH, et al. Neutrophil Extracellular Traps Induce Organ Damage during Experimental and Clinical Sepsis.PLoS One. 2016;11:e0148142. [DOI] [PubMed] [PMC]
Yang JJ, Kettritz R, Falk RJ, Jennette JC, Gaido ML. Apoptosis of endothelial cells induced by the neutrophil serine proteases proteinase 3 and elastase.Am J Pathol. 1996;149:1617–26. [PubMed] [PMC]
Hou HH, Cheng SL, Chung KP, Wei SC, Tsao PN, Lu HH, et al. PlGF mediates neutrophil elastase-induced airway epithelial cell apoptosis and emphysema.Respir Res. 2014;15:106. [DOI] [PubMed] [PMC]
Grechowa I, Horke S, Wallrath A, Vahl CF, Dorweiler B. Human neutrophil elastase induces endothelial cell apoptosis by activating the PERK-CHOP branch of the unfolded protein response.FASEB J. 2017;31:3868–81. [DOI] [PubMed]
Daniel C, Leppkes M, Muñoz LE, Schley G, Schett G, Herrmann M. Extracellular DNA traps in inflammation, injury and healing.Nat Rev Nephrol. 2019;15:559–75. [DOI] [PubMed]
Hiyoshi T, Domon H, Maekawa T, Nagai K, Tamura H, Takahashi N, et al. Aggregatibacter actinomycetemcomitans induces detachment and death of human gingival epithelial cells and fibroblasts via elastase release following leukotoxin-dependent neutrophil lysis.Microbiol Immunol. 2019;63:100–10. [DOI] [PubMed]
Brinkmann V. Neutrophil Extracellular Traps in the Second Decade.J Innate Immun. 2018;10:414–21. [DOI] [PubMed] [PMC]
Li RHL, Johnson LR, Kohen C, Tablin F. A novel approach to identifying and quantifying neutrophil extracellular trap formation in septic dogs using immunofluorescence microscopy.BMC Vet Res. 2018;14:210. [DOI] [PubMed] [PMC]
Li RHL, Tablin F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis.Front Vet Sci. 2018;5:291. [DOI] [PubMed] [PMC]
Ekaney ML, Otto GP, Sossdorf M, Sponholz C, Boehringer M, Loesche W, et al. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation.Crit Care. 2014;18:543. [DOI] [PubMed] [PMC]
Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases.Nat Rev Nephrol. 2016;12:402–13. [DOI] [PubMed] [PMC]
Glennon-Alty L, Hackett AP, Chapman EA, Wright HL. Neutrophils and redox stress in the pathogenesis of autoimmune disease.Free Radic Biol Med. 2018;125:25–35. [DOI] [PubMed]
Keshari RS, Jyoti A, Dubey M, Kothari N, Kohli M, Bogra J, et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition.PLoS One. 2012;7:e48111. [DOI] [PubMed] [PMC]
Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines.Nat Med. 2014;20:511–7. [DOI] [PubMed]
Vorobjeva NV, Chernyak BV. NETosis: Molecular Mechanisms, Role in Physiology and Pathology.Biochemistry (Mosc). 2020;85:1178–90. [DOI] [PubMed] [PMC]
Sharma P, Garg N, Sharma A, Capalash N, Singh R. Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers.Int J Med Microbiol. 2019;309:151354. [DOI] [PubMed]
Ul Ain Q, Chung JY, Kim YH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN.J Control Release. 2015;205:120–7. [DOI] [PubMed]
Vassallo A, Wood AJ, Subburayalu J, Summers C, Chilvers ER. The counter-intuitive role of the neutrophil in the acute respiratory distress syndrome.Br Med Bull. 2019;131:43–55. [DOI] [PubMed]
Uddin M, Watz H, Malmgren A, Pedersen F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma.Front Immunol. 2019;10:47. [DOI] [PubMed] [PMC]
Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics.Clin Rev Allergy Immunol. 2021;61:194–211. [DOI] [PubMed] [PMC]
Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum.Proc Natl Acad Sci U S A. 1990;87:9188–92. [DOI] [PubMed] [PMC]
Meng W, Paunel-Görgülü A, Flohé S, Witte I, Schädel-Höpfner M, Windolf J, et al. Deoxyribonuclease is a potential counter regulator of aberrant neutrophil extracellular traps formation after major trauma.Mediators Inflamm. 2012;2012:149560. [DOI] [PubMed] [PMC]
Mohanty T, Fisher J, Bakochi A, Neumann A, Cardoso JFP, Karlsson CAQ, et al. Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis.Nat Commun. 2019;10:1667. [DOI] [PubMed] [PMC]
Kaplan JB, LoVetri K, Cardona ST, Madhyastha S, Sadovskaya I, Jabbouri S, et al. Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci.J Antibiot (Tokyo). 2012;65:73–7. [DOI] [PubMed] [PMC]