Comparative prediction results on the ISIC2017 dataset
Dataset
Models
Year
DSC↑
SE↑
SP↑
ACC↑
ISIC2017
U-Net*
2015
0.8989
0.8793
0.9812
0.9613
SCR-Net*
2021
0.8898
0.8497
0.9853
0.9588
C2SDG*
2021
0.8938
0.8859
0.9765
0.9588
ATTENTION SWIN U-NET*
2022
0.8859
0.8492
0.9847
0.9591
MALUNet*
2022
0.8896
0.8824
0.9762
0.9583
UNeXt-S#
2022
0.9017
0.8894
0.9806
0.9633
EGE-UNet*
2023
0.9073
0.8931
0.9816
0.9642
VM-UNet*
2024
0.9070
0.8837
0.9842
0.9645
VM-UNet v2*
2024
0.9045
0.8768
0.9849
0.9637
LightM-UNet*
2024
0.9080
0.8839
0.9846
0.9649
UltraLight VM-UNet*
2024
0.9091
0.9053
0.9790
0.9646
UltraLight VM-UNet#
2024
0.9097
0.9042
0.9804
0.9660
UCM-Net (Baseline)
2024
0.9120
0.8824
0.9877
0.9678
MUCM-Net (1-patch)
2024
0.9160
0.9090
0.9869
0.9689
MUCM-Net (2-patch)
2024
0.9126
0.9008
0.9829
0.9679
MUCM-Net (4-patch)
2024
0.9133
0.8871
0.9870
0.9681
MUCM-Net (8-patch)
2024
0.9185
0.9014
0.9857
0.9697
* the results cited from UltraLight VM-Net; # the results tested by us. ISIC: International Skin Imaging Collaboration; DSC: Dice Similarity Coefficient; SE: sensitivity; SP: specificity; ACC: accuracy. ↑: the higher the value, the better the performance
Brown SL, Fisher P, Hope-Stone L, Damato B, Heimann H, Hussain R, et al. Fear of cancer recurrence and adverse cancer treatment outcomes: predicting 2- to 5-year fear of recurrence from post-treatment symptoms and functional problems in uveal melanoma survivors.J Cancer Surviv. 2023;17:187–96. [DOI] [PubMed]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023.CA Cancer J Clin. 2023;73:17–48. [DOI] [PubMed]
Marks R. An overview of skin cancers.Cancer. 1995;75:607–12. [DOI] [PubMed]
Lehmann TM, Gönner C, Spitzer K. Survey: interpolation methods in medical image processing.IEEE Trans Med Imaging. 1999;18:1049–75. [DOI] [PubMed]
Goyal R, Husain S, Wilson K, Chopra H, Pahwa R, Loganathan M, et al. Recent advancements in skin cancer treatment: a critical review.Explor Med. 2023;4:782–812. [DOI]
Nasir M, Attique Khan M, Sharif M, Lali IU, Saba T, Iqbal T. An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach.Microsc Res Tech. 2018;81:528–43. [DOI] [PubMed]
Hosny KM, Elshoura D, Mohamed ER, Vrochidou E, Papakostas GA. Deep Learning and Optimization-Based Methods for Skin Lesions Segmentation: A Review.IEEE Access. 2023;11:85467–88. [DOI]
Huang HY, Hsiao YP, Karmakar R, Mukundan A, Chaudhary P, Hsieh SC, et al. A Review of Recent Advances in Computer-Aided Detection Methods Using Hyperspectral Imaging Engineering to Detect Skin Cancer.Cancers (Basel). 2023;15:5634. [DOI] [PubMed] [PMC]
Sanchez I, Agaian S. A new system of computer-aided diagnosis of skin lesions. In: Egiazarian KO, Agaian SS, Gotchev AP, Recker J, Wang G, editors. Image Processing: Algorithms and Systems X; and Parallel Processing for Imaging Applications II. IS&T/SPIE Electronic Imaging; 2012 Jan 22-26; Burlingame, United States. 2012. [DOI]
de Carvalho TM, Noels E, Wakkee M, Udrea A, Nijsten T. Development of Smartphone Apps for Skin Cancer Risk Assessment: Progress and Promise.JMIR Dermatol. 2019;2:e13376. [DOI]
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare.Nat Med. 2019;25:24–9. [DOI] [PubMed]
Chen C, Zhang P, Zhang H, Dai J, Yi Y, Zhang H, et al. Deep Learning on Computational-Resource-Limited Platforms: A Survey.Mobile Inf Syst. 2020;2020:8454327. [DOI]
Thompson NC, Greenewald K, Lee K, Manso GF. The Computational Limits of Deep Learning.arXiv:2007.05558v1 [Preprint]. 2020 [cited 2024 Jul 30]: [46 p.]. Available from: https://doi.org/10.48550/arXiv.2007.05558
Yuan C, Zhao D, Agaian SS. UCM-Net: A lightweight and efficient solution for skin lesion segmentation using MLP and CNN.Biomed Signal Process Control. 2024;96:106573. [DOI]
Berseth M. ISIC 2017 - Skin Lesion Analysis Towards Melanoma Detection.arXiv:1703.00523 [Preprint]. 2017 [cited 2024 Jul 30]: [4 p.]. Available from: https://doi.org/10.48550/arXiv.1703.00523
Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions.Sci Data. 2018;5:180161. [DOI] [PubMed] [PMC]
Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, et al. Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC).arXiv:1902.03368 [Preprint]. 2019 [cited 2024 Jul 30]: [12 p.]. Available from: https://doi.org/10.48550/arXiv.1902.03368
Kim H, Khan MUK, Kyung CM. Efficient Neural Network Compression. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, USA. IEEE; 2019. pp. 12561–9. [DOI]
Yuan C, Agaian SS. A comprehensive review of Binary Neural Network.Artif Intell Rev. 2023;56:12949–3013. [DOI]
Yang Z, Chen Y, Huangfu H, Ran M, Wang H, Li X, et al. Dynamic Corrected Split Federated Learning With Homomorphic Encryption for U-Shaped Medical Image Networks.IEEE J Biomed Health Inform. 2023;27:5946–57. [DOI] [PubMed]
Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, et al. Attention U-Net: Learning Where to Look for the Pancreas.arXiv:1804.03999 [Preprint]. 2018 [cited 2024 Jul 30]: [10 p.]. Available from: https://doi.org/10.48550/arXiv.1804.03999
Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation.arXiv:2102.04306 [Preprint]. 2021 [cited 2024 Jul 30]: [13 p.]. Available from: https://doi.org/10.48550/arXiv.2102.04306
Zhang Y, Liu H, Hu Q. TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation. In: de Bruijne M, Cattin PC, Cotin S, Padoy N, Speidel S, Zheng Y, et al., editors. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. International Conference on Medical Image Computing and Computer-Assisted Intervention; 2021 Sep 27-Oct 1; Strasbourg, France. Cham: Springer International Publishing; 2021. pp. 14–24. [DOI]
Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, et al. Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation. In: Karlinsky L, Michaeli T, Nishino K, editors. Computer Vision – ECCV 2022 Workshops. European Conference on Computer Vision; 2022 Oct 23-27; Tel Aviv, Israel. Cham: Springer Nature Switzerland; 2023. pp. 205–18. [DOI]
Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S. A ConvNet for the 2020s. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Conference on Computer Vision and Pattern Recognition (CVPR); 2022 Jun 18-24; New Orleans, USA. IEEE; 2022. pp. 11966–76. [DOI]
Valanarasu JMJ, Patel VM. UNeXt: MLP-Based Rapid Medical Image Segmentation Network. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, editors. Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. International Conference on Medical Image Computing and Computer-Assisted Intervention; 2022 Sep 18-22; Singapore, Singapore. Cham: Springer Nature Switzerland; 2022. pp. 23–33. [DOI]
Ruan J, Xiang S, Xie M, Liu T, Fu Y. MALUNet: A Multi-Attention and Light-weight UNet for Skin Lesion Segmentation. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2022 Dec 6-8; Las Vegas, USA. IEEE; 2022. pp. 1150–6. [DOI]
Ruan J, Xie M, Gao J, Liu T, Fu Y. EGE-UNet: an Efficient Group Enhanced UNet for skin lesion segmentation.arXiv:2307.08473 [Preprint]. 2023 [cited 2024 Jul 30]: [10 p.]. Available from: https://doi.org/10.48550/arXiv.2307.08473
Zhu L, Liao B, Zhang Q, Wang X, Liu W, Wang X. Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model.arXiv:2401.09417 [Preprint]. 2024 [cited 2024 Jul 30]: [11 p.]. Available from: https://doi.org/10.48550/arXiv.2401.09417
Ruan J, Xiang S. VM-UNet: Vision Mamba UNet for Medical Image Segmentation.arXiv:2402.02491 [Preprint]. 2024 [cited 2024 Jul 30]: [12 p.]. Available from: https://doi.org/10.48550/arXiv.2402.02491
Zhang M, Yu Y, Gu L, Lin T, Tao X. VM-UNET-V2 Rethinking Vision Mamba UNet for Medical Image Segmentation.arXiv:2403.09157 [Preprint]. 2024 [cited 2024 Jul 30]: [12 p.]. Available from: https://doi.org/10.48550/arXiv.2403.09157
Liao W, Zhu Y, Wang X, Pan C, Wang Y, Ma L. LightM-UNet: Mamba Assists in Lightweight UNet for Medical Image Segmentation.arXiv:2403.05246 [Preprint]. 2024 [cited 2024 Jul 30]: [10 p.]. Available from: https://doi.org/10.48550/arXiv.2403.05246
Wu R, Liu Y, Liang P, Chang Q. UltraLight VM-UNet: Parallel Vision Mamba Significantly Reduces Parameters for Skin Lesion Segmentation.arXiv:2403.20035 [Preprint]. 2024 [cited 2024 Jul 30]: [16 p.]. Available from: https://doi.org/10.48550/arXiv.2403.20035
Wang X, Wang S, Ding Y, Li Y, Wu W, Rong Y, et al. State Space Model for New-Generation Network Alternative to Transformers: A Survey.arXiv:2404.09516 [Preprint]. 2024 [cited 2024 Jul 30]: [33 p.]. Available from: https://doi.org/10.48550/arXiv.2404.09516
Gu A, Dao T. Mamba: Linear-Time Sequence Modeling with Selective State Spaces.arXiv:2312.00752v1 [Preprint]. 2023 [cited 2024 Jul 30]: [37 p.]. Available from: https://doi.org/10.48550/arXiv.2312.00752
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, editors. Advances in Neural Information Processing Systems. Curran Associates, Inc.; 2019.
lambdalabs.com [Internet].c2024 [cited 2024 Aug 10]. Available from: https://lambdalabs.com/
Goceri E. Medical image data augmentation: techniques, comparisons and interpretations.Artif Intell Rev. 2023;56:12561–605. [DOI] [PubMed] [PMC]
Loshchilov I, Hutter F. Decoupled Weight Decay Regularization.arXiv:1711.05101 [Preprint]. 2017 [cited 2024 Jul 30]: [19 p.]. Available from: https://doi.org/10.48550/arXiv.1711.05101
Loshchilov I, Hutter F. SGDR: Stochastic Gradient Descent with Warm Restarts.arXiv:1608.03983 [Preprint]. 2016 [cited 2024 Jul 30]: [16 p.]. Available from: https://doi.org/10.48550/arXiv.1608.03983
Sanchez I, Agaian S. Computer aided diagnosis of lesions extracted from large skin surfaces. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE International Conference on Systems, Man and Cybernetics; 2012 Oct 14-17; Seoul, Korea (South). IEEE; 2012. pp. 2879–84. [DOI]
Frants V, Agaian S. Dermoscopic image segmentation based on modified GrabCut with octree color quantization. In: Agaian SS, Asari VK, DelMarco SP, Jassim SA, editors. Mobile Multimedia/Image Processing, Security, and Applications 2020. SPIE Defense + Commercial Sensing; 2020 Apr 27-May 9; California, United States. 2020. [DOI]
Liew A, Agaian S, Zhao L. Mitigation of adversarial noise attacks on skin cancer detection via ordered statistics binary local features. In: Agaian SS, Asari VK, DelMarco SP, editors. Multimodal Image Exploitation and Learning 2023. SPIE Defense + Commercial Sensing; 2023 Apr 30-May 5; Orlando, United States. 2023. [DOI]
Goceri E. Evaluation of denoising techniques to remove speckle and Gaussian noise from dermoscopy images.Comput Biol Med. 2023;152:106474. [DOI] [PubMed]