Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Hacker K. The Burden of Chronic Disease.Mayo Clin Proc Innov Qual Outcomes. 2024;8:112–9. [DOI] [PubMed] [PMC]
Boersma P, Black LI, Ward BW. Prevalence of Multiple Chronic Conditions Among US Adults, 2018.Prev Chronic Dis. 2020;17:E106. [DOI] [PubMed] [PMC]
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition.Inflamm Res. 2021;70:29–49. [DOI] [PubMed] [PMC]
Zhao M, Chu J, Feng S, Guo C, Xue B, He K, et al. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review.Biomed Pharmacother. 2023;164:114985. [DOI] [PubMed]
de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights.Gut. 2022;71:1020–32. [DOI] [PubMed] [PMC]
Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The Gut Microbiota and Inflammation: An Overview.Int J Environ Res Public Health. 2020;17:7618. [DOI] [PubMed] [PMC]
Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases.Microorganisms. 2019;7:14. [DOI] [PubMed] [PMC]
Dong TS, Gupta A. Influence of Early Life, Diet, and the Environment on the Microbiome.Clin Gastroenterol Hepatol. 2019;17:231–42. [DOI] [PubMed] [PMC]
Ahn J, Hayes RB. Environmental Influences on the Human Microbiome and Implications for Noncommunicable Disease.Annu Rev Public Health. 2021;42:277–92. [DOI] [PubMed] [PMC]
Zhang F, Fan D, Huang Jl, Zuo T. The gut microbiome: linking dietary fiber to inflammatory diseases.Med Micro. 2022;14:100070. [DOI]
Zhang C, Li L, Jin B, Xu X, Zuo X, Li Y, et al. The Effects of Delivery Mode on the Gut Microbiota and Health: State of Art.Front Microbiol. 2021;12:724449. [DOI] [PubMed] [PMC]
Gupta VK, Paul S, Dutta C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity.Front Microbiol. 2017;8:1162. [DOI] [PubMed] [PMC]
Sohail MU, Yassine HM, Sohail A, Thani AAA. Impact of Physical Exercise on Gut Microbiome, Inflammation, and the Pathobiology of Metabolic Disorders.Rev Diabet Stud. 2019;15:35–48. [DOI] [PubMed] [PMC]
Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C. Impact of antibiotics on the human microbiome and consequences for host health.Microbiologyopen. 2022;11:e1260. [DOI] [PubMed] [PMC]
Sittipo P, Lobionda S, Lee YK, Maynard CL. Intestinal microbiota and the immune system in metabolic diseases.J Microbiol. 2018;56:154–62. [DOI] [PubMed]
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease.Cell Res. 2020;30:492–506. [DOI] [PubMed] [PMC]
Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis.Cells. 2023;12:793. [DOI] [PubMed] [PMC]
Liu J, Tan Y, Cheng H, Zhang D, Feng W, Peng C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives.Aging Dis. 2022;13:1106–26. [DOI] [PubMed] [PMC]
Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota.Nutrients. 2023;15:2211. [DOI] [PubMed] [PMC]
Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.Proc Natl Acad Sci U S A. 2014;111:2247–52. [DOI] [PubMed] [PMC]
Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids.Cell Mol Immunol. 2021;18:1161–71. [DOI] [PubMed] [PMC]
Ney LM, Wipplinger M, Grossmann M, Engert N, Wegner VD, Mosig AS. Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections.Open Biol. 2023;13:230014. [DOI] [PubMed] [PMC]
Rahman S, O’Connor AL, Becker SL, Patel RK, Martindale RG, Tsikitis VL. Gut microbial metabolites and its impact on human health.Ann Gastroenterol. 2023;36:360–8. [DOI] [PubMed] [PMC]
Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, et al. Short-chain fatty acids in diseases.Cell Commun Signal. 2023;21:212. [DOI] [PubMed] [PMC]
Agus A, Planchais J, Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease.Cell Host Microbe. 2018;23:716–24. [DOI] [PubMed]
Su X, Gao Y, Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis.Cells. 2022;11:2296. [DOI] [PubMed] [PMC]
Nie C, He T, Zhang W, Zhang G, Ma X. Branched Chain Amino Acids: Beyond Nutrition Metabolism.Int J Mol Sci. 2018;19:954. [DOI] [PubMed] [PMC]
Ren YM, Zhuang ZY, Xie YH, Yang PJ, Xia TX, Xie YL, et al. BCAA-producing Clostridium symbiosum promotes colorectal tumorigenesis through the modulation of host cholesterol metabolism.Cell Host Microbe. 2024;32:1519–35.e7. [DOI] [PubMed]
Tofalo R, Cocchi S, Suzzi G. Polyamines and Gut Microbiota.Front Nutr. 2019;6:16. [DOI] [PubMed] [PMC]
Zhang E, Ding C, Li S, Aikemu B, Zhou X, Fan X, et al. Polyamine metabolism patterns characterized tumor microenvironment, prognosis, and response to immunotherapy in colorectal cancer.Cancer Cell Int. 2023;23:96. [DOI] [PubMed] [PMC]
Snezhkina AV, Krasnov GS, Lipatova AV, Sadritdinova AF, Kardymon OL, Fedorova MS, et al. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection.Oxid Med Cell Longev. 2016;2016:2353560. [DOI] [PubMed] [PMC]
Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans.Nutr Res. 2021;95:35–53. [DOI] [PubMed]
Chen X, Zhang H, Ren S, Ding Y, Remex NS, Bhuiyan MS, et al. Gut microbiota and microbiota-derived metabolites in cardiovascular diseases.Chin Med J (Engl). 2023;136:2269–84. [DOI] [PubMed] [PMC]
Guzior DV, Quinn RA. Review: microbial transformations of human bile acids.Microbiome. 2021;9:140. [DOI] [PubMed] [PMC]
Larabi AB, Masson HLP, Bäumler AJ. Bile acids as modulators of gut microbiota composition and function.Gut Microbes. 2023;15:2172671. [DOI] [PubMed] [PMC]
Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.Cell Metab. 2016;24:41–50. [DOI] [PubMed]
Yang W, Cong Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases.Cell Mol Immunol. 2021;18:866–77. [DOI] [PubMed] [PMC]
Melhem H, Kaya B, Ayata CK, Hruz P, Niess JH. Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease.Cells. 2019;8:450. [DOI] [PubMed] [PMC]
Deng H, Hu H, Fang Y. Multiple tyrosine metabolites are GPR35 agonists.Sci Rep. 2012;2:373. [DOI] [PubMed] [PMC]
Kaya B, Melhem H, Niess JH. GPR35 in Intestinal Diseases: From Risk Gene to Function.Front Immunol. 2021;12:717392. [DOI] [PubMed] [PMC]
De Giovanni M, Chen H, Li X, Cyster JG. GPR35 and mediators from platelets and mast cells in neutrophil migration and inflammation.Immunol Rev. 2023;317:187–202. [DOI] [PubMed] [PMC]
Ye D, He J, He X. The role of bile acid receptor TGR5 in regulating inflammatory signalling.Scand J Immunol. 2024;99:e13361. [DOI] [PubMed]
Miyamoto K, Sujino T, Kanai T. The tryptophan metabolic pathway of the microbiome and host cells in health and disease.Int Immunol. 2024;36:601–16. [DOI] [PubMed] [PMC]
Fiorucci S, Zampella A, Ricci P, Distrutti E, Biagioli M. Immunomodulatory functions of FXR.Mol Cell Endocrinol. 2022;551:111650. [DOI] [PubMed]
Zheng D, Kern L, Elinav E. The NLRP6 inflammasome.Immunology. 2021;162:281–9. [DOI] [PubMed] [PMC]
Mentella MC, Scaldaferri F, Pizzoferrato M, Gasbarrini A, Miggiano GAD. Nutrition, IBD and Gut Microbiota: A Review.Nutrients. 2020;12:944. [DOI] [PubMed] [PMC]
Akhtar M, Chen Y, Ma Z, Zhang X, Shi D, Khan JA, et al. Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation.Anim Nutr. 2021;8:350–60. [DOI] [PubMed] [PMC]
Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases.Front Immunol. 2019;10:277. [DOI] [PubMed] [PMC]
Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y. The Gut Microbiota in Inflammatory Bowel Disease.Front Cell Infect Microbiol. 2022;12:733992. [DOI] [PubMed] [PMC]
Michaudel C, Sokol H. The Gut Microbiota at the Service of Immunometabolism.Cell Metab. 2020;32:514–23. [DOI] [PubMed]
Wallace JL, Ferraz JG, Muscara MN. Hydrogen sulfide: an endogenous mediator of resolution of inflammation and injury.Antioxid Redox Signal. 2012;17:58–67. [DOI] [PubMed] [PMC]
Blachier F, Beaumont M, Kim E. Cysteine-derived hydrogen sulfide and gut health: a matter of endogenous or bacterial origin.Curr Opin Clin Nutr Metab Care. 2019;22:68–75. [DOI] [PubMed]
Stummer N, Feichtinger RG, Weghuber D, Kofler B, Schneider AM. Role of Hydrogen Sulfide in Inflammatory Bowel Disease.Antioxidants (Basel). 2023;12:1570. [DOI] [PubMed] [PMC]
Guo FF, Yu TC, Hong J, Fang JY. Emerging Roles of Hydrogen Sulfide in Inflammatory and Neoplastic Colonic Diseases.Front Physiol. 2016;7:156. [DOI] [PubMed] [PMC]
Heinken A, Ravcheev DA, Baldini F, Heirendt L, Fleming RMT, Thiele I. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease.Microbiome. 2019;7:75. [DOI] [PubMed] [PMC]
Liu S, Zhao W, Lan P, Mou X. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy.Protein Cell. 2021;12:331–45. [DOI] [PubMed] [PMC]
Xiao L, Liu Q, Luo M, Xiong L. Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome.Front Cell Infect Microbiol. 2021;11:729346. [DOI] [PubMed] [PMC]
Shaikh SD, Sun N, Canakis A, Park WY, Weber HC. Irritable Bowel Syndrome and the Gut Microbiome: A Comprehensive Review.J Clin Med. 2023;12:2558. [DOI] [PubMed] [PMC]
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems.Ann Gastroenterol. 2015;28:203–9. [PubMed] [PMC]
Jeffrey RB. Imaging Pancreatic Cysts with CT and MRI.Dig Dis Sci. 2017;62:1787–95. [DOI] [PubMed]
Malinen E, Rinttilä T, Kajander K, Mättö J, Kassinen A, Krogius L, et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR.Am J Gastroenterol. 2005;100:373–82. [DOI] [PubMed]
Tana C, Umesaki Y, Imaoka A, Handa T, Kanazawa M, Fukudo S. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome.Neurogastroenterol Motil. 2010;22:512–9, e114–5. [DOI] [PubMed]
Niu HL, Xiao JY. The efficacy and safety of probiotics in patients with irritable bowel syndrome: Evidence based on 35 randomized controlled trials.Int J Surg. 2020;75:116–27. [DOI] [PubMed]
Pittayanon R, Lau JT, Yuan Y, Leontiadis GI, Tse F, Surette M, et al. Gut Microbiota in Patients With Irritable Bowel Syndrome-A Systematic Review.Gastroenterology. 2019;157:97–108. [DOI] [PubMed]
Simon E, Călinoiu LF, Mitrea L, Vodnar DC. Probiotics, Prebiotics, and Synbiotics: Implications and Beneficial Effects against Irritable Bowel Syndrome.Nutrients. 2021;13:2112. [DOI] [PubMed] [PMC]
Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases.World J Gastroenterol. 2013;19:7620–9. [DOI] [PubMed] [PMC]
Yang Z, Huang S, Zou D, Dong D, He X, Liu N, et al. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice.Amino Acids. 2016;48:2731–45. [DOI] [PubMed]
Arany Z, Neinast M. Branched Chain Amino Acids in Metabolic Disease.Curr Diab Rep. 2018;18:76. [DOI] [PubMed]
Zhou M, Shao J, Wu CY, Shu L, Dong W, Liu Y, et al. Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance.Diabetes. 2019;68:1730–46. [DOI] [PubMed] [PMC]
Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al.; MetaHIT Consortium; Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, et al. Human gut microbes impact host serum metabolome and insulin sensitivity.Nature. 2016;535:376–81. [DOI] [PubMed]
Badawy AA. Kynurenine pathway and human systems.Exp Gerontol. 2020;129:110770. [DOI] [PubMed]
Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis.Cell. 2015;161:264–76. [DOI] [PubMed] [PMC]
Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease.Nat Rev Gastroenterol Hepatol. 2020;17:223–37. [DOI] [PubMed]
Natividad JM, Agus A, Planchais J, Lamas B, Jarry AC, Martin R, et al. Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome.Cell Metab. 2018;28:737–49.e4. [DOI] [PubMed]
Taleb S. Tryptophan Dietary Impacts Gut Barrier and Metabolic Diseases.Front Immunol. 2019;10:2113. [DOI] [PubMed] [PMC]
Belobrajdic DP, King RA, Christophersen CT, Bird AR. Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats.Nutr Metab (Lond). 2012;9:93. [DOI] [PubMed] [PMC]
Roshanravan N, Mahdavi R, Alizadeh E, Jafarabadi MA, Hedayati M, Ghavami A, et al. Effect of Butyrate and Inulin Supplementation on Glycemic Status, Lipid Profile and Glucagon-Like Peptide 1 Level in Patients with Type 2 Diabetes: A Randomized Double-Blind, Placebo-Controlled Trial.Horm Metab Res. 2017;49:886–91. [DOI] [PubMed]
Martín R, Langella P. Emerging Health Concepts in the Probiotics Field: Streamlining the Definitions.Front Microbiol. 2019;10:1047. [DOI] [PubMed] [PMC]
Guida C, Ramracheya R. PYY, a Therapeutic Option for Type 2 Diabetes?Clin Med Insights Endocrinol Diabetes. 2020;13:1179551419892985. [DOI] [PubMed] [PMC]
Arora T, Tremaroli V. Therapeutic Potential of Butyrate for Treatment of Type 2 Diabetes.Front Endocrinol (Lausanne). 2021;12:761834. [DOI] [PubMed] [PMC]
Larraufie P, Martin-Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells.Sci Rep. 2018;8:74. [DOI] [PubMed] [PMC]
Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis.Cell. 2011;145:607–21. [DOI] [PubMed] [PMC]
Noureldein MH, Bitar S, Youssef N, Azar S, Eid AA. Butyrate modulates diabetes-linked gut dysbiosis: epigenetic and mechanistic modifications.J Mol Endocrinol. 2020;64:29–42. [DOI] [PubMed]
Prause M, Pedersen SS, Tsonkova V, Qiao M, Billestrup N. Butyrate Protects Pancreatic Beta Cells from Cytokine-Induced Dysfunction.Int J Mol Sci. 2021;22:10427. [DOI] [PubMed] [PMC]
Pedersen SS, Prause M, Williams K, Barrès R, Billestrup N. Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells.J Biol Chem. 2022;298:102312. [DOI] [PubMed] [PMC]
Mendes de Oliveira E, Silva JC, Ascar TP, Sandri S, Marchi AF, Migliorini S, et al. Acute Inflammation Is a Predisposing Factor for Weight Gain and Insulin Resistance.Pharmaceutics. 2022;14:623. [DOI] [PubMed] [PMC]
Li SY, Chen S, Lu XT, Fang AP, Chen YM, Huang RZ, et al. Serum trimethylamine-N-oxide is associated with incident type 2 diabetes in middle-aged and older adults: a prospective cohort study.J Transl Med. 2022;20:374. [DOI] [PubMed] [PMC]
Andersson-Hall U, Gustavsson C, Pedersen A, Malmodin D, Joelsson L, Holmäng A. Higher Concentrations of BCAAs and 3-HIB Are Associated with Insulin Resistance in the Transition from Gestational Diabetes to Type 2 Diabetes.J Diabetes Res. 2018;2018:4207067. [DOI] [PubMed] [PMC]
Hoyles L, Jiménez-Pranteda ML, Chilloux J, Brial F, Myridakis A, Aranias T, et al. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota.Microbiome. 2018;6:73. [DOI] [PubMed] [PMC]
Li X, Hong J, Wang Y, Pei M, Wang L, Gong Z. Trimethylamine-N-Oxide Pathway: A Potential Target for the Treatment of MAFLD.Front Mol Biosci. 2021;8:733507. [DOI] [PubMed] [PMC]
Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease.Pharmacol Ther. 2019;203:107401. [DOI] [PubMed] [PMC]
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.Nat Med. 2013;19:576–85. [DOI] [PubMed] [PMC]
van den Berg EH, Flores-Guerrero JL, Gruppen EG, de Borst MH, Wolak-Dinsmore J, Connelly MA, et al. Non-Alcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: Role of Circulating Branched-Chain Amino Acids.Nutrients. 2019;11:705. [DOI] [PubMed] [PMC]
Saad MJ, Santos A, Prada PO. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance.Physiology (Bethesda). 2016;31:283–93. [DOI] [PubMed]
Zhao ZH, Xin FZ, Xue Y, Hu Z, Han Y, Ma F, et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats.Exp Mol Med. 2019;51:1–14. [DOI] [PubMed] [PMC]
Min BH, Devi S, Kwon GH, Gupta H, Jeong JJ, Sharma SP, et al. Gut microbiota-derived indole compounds attenuate metabolic dysfunction-associated steatotic liver disease by improving fat metabolism and inflammation.Gut Microbes. 2024;16:2307568. [DOI] [PubMed] [PMC]
Alves A, Bassot A, Bulteau AL, Pirola L, Morio B. Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases.Nutrients. 2019;11:1356. [DOI] [PubMed] [PMC]
Miyata M, Funaki A, Fukuhara C, Sumiya Y, Sugiura Y. Taurine attenuates hepatic steatosis in a genetic model of fatty liver disease.J Toxicol Sci. 2020;45:87–94. [DOI] [PubMed]
Nesci A, Carnuccio C, Ruggieri V, D’Alessandro A, Di Giorgio A, Santoro L, et al. Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship.Int J Mol Sci. 2023;24:9087. [DOI] [PubMed] [PMC]
Moris D, Giaginis C, Tsourouflis G, Theocharis S. Farnesoid-X Receptor (FXR) as a Promising Pharmaceutical Target in Atherosclerosis.Curr Med Chem. 2017;24:1147–57. [DOI] [PubMed]
de Boer JF, Schonewille M, Boesjes M, Wolters H, Bloks VW, Bos T, et al. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice.Gastroenterology. 2017;152:1126–38.e6. [DOI] [PubMed]
Miyazaki-Anzai S, Masuda M, Levi M, Keenan AL, Miyazaki M. Dual activation of the bile acid nuclear receptor FXR and G-protein-coupled receptor TGR5 protects mice against atherosclerosis.PLoS One. 2014;9:e108270. [DOI] [PubMed] [PMC]
Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gérard P, et al. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects.J Lipid Res. 2019;60:323–32. [DOI] [PubMed] [PMC]
Zhu B, Ren H, Xie F, An Y, Wang Y, Tan Y. Trimethylamine N-Oxide Generated by the Gut Microbiota: Potential Atherosclerosis Treatment Strategies.Curr Pharm Des. 2022;28:2914–9. [DOI] [PubMed]
Huang Y, Zhang H, Fan X, Wang J, Yin Y, Zhang Y, et al. The Role of Gut Microbiota and Trimethylamine N-oxide in Cardiovascular Diseases.J Cardiovasc Transl Res. 2023;16:581–9. [DOI] [PubMed]
Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation.Cell Metab. 2013;17:49–60. [DOI] [PubMed] [PMC]
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.Nature. 2011;472:57–63. [DOI] [PubMed] [PMC]
Ma G, Pan B, Chen Y, Guo C, Zhao M, Zheng L, et al. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion.Biosci Rep. 2017;37:BSR20160244. [DOI] [PubMed] [PMC]
Makrecka-Kuka M, Volska K, Antone U, Vilskersts R, Grinberga S, Bandere D, et al. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria.Toxicol Lett. 2017;267:32–8. [DOI] [PubMed]
Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis.Cell. 2015;163:1585–95. [DOI] [PubMed] [PMC]
Ohira H, Tsutsui W, Fujioka Y. Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis?J Atheroscler Thromb. 2017;24:660–72. [DOI] [PubMed] [PMC]
Masenga SK, Hamooya B, Hangoma J, Hayumbu V, Ertuglu LA, Ishimwe J, et al. Recent advances in modulation of cardiovascular diseases by the gut microbiota.J Hum Hypertens. 2022;36:952–9. [DOI] [PubMed] [PMC]
Aguilar EC, Leonel AJ, Teixeira LG, Silva AR, Silva JF, Pelaez JM, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation.Nutr Metab Cardiovasc Dis. 2014;24:606–13. [DOI] [PubMed]
Zhao P, Zhao S, Tian J, Liu X. Significance of Gut Microbiota and Short-Chain Fatty Acids in Heart Failure.Nutrients. 2022;14:3758. [DOI] [PubMed] [PMC]
Yoshifuji A, Wakino S, Irie J, Matsui A, Hasegawa K, Tokuyama H, et al. Oral adsorbent AST-120 ameliorates gut environment and protects against the progression of renal impairment in CKD rats.Clin Exp Nephrol. 2018;22:1069–78. [DOI] [PubMed] [PMC]
Voroneanu L, Burlacu A, Brinza C, Covic A, Balan GG, Nistor I, et al. Gut Microbiota in Chronic Kidney Disease: From Composition to Modulation towards Better Outcomes-A Systematic Review.J Clin Med. 2023;12:1948. [DOI] [PubMed] [PMC]
Tang Z, Yu S, Pan Y. The gut microbiome tango in the progression of chronic kidney disease and potential therapeutic strategies.J Transl Med. 2023;21:689. [DOI] [PubMed] [PMC]
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health.Front Microbiol. 2016;7:185. [DOI] [PubMed] [PMC]
Lekawanvijit S, Kompa AR, Wang BH, Kelly DJ, Krum H. Cardiorenal syndrome: the emerging role of protein-bound uremic toxins.Circ Res. 2012;111:1470–83. [DOI] [PubMed]
Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition.PLoS One. 2012;7:e34026. [DOI] [PubMed] [PMC]
Lin X, Liang W, Li L, Xiong Q, He S, Zhao J, et al. The Accumulation of Gut Microbiome-derived Indoxyl Sulfate and P-Cresyl Sulfate in Patients With End-stage Renal Disease.J Ren Nutr. 2022;32:578–86. [DOI] [PubMed]
Niwa T. Indoxyl sulfate is a nephro-vascular toxin.J Ren Nutr. 2010;20:S2–6. [DOI] [PubMed]
Stubbs JR, Stedman MR, Liu S, Long J, Franchetti Y, West RE 3rd, et al. Trimethylamine N-Oxide and Cardiovascular Outcomes in Patients with ESKD Receiving Maintenance Hemodialysis.Clin J Am Soc Nephrol. 2019;14:261–7. [DOI] [PubMed] [PMC]
Dou L, Bertrand E, Cerini C, Faure V, Sampol J, Vanholder R, et al. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair.Kidney Int. 2004;65:442–51. [DOI] [PubMed]
Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease.Circ Res. 2015;116:448–55. [DOI] [PubMed] [PMC]
Chiavaroli L, Mirrahimi A, Sievenpiper JL, Jenkins DJ, Darling PB. Dietary fiber effects in chronic kidney disease: a systematic review and meta-analysis of controlled feeding trials.Eur J Clin Nutr. 2015;69:761–8. [DOI] [PubMed]
Vaziri ND. Effect of Synbiotic Therapy on Gut-Derived Uremic Toxins and the Intestinal Microbiome in Patients with CKD.Clin J Am Soc Nephrol. 2016;11:199–201. [DOI] [PubMed] [PMC]
Wu HM, Sun HJ, Wang F, Yang M, Dong BR, Liu GJ. Oral adsorbents for preventing or delaying the progression of chronic kidney disease.Cochrane Database Syst Rev. 2014;2014:CD007861. [DOI] [PubMed] [PMC]
Xiang S, Qu Y, Qian S, Wang R, Wang Y, Jin Y, et al. Association between systemic lupus erythematosus and disruption of gut microbiota: a meta-analysis.Lupus Sci Med. 2022;9:e000599. [DOI] [PubMed] [PMC]
Wang W, Fan Y, Wang X. Lactobacillus: Friend or Foe for Systemic Lupus Erythematosus?Front Immunol. 2022;13:883747. [DOI] [PubMed] [PMC]
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.Nature. 2013;504:451–5. [DOI] [PubMed] [PMC]
Zhang L, Qing P, Yang H, Wu Y, Liu Y, Luo Y. Gut Microbiome and Metabolites in Systemic Lupus Erythematosus: Link, Mechanisms and Intervention.Front Immunol. 2021;12:686501. [DOI] [PubMed] [PMC]
Haghikia A, Zimmermann F, Schumann P, Jasina A, Roessler J, Schmidt D, et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism.Eur Heart J. 2022;43:518–33. [DOI] [PubMed] [PMC]
Buga AM, Padureanu V, Riza AL, Oancea CN, Albu CV, Nica AD. The Gut-Brain Axis as a Therapeutic Target in Multiple Sclerosis.Cells. 2023;12:1872. [DOI] [PubMed] [PMC]
Mori H, Svegliati Baroni G, Marzioni M, Di Nicola F, Santori P, Maroni L, et al. Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota.Metabolites. 2022;12:647. [DOI] [PubMed] [PMC]
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.J Lipid Res. 2013;54:2325–40. [DOI] [PubMed] [PMC]
Sorgdrager FJH, Naudé PJW, Kema IP, Nollen EA, Deyn PP. Tryptophan Metabolism in Inflammaging: From Biomarker to Therapeutic Target.Front Immunol. 2019;10:2565. [DOI] [PubMed] [PMC]
Rosso JD, Zeichner J, Alexis A, Cohen D, Berson D. Understanding the Epidermal Barrier in Healthy and Compromised Skin: Clinically Relevant Information for the Dermatology Practitioner: Proceedings of an Expert Panel Roundtable Meeting.J Clin Aesthet Dermatol. 2016;9:S2–8. [PubMed] [PMC]
Forrest CM, Mackay GM, Stoy N, Stone TW, Darlington LG. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin.Br J Clin Pharmacol. 2007;64:517–26. [DOI] [PubMed] [PMC]
Zhao T, Wei Y, Zhu Y, Xie Z, Hai Q, Li Z, et al. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities.Front Immunol. 2022;13:1007165. [DOI] [PubMed] [PMC]
Nanda A, Wasan AN. Asthma in Adults.Med Clin North Am. 2020;104:95–108. [DOI] [PubMed]
Losol P, Wolska M, Wypych TP, Yao L, O’Mahony L, Sokolowska M. A cross talk between microbial metabolites and host immunity: Its relevance for allergic diseases.Clin Transl Allergy. 2024;14:e12339. [DOI] [PubMed] [PMC]
Saeed NK, Al-Beltagi M, Bediwy AS, El-Sawaf Y, Toema O. Gut microbiota in various childhood disorders: Implication and indications.World J Gastroenterol. 2022;28:1875–901. [DOI] [PubMed] [PMC]
Tsuji A, Ikeda Y, Yoshikawa S, Taniguchi K, Sawamura H, Morikawa S, et al. The Tryptophan and Kynurenine Pathway Involved in the Development of Immune-Related Diseases.Int J Mol Sci. 2023;24:5742. [DOI] [PubMed] [PMC]
Wawrzyniak M, Groeger D, Frei R, Ferstl R, Wawrzyniak P, Krawczyk K, et al. Spermidine and spermine exert protective effects within the lung.Pharmacol Res Perspect. 2021;9:e00837. [DOI] [PubMed] [PMC]
Thomsen SF. Atopic dermatitis: natural history, diagnosis, and treatment.ISRN Allergy. 2014;2014:354250. [DOI] [PubMed] [PMC]
Wrześniewska M, Wołoszczak J, Świrkosz G, Szyller H, Gomułka K. The Role of the Microbiota in the Pathogenesis and Treatment of Atopic Dermatitis-A Literature Review.Int J Mol Sci. 2024;25:6539. [DOI] [PubMed] [PMC]
Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis.Sci Transl Med. 2017;9:eaah4680. [DOI] [PubMed] [PMC]
Reddel S, Del Chierico F, Quagliariello A, Giancristoforo S, Vernocchi P, Russo A, et al. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture.Sci Rep. 2019;9:4996. [DOI] [PubMed] [PMC]
Xiao X, Hu X, Yao J, Cao W, Zou Z, Wang L, et al. The role of short-chain fatty acids in inflammatory skin diseases.Front Microbiol. 2023;13:1083432. [DOI] [PubMed] [PMC]
Cheng HY, Chan JCY, Yap GC, Huang CH, Kioh DYQ, Tham EH, et al. Evaluation of Stool Short Chain Fatty Acids Profiles in the First Year of Life With Childhood Atopy-Related Outcomes.Front Allergy. 2022;3:873168. [DOI] [PubMed] [PMC]
Yu J, Luo Y, Zhu Z, Zhou Y, Sun L, Gao J, et al. A tryptophan metabolite of the skin microbiota attenuates inflammation in patients with atopic dermatitis through the aryl hydrocarbon receptor.J Allergy Clin Immunol. 2019;143:2108–19.e12. [DOI] [PubMed]
Tan J, Taitz J, Nanan R, Grau G, Macia L. Dysbiotic Gut Microbiota-Derived Metabolites and Their Role in Non-Communicable Diseases.Int J Mol Sci. 2023;24:15256. [DOI] [PubMed] [PMC]
Hamada T, Nowak JA, Milner DA Jr, Song M, Ogino S. Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiome-driven neoplasms.J Pathol. 2019;247:615–28. [DOI] [PubMed] [PMC]
Rajpoot M, Sharma AK, Sharma A, Gupta GK. Understanding the microbiome: Emerging biomarkers for exploiting the microbiota for personalized medicine against cancer.Semin Cancer Biol. 2018;52:1–8. [DOI] [PubMed]