The author declares that he has no conflicts of interest.
Ethical approval
Not required.
Consent to participate
Not required.
Consent to publication
Not required.
Availability of data and materials
The original microarray data corresponding to the patients were gathered by Berchtold et al. [28, 29], and can be accessed under code GSE11882 in GEO database (https://www.ncbi.nlm.nih.gov/geo). The data generated in this study are available from Supplementary materials associated to the present article.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.Neurology. 2018;90:126–35. [DOI] [PubMed] [PMC]
Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement. 2018;14:535–62. [DOI] [PubMed] [PMC]
Avila-Villanueva M, Avila J. Reversion or compensation of mild cognitive impairment to normal cognition: strategies to prevent the development of Alzheimer’s disease continuum.Explor Neuroprot Ther. 2024;4:392–400. [DOI]
Tabert MH, Manly JJ, Liu X, Pelton GH, Rosenblum S, Jacobs M, et al. Neuropsychological Prediction of Conversion to Alzheimer Disease in Patients With Mild Cognitive Impairment.Arch Gen Psychiatry. 2006;63:916–24. [DOI] [PubMed]
Shigemizu D, Akiyama S, Higaki S, Sugimoto T, Sakurai T, Boroevich KA, et al. Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer’s disease created by integrative analysis of multi-omics data.Alzheimers Res Ther. 2020;12:145. [DOI] [PubMed] [PMC]
Vermunt L, Sikkes SAM, van den Hout A, Handels R, Bos I, van der Flier WM, et al. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype.Alzheimers Dement. 2019;15:888–98. [DOI] [PubMed] [PMC]
Won J, Callow DD, Pena GS, Jordan LS, Arnold-Nedimala NA, Nielson KA, et al. Hippocampal Functional Connectivity and Memory Performance After Exercise Intervention in Older Adults with Mild Cognitive Impairment.J Alzheimers Dis. 2021;82:1015–31. [DOI] [PubMed] [PMC]
Danieli K, Guyon A, Bethus I. Episodic Memory formation: A review of complex Hippocampus input pathways.Prog Neuropsychopharmacol Biol Psychiatry. 2023;126:110757. [DOI] [PubMed]
Jin W, Qin H, Zhang K, Chen X. Spatial Navigation.Adv Exp Med Biol. 2020;1284:63–90. [DOI] [PubMed]
Bang JY, Zhao J, Rahman M, St-Cyr S, McGowan PO, Kim JC. Hippocampus-Anterior Hypothalamic Circuit Modulates Stress-Induced Endocrine and Behavioral Response.Front Neural Circuits. 2022;16:894722. [DOI] [PubMed] [PMC]
Kempermann G, Song H, Gage FH. Adult neurogenesis in the hippocampus.Hippocampus. 2023;33:269–70. [DOI] [PubMed] [PMC]
Burman DD. A Brief Survey of the Functional Roles of the Hippocampus. In: Burman DD, editor. Hippocampus-More than Just Memory. Rijeka: IntechOpen; 2023. Available from https://www.intechopen.com/chapters/86243. [DOI]
Jellinger KA. Pathobiological Subtypes of Alzheimer Disease.Dement Geriatr Cogn Disord. 2020;49:321–33. [DOI] [PubMed]
Einenkel AM, Salameh A. Selective vulnerability of hippocampal CA1 and CA3 pyramidal cells: What are possible pathomechanisms and should more attention be paid to the CA3 region in future studies?J Neurosci Res. 2024;102:e25276. [DOI] [PubMed]
Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease.Lancet. 2021;397:1577–90. [DOI] [PubMed] [PMC]
Chang C, Zuo H, Li Y. Recent advances in deciphering hippocampus complexity using single-cell transcriptomics.Neurobiol Dis. 2023;179:106062. [DOI] [PubMed]
Luo Q, Chen Y, Lan X. COMSE: analysis of single-cell RNA-seq data using community detection-based feature selection.BMC Biol. 2024;22:167. [DOI] [PubMed] [PMC]
Pfister G, Toor SM, Sasidharan Nair V, Elkord E. An evaluation of sorter induced cell stress (SICS) on peripheral blood mononuclear cells (PBMCs) after different sort conditions—Are your sorted cells getting SICS?J Immunol Methods. 2020;487:112902. [DOI] [PubMed]
González-Velasco O, Papy-García D, Le Douaron G, Sánchez-Santos JM, De Las Rivas J. Transcriptomic landscape, gene signatures and regulatory profile of aging in the human brain.Biochim Biophys Acta Gene Regul Mech. 2020;1863:194491. [DOI] [PubMed]
Franjic D, Skarica M, Ma S, Arellano JI, Tebbenkamp ATN, Choi J, et al. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells.Neuron. 2022;110:452–69.e14. [DOI] [PubMed] [PMC]
Tabuena DR, Jang SS, Grone B, Yip O, Aery Jones EA, Blumenfeld J, et al. Neuronal APOE4-induced Early Hippocampal Network Hyperexcitability in Alzheimer's Disease Pathogenesis.bioRxiv [Preprint]. 2024 [cited 2024 Sep 21]. Available from: https://www.biorxiv.org/content/10.1101/2023.08.28.555153v3 [DOI] [PubMed] [PMC]
Navarro JF, Croteau DL, Jurek A, Andrusivova Z, Yang B, Wang Y, et al. Spatial Transcriptomics Reveals Genes Associated with Dysregulated Mitochondrial Functions and Stress Signaling in Alzheimer Disease.iScience. 2020;23:101556. [DOI] [PubMed] [PMC]
Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, et al. Gene expression changes in the course of normal brain aging are sexually dimorphic.Proc Natl Acad Sci U S A. 2008;105:15605–10. [DOI] [PubMed] [PMC]
Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribbs DH, Cotman CW. Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer’s disease.Neurobiol Aging. 2014;35:1961–72. [DOI] [PubMed] [PMC]
Guebel DV, Torres NV, Acebes Á. Mapping the transcriptomic changes of endothelial compartment in human hippocampus across aging and mild cognitive impairment.Biol Open. 2021;10:bio057950. [DOI] [PubMed] [PMC]
Guebel DV. Human hippocampal astrocytes: Computational dissection of their transcriptome, sexual differences and exosomes across ageing and mild-cognitive impairment.Eur J Neurosci. 2023;58:2677–707. [DOI] [PubMed]
Li L, Tong XK, Hosseini Kahnouei M, Vallerand D, Hamel E, Girouard H. Impaired Hippocampal Neurovascular Coupling in a Mouse Model of Alzheimer’s Disease.Front Physiol. 2021;12:715446. [DOI] [PubMed] [PMC]
Guebel DV, Perera-Alberto M, Torres NV. Q-GDEMAR: a general method for the identification of differentially expressed genes in microarrays with unbalanced groups.Mol Biosyst. 2016;12:120–32. [DOI] [PubMed]
Guebel DV, Torres NV. From Microarray Data to Identifying Differential Genes. In: Wolkenhauer O, editor. System Medicine: Integration, Qualitative and Computational Approaches. Oxford: Academic Press; 2024. pp. 96–104. [DOI]
Guebel DV, Torres NV. Sexual Dimorphism and Aging in the Human Hyppocampus: Identification, Validation, and Impact of Differentially Expressed Genes by Factorial Microarray and Network Analysis.Front Aging Neurosci. 2016;8:229. [DOI] [PubMed] [PMC]
Guebel DV, Torres NV. Influence of Glucose Availability and CRP Acetylation on the Genome-Wide Transcriptional Response of Escherichia coli: Assessment by an Optimized Factorial Microarray Analysis.Front Microbiol. 2018;9:941. [DOI] [PubMed] [PMC]
Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists.Genome Biol. 2007;8:R183. [DOI] [PubMed] [PMC]
Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer’s disease.Mol Neurodegener. 2024;19:23. [DOI] [PubMed] [PMC]
Komurov K, Dursun S, Erdin S, Ram PT. NetWalker: a contextual network analysis tool for functional genomics.BMC Genomics. 2012;13:282. [DOI] [PubMed] [PMC]
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes.Nucleic Acids Res. 2000;28:27–30. [DOI] [PubMed] [PMC]
Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. KEGG: biological systems database as a model of the real world.Nucleic Acids Res. 2025;53:D672–7. [DOI] [PubMed] [PMC]
Benjamini Y, Hochberg J. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.J Roy Stat Soc: Series B. 1995;57:289–300. [DOI]
Sekeres MJ, Winocur G, Moscovitch M. The hippocampus and related neocortical structures in memory transformation.Neurosci Lett. 2018;680:39–53. [DOI] [PubMed]
Ezama L, Hernández-Cabrera JA, Seoane S, Pereda E, Janssen N. Functional connectivity of the hippocampus and its subfields in resting-state networks.Eur J Neurosci. 2021;53:3378–93. [DOI] [PubMed] [PMC]
Maity S, Abbaspour R, Nahabedian D, Connor SA. Norepinephrine, beyond the Synapse: Coordinating Epigenetic Codes for Memory.Int J Mol Sci. 2022;23:9916. [DOI] [PubMed] [PMC]
Tsetsenis T, Broussard JI, Dani JA. Dopaminergic regulation of hippocampal plasticity, learning, and memory.Front Behav Neurosci. 2023;16:1092420. [DOI] [PubMed] [PMC]
Méndez-Couz M, Krenzek B, Manahan-Vaughan D. Genetic Depletion of BDNF Impairs Extinction Learning of a Spatial Appetitive Task in the Presence or Absence of the Acquisition Context.Front Behav Neurosci. 2021;15:658686. [DOI] [PubMed] [PMC]
Maynard KR, Hobbs JW, Sukumar M, Kardian AS, Jimenez DV, Schloesser RJ, et al. Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus.Brain Struct Funct. 2017;222:3295–307. [DOI] [PubMed] [PMC]
Chen W, Yan M, Wang Y, Wang X, Yuan J, Li M. Effects of 7-nitroindazole, a selective neural nitric oxide synthase inhibitor, on context-shock associative learning in a two-process contextual fear conditioning paradigm.Neurobiol Learn Mem. 2016;134:287–93. [DOI] [PubMed]
Pigott BM, Garthwaite J. Nitric Oxide Is Required for L-Type Ca2+ Channel-Dependent Long-Term Potentiation in the Hippocampus.Front Synaptic Neurosci. 2016;8:17. [DOI] [PubMed] [PMC]
Du CP, Wang M, Geng C, Hu B, Meng L, Xu Y, et al. Activity-Induced SUMOylation of Neuronal Nitric Oxide Synthase Is Associated with Plasticity of Synaptic Transmission and Extracellular Signal-Regulated Kinase 1/2 Signaling.Antioxid Redox Signal. 2020;32:18–34. [DOI] [PubMed]
Wang S, Pan DX, Wang D, Wan P, Qiu D, Jin QH. Nitric oxide facilitates active avoidance learning via enhancement of glutamate levels in the hippocampal dentate gyrus.Behav Brain Res. 2014;271:177–83. [DOI] [PubMed]
Wan C, Xia Y, Yan J, Lin W, Yao L, Zhang M, et al. nNOS in Erbb4-positive neurons regulates GABAergic transmission in mouse hippocampus.Cell Death Dis. 2024;15:167. [DOI] [PubMed] [PMC]
Carrica L, Li L, Newville J, Kenton J, Gustus K, Brigman J, et al. Genetic inactivation of hypoxia inducible factor 1-alpha (HIF-1α) in adult hippocampal progenitors impairs neurogenesis and pattern discrimination learning.Neurobiol Learn Mem. 2019;157:79–85. [DOI] [PubMed] [PMC]
Cho Y, Shin JE, Ewan EE, Oh YM, Pita-Thomas W, Cavalli V. Activating Injury-Responsive Genes with Hypoxia Enhances Axon Regeneration through Neuronal HIF-1α.Neuron. 2015;88:720–34. [DOI] [PubMed] [PMC]
de Pins B, Cifuentes-Díaz C, Farah AT, López-Molina L, Montalban E, Sancho-Balsells A, et al. Conditional BDNF Delivery from Astrocytes Rescues Memory Deficits, Spine Density, and Synaptic Properties in the 5xFAD Mouse Model of Alzheimer Disease.J Neurosci. 2019;39:2441–58. [PubMed] [PMC]
Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes.J Neurosci. 1999;19:6897–906. [PubMed] [PMC]
Sofroniew MV. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity.Trends Immunol. 2020;41:758–70. [DOI] [PubMed] [PMC]
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. Voltage-gated calcium channels (CaV) in GtoPdb v.2023.1.IUPHAR/BPS Gu Pharmacolo CITE. 2023;2023. [DOI]
Adelman JP, Maylie J, Sah P. Small-Conductance Ca2+-Activated K+ Channels: Form and Function.Annu Rev Physiol. 2012;74:245–69. [DOI] [PubMed]
Martin S, Lazzarini M, Dullin C, Balakrishnan S, Gomes FV, Ninkovic M, et al. SK3 Channel Overexpression in Mice Causes Hippocampal Shrinkage Associated with Cognitive Impairments.Mol Neurobiol. 2017;54:1078–91. [DOI] [PubMed] [PMC]
Dahimene S, von Elsner L, Holling T, Mattas LS, Pickard J, Lessel D, et al. Biallelic CACNA2D1 loss-of-function variants cause early-onset developmental epileptic encephalopathy.Brain. 2022;145:2721–9. [DOI] [PubMed] [PMC]
Abu-Omar N, Das J, Szeto V, Feng ZP. Neuronal Ryanodine Receptors in Development and Aging.Mol Neurobiol. 2018;55:1183–92. [DOI] [PubMed]
Hiess F, Yao J, Song Z, Sun B, Zhang Z, Huang J, et al. Subcellular localization of hippocampal ryanodine receptor 2 and its role in neuronal excitability and memory.Commun Biol. 2022;5:183. [DOI] [PubMed] [PMC]
Bertan F, Wischhof L, Sosulina L, Mittag M, Dalügge D, Fornarelli A, et al. Loss of Ryanodine Receptor 2 impairs neuronal activity-dependent remodeling of dendritic spines and triggers compensatory neuronal hyperexcitability.Cell Death Differ. 2020;27:3354–73. [DOI] [PubMed] [PMC]
Vega-Vásquez I, Lobos P, Toledo J, Adasme T, Paula-Lima A, Hidalgo C. Hippocampal dendritic spines express the RyR3 but not the RyR2 ryanodine receptor isoform.Biochem Biophys Res Commun. 2022;633:96–103. [DOI] [PubMed]
Antonoudiou P, Tan YL, Kontou G, Upton AL, Mann EO. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations.J Neurosci. 2020;40:7668–87. [DOI] [PubMed] [PMC]
Martire M, Castaldo P, D’Amico M, Preziosi P, Annunziato L, Taglialatela M. M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals.J Neurosci. 2004;24:592–7. [DOI] [PubMed] [PMC]
Tzour A, Leibovich H, Barkai O, Biala Y, Lev S, Yaari Y, et al. KV7/M channels as targets for lipopolysaccharide-induced inflammatory neuronal hyperexcitability.J Physiol. 2017;595:713–38. [DOI] [PubMed] [PMC]
Babiec WE, Jami SA, Guglietta R, Chen PB, O’Dell TJ. Differential Regulation of NMDA Receptor-Mediated Transmission by SK Channels Underlies Dorsal-Ventral Differences in Dynamics of Schaffer Collateral Synaptic Function.J Neurosci. 2017;37:1950–1964. [DOI] [PubMed] [PMC]
Wang HG, He XP, Li Q, Madison RD, Moore SD, McNamara JO, et al. The Auxiliary Subunit KChIP2 Is an Essential Regulator of Homeostatic Excitability.J Biol Chem. 2013;288:13258–68. [DOI] [PubMed] [PMC]
Rasband MN, Peles E. Mechanisms of node of Ranvier assembly.Nat Rev Neurosci. 2021;22:7–20. [DOI] [PubMed]
Wang RM, Zhang QG, Li CH, Zhang GY. Activation of extracellular signal-regulated kinase 5 may play a neuroprotective role in hippocampal CA3/DG region after cerebral ischemia.J Neurosci Res. 2005;80:391–9. [DOI] [PubMed]
Wang W, Pan YW, Zou J, Li T, Abel GM, Palmiter RD, et al. Genetic activation of ERK5 MAP kinase enhances adult neurogenesis and extends hippocampus-dependent long-term memory.J Neurosci. 2014;34:2130–47. [DOI] [PubMed] [PMC]
Chen Y, Yang W, Li X, Li X, Yang H, Xu Z, et al. α-Synuclein-induced internalization of NMDA receptors in hippocampal neurons is associated with reduced inward current and Ca2+ influx upon NMDA stimulation.Neuroscience. 2015;300:297–306. [DOI] [PubMed]
Rasmussen AH, Rasmussen HB, Silahtaroglu A. The DLGAP family: neuronal expression, function and role in brain disorders.Mol Brain. 2017;10:43. [DOI] [PubMed] [PMC]
Gupta SC, Yadav R, Pavuluri R, Morley BJ, Stairs DJ, Dravid SM. Essential role of GluD1 in dendritic spine development and GluN2B to GluN2A NMDAR subunit switch in the cortex and hippocampus reveals ability of GluN2B inhibition in correcting hyperconnectivity.Neuropharmacology. 2015;93:274–84. [DOI] [PubMed] [PMC]
Gawande DY, Narasimhan KKS, Bhatt JM, Pavuluri R, Kesherwani V, Suryavanshi PS, et al. Glutamate delta 1 receptor regulates autophagy mechanisms and affects excitatory synapse maturation in the somatosensory cortex.Pharmacol Res. 2022;178:106144. [DOI] [PubMed] [PMC]
Zhou Y, Tang H, Liu J, Dong J, Xiong H. Chemokine CCL2 modulation of neuronal excitability and synaptic transmission in rat hippocampal slices.J Neurochem. 2011;116:406–14. [DOI] [PubMed] [PMC]
Zhang Z, Yu Z, Yuan Y, Yang J, Wang S, Ma H, et al. Cholecystokinin Signaling can Rescue Cognition and Synaptic Plasticity in the APP/PS1 Mouse Model of Alzheimer’s Disease.Mol Neurobiol. 2023;60:5067–89. [DOI] [PubMed]
Neuhoff H, Roeper J, Schweizer M. Activity-dependent formation of perforated synapses in cultured hippocampal neurons.Eur J Neurosci. 1999;11:4241–50. [DOI] [PubMed]
Nicholson DA, Yoshida R, Berry RW, Gallagher M, Geinisman Y. Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments.J Neurosci. 2004;24:7648–53. [DOI] [PubMed] [PMC]
Stacho M, Manahan-Vaughan D. The Intriguing Contribution of Hippocampal Long-Term Depression to Spatial Learning and Long-Term Memory.Front Behav Neurosci. 2022;16:806356. [DOI] [PubMed] [PMC]
Koh S, Lee W, Park SM, Kim SH. Caveolin-1 deficiency impairs synaptic transmission in hippocampal neurons.Mol Brain. 2021;14:53. [DOI] [PubMed] [PMC]
Head BP, Patel HH, Tsutsumi YM, Hu Y, Mejia T, Mora RC, et al. Caveolin-1 expression is essential for N-methyl-D-aspartate receptor-mediated Src and extracellular signal-regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death.FASEB J. 2008;22:828–40. [DOI] [PubMed]
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases.J Lipid Res. 2020;61:636–54. [DOI] [PubMed] [PMC]
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking.Cell Mol Life Sci. 2019;76:2133–69. [DOI] [PubMed] [PMC]
Angelini C, Morellato A, Alfieri A, Pavinato L, Cravero T, Bianciotto OT, et al. p140Cap Regulates the Composition and Localization of the NMDAR Complex in Synaptic Lipid Rafts.J Neurosci. 2022;42:7183–200. [DOI] [PubMed] [PMC]
Delint-Ramirez I, Fernández E, Bayés A, Kicsi E, Komiyama NH, Grant SGN. In vivo composition of NMDA receptor signaling complexes differs between membrane subdomains and is modulated by PSD-95 and PSD-93.J Neurosci. 2010;30:8162–70. [DOI] [PubMed] [PMC]
Kaizuka T, Takumi T. Postsynaptic density proteins and their involvement in neurodevelopmental disorders.J Biochem. 2018;163:447–55. [DOI] [PubMed]
Zhang H, He X, Mei Y, Ling Q. Ablation of ErbB4 in parvalbumin-positive interneurons inhibits adult hippocampal neurogenesis through down-regulating BDNF/TrkB expression.J Comp Neurol. 2018;526:2482–92. [DOI] [PubMed]
Neitz A, Mergia E, Neubacher U, Koesling D, Mittmann T. NO regulates the strength of synaptic inputs onto hippocampal CA1 neurons via NO-GC1/cGMP signalling.Pflugers Arch. 2015;467:1383–94. [DOI] [PubMed]
Candemir E, Fattakhov N, Leary AO, Slattery DA, Courtney MJ, Reif A, et al. Disrupting the nNOS/NOS1AP interaction in the medial prefrontal cortex impairs social recognition and spatial working memory in mice.Eur Neuropsychopharmacol. 2023;67:66–79. [DOI] [PubMed]
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K+ channels.Am J Physiol Cell Physiol. 2022;323:C439–60. [DOI] [PubMed] [PMC]
Ostrovskaya OI, Orlandi C, Fajardo-Serrano A, Young SM Jr, Lujan R, Martemyanov KA. Inhibitory Signaling to Ion Channels in Hippocampal Neurons Is Differentially Regulated by Alternative Macromolecular Complexes of RGS7.J Neurosci. 2018;38:10002–15. [DOI] [PubMed] [PMC]
Alfaro-Ruiz R, Martín-Belmonte A, Aguado C, Hernández F, Moreno-Martínez AE, Ávila J, et al. The Expression and Localisation of G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels Is Differentially Altered in the Hippocampus of Two Mouse Models of Alzheimer’s Disease.Int J Mol Sci. 2021;22:11106. [DOI] [PubMed] [PMC]
Gheidi A, Damphousse CC, Marrone DF. Experience-dependent persistent Arc expression is reduced in the aged hippocampus.Neurobiol Aging. 2020;95:225–30. [DOI] [PubMed]
Wilkerson JR, Albanesi JP, Huber KM. Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease.Semin Cell Dev Biol. 2018;77:51–62. [DOI] [PubMed] [PMC]
Sumi T, Harada K. Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors.Sci Rep. 2020;10:14711. [DOI] [PubMed] [PMC]
Maffei A. Long-Term Potentiation and Long-Term Depression. Oxford University Press; 2018. [DOI]
Salter MW, Kalia LV. Src kinases: a hub for NMDA receptor regulation.Nat Rev Neurosci. 2004;5:317–28. [DOI] [PubMed]
Sviridov D, Miller YI. Biology of Lipid Rafts: Introduction to the Thematic Review Series.J Lipid Res. 2020;61:598–600. [DOI] [PubMed] [PMC]
Liu L, Xu TC, Zhao ZA, Zhang NN, Li J, Chen HS. Toll-Like Receptor 4 Signaling in Neurons Mediates Cerebral Ischemia/Reperfusion Injury.Mol Neurobiol. 2023;60:864–74. [DOI] [PubMed]
Robinson P, Etheridge S, Song L, Armenise P, Jones OT, Fitzgerald EM. Formation of N-type (Cav2.2) voltage-gated calcium channel membrane microdomains: Lipid raft association and clustering.Cell Calcium. 2010;48:183–94. [DOI] [PubMed]
Brackenbury WJ, Davis TH, Chen C, Slat EA, Detrow MJ, Dickendesher TL, et al. Voltage-gated Na+ channel beta1 subunit-mediated neurite outgrowth requires Fyn kinase and contributes to postnatal CNS development in vivo.J Neurosci. 2008;28:3246–56. [DOI] [PubMed] [PMC]
Guglietti B, Sivasankar S, Mustafa S, Corrigan F, Collins-Praino LE. Fyn Kinase Activity and Its Role in Neurodegenerative Disease Pathology: a Potential Universal Target?Mol Neurobiol. 2021;58:5986–6005. [DOI] [PubMed]
Dai G. Neuronal KCNQ2/3 channels are recruited to lipid raft microdomains by palmitoylation of BACE1.J Gen Physiol. 2022;154:e202112888. [DOI] [PubMed] [PMC]
Chanaday NL, Cousin MA, Milosevic I, Watanabe S, Morgan JR. The Synaptic Vesicle Cycle Revisited: New Insights into the Modes and Mechanisms.J Neurosci. 2019;39:8209–16. [DOI] [PubMed] [PMC]
Kondo M. Molecular mechanisms of experience-dependent structural and functional plasticity in the brain.Anat Sci Int. 2017;92:1–17. [DOI] [PubMed]
Wang J, Tu Q, Zhang S, He X, Ma C, Qian X, et al. Kif15 deficiency contributes to depression-like behavior in mice.Metab Brain Dis. 2023;38:2369–81. [DOI] [PubMed]
Huber LA, Dupree P, Dotti CG. A Deficiency of the Small GTPase rab8 Inhibits Membrane Traffic in Developing Neurons.Mol Cell Biol. 1995;15:918–24. [DOI] [PubMed] [PMC]
Binotti B, Pavlos NJ, Riedel D, Wenzel D, Vorbrüggen G, Schalk AM, et al. The GTPase Rab26 links synaptic vesicles to the autophagy pathway.Elife. 2015;4:e05597. [DOI] [PubMed] [PMC]
Sun Q, Yang Y, Li X, He B, Jia Y, Zhang N, et al. Folate deprivation modulates the expression of autophagy- and circadian-related genes in HT-22 hippocampal neuron cells through GR-mediated pathway.Steroids. 2016;112:12–9. [DOI] [PubMed]
Liu ZD, Zhang S, Hao JJ, Xie TR, Kang JS. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling.Protein Cell. 2016;7:638–50. [DOI] [PubMed] [PMC]
Baptista FI, Pinto MJ, Elvas F, Almeida RD, Ambrósio AF. Diabetes Alters KIF1A and KIF5B Motor Proteins in the Hippocampus.PLoS One. 2013;8:e65515. [DOI] [PubMed] [PMC]
Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I, et al. Rab18 and a Rab18 GEF complex are required for normal ER structure.J Cell Biol. 2014;205:707–20. [DOI] [PubMed] [PMC]
Homma N, Zhou R, Naseer MI, Chaudhary AG, Al-Qahtani MH, Hirokawa N. KIF2A regulates the development of dentate granule cells and postnatal hippocampal wiring.Elife. 2018;7:e30935. [DOI] [PubMed] [PMC]
Zhao J, Fok AHK, Fan R, Kwan PY, Chan HL, Lo LH, et al. Specific depletion of the motor protein KIF5B leads to deficits in dendritic transport, synaptic plasticity and memory.Elife. 2020;9:e53456. [DOI] [PubMed] [PMC]
Gumy LF, Chew DJ, Tortosa E, Katrukha EA, Kapitein LC, Tolkovsky AM, et al. The kinesin-2 family member KIF3C regulates microtubule dynamics and is required for axon growth and regeneration.J Neurosci. 2013;33:11329–45. [DOI] [PubMed] [PMC]
Ko HS, Uehara T, Tsuruma K, Nomura Y. Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains.FEBS Lett. 2004;566:110–4. [DOI] [PubMed]
Lee DY, Arnott D, Brown EJ. Ubiquilin4 is an adaptor protein that recruits Ubiquilin1 to the autophagy machinery.EMBO Rep. 2013;14:373–81. [DOI] [PubMed] [PMC]
Dong H, Csernansky JG. Effects of Stress and Stress Hormones on Amyloid-β Protein and Plaque Deposition.J Alzheimers Dis. 2009;18:459–69. [DOI] [PubMed] [PMC]
López-Hernández B, Ceña V, Posadas I. The endoplasmic reticulum stress and the HIF-1 signalling pathways are involved in the neuronal damage caused by chemical hypoxia.Br J Pharmacol. 2015;172:2838–51. [DOI] [PubMed] [PMC]
Justice NJ. The relationship between stress and Alzheimer’s disease.Neurobiol Stress. 2018;8:127–33. [DOI] [PubMed] [PMC]
Furukawa-Hibi Y, Yun J, Nagai T, Yamada K. Transcriptional suppression of the neuronal PAS domain 4 (Npas4) gene by stress via the binding of agonist-bound glucocorticoid receptor to its promoter.J Neurochem. 2012;123:866–75. [DOI] [PubMed]
Gulmez Karaca K, Brito DVC, Zeuch B, Oliveira AMM. Adult hippocampal MeCP2 preserves the genomic responsiveness to learning required for long-term memory formation.Neurobiol Learn Mem. 2018;149:84–97. [DOI] [PubMed]
Hooper A, Fuller PM, Maguire J. Hippocampal corticotropin-releasing hormone neurons support recognition memory and modulate hippocampal excitability.PLoS One. 2018;13:e0191363. [DOI] [PubMed] [PMC]
Wei F, Deng X, Ma B, Li W, Chen Y, Zhao L, et al. Experiences Shape Hippocampal Neuron Morphology and the Local Levels of CRHR1 and OTR.Cell Mol Neurobiol. 2023;43:2129–47. [DOI] [PubMed] [PMC]
Koutmani Y, Gampierakis IA, Polissidis A, Ximerakis M, Koutsoudaki PN, Polyzos A, et al. CRH Promotes the Neurogenic Activity of Neural Stem Cells in the Adult Hippocampus.Cell Rep. 2019;29:932–45.e7. [DOI] [PubMed]
Tiwari MN, Mohan S, Biala Y, Shor O, Benninger F, Yaari Y. Corticotropin Releasing Factor Mediates KCa3.1 Inhibition, Hyperexcitability, and Seizures in Acquired Epilepsy.J Neurosci. 2022;42:5843–59. [DOI] [PubMed] [PMC]
Çalışkan G, Schulz SB, Gruber D, Behr J, Heinemann U, Gerevich Z. Corticosterone and corticotropin-releasing factor acutely facilitate gamma oscillations in the hippocampus in vitro.Eur J Neurosci. 2015;41:31–44. [DOI] [PubMed]
Wang W, Pan YW, Wietecha T, Zou J, Abel GM, Kuo CT, et al. Extracellular Signal-regulated Kinase 5 (ERK5) Mediates Prolactin-stimulated Adult Neurogenesis in the Subventricular Zone and Olfactory Bulb.J Biol Chem. 2013;288:2623–31. [DOI] [PubMed] [PMC]
Ateaque S, Merkouris S, Wyatt S, Allen ND, Xie J, DiStefano PS, et al. Selective activation and down-regulation of Trk receptors by neurotrophins in human neurons co-expressing TrkB and TrkC.J Neurochem. 2022;161:463–77. [DOI] [PubMed] [PMC]
Drouet JB, Peinnequin A, Faure P, Denis J, Fidier N, Maury R, et al. Stress-induced hippocampus Npas4 mRNA expression relates to specific psychophysiological patterns of stress response.Brain Res. 2018;1679:75–83. [DOI] [PubMed]
Pettit NL, Yap EL, Greenberg ME, Harvey CD. Fos ensembles encode and shape stable spatial maps in the hippocampus.Nature. 2022;609:327–34. [DOI] [PubMed] [PMC]
Jiang Y, VanDongen AMJ. Selective increase of correlated activity in Arc-positive neurons after chemically induced long-term potentiation in cultured hippocampal neurons.eNeuro. 2021;8:ENEURO.0540–20.2021. [PubMed] [PMC]
Fu J, Guo O, Zhen Z, Zhen J. Essential Functions of the Transcription Factor Npas4 in Neural Circuit Development, Plasticity, and Diseases.Front Neurosci. 2020;14:603373. [DOI] [PubMed] [PMC]
Bonafina A, Trinchero MF, Ríos AS, Bekinschtein P, Schinder AF, Paratcha G, et al. GDNF and GFRα1 Are Required for Proper Integration of Adult-Born Hippocampal Neurons.Cell Rep. 2019;29:4308–19.e4. [DOI] [PubMed]
Duarte Azevedo M, Sander S, Tenenbaum L. GDNF, A Neuron-Derived Factor Upregulated in Glial Cells during Disease.J Clin Med. 2020;9:456. [DOI] [PubMed] [PMC]
Jin L, Liu Y, Wu Y, Huang Y, Zhang D. REST Is Not Resting: REST/NRSF in Health and Disease.Biomolecules. 2023;13:1477. [DOI] [PubMed] [PMC]
Zhao Y, Zhu M, Yu Y, Qiu L, Zhang Y, He L, et al. Brain REST/NRSF Is Not Only a Silent Repressor but Also an Active Protector.Mol Neurobiol. 2017;54:541–50. [DOI] [PubMed]
Yang Y, Zhang X, Li D, Fang R, Wang Z, Yun D, et al. NRSF regulates age-dependently cognitive ability and its conditional knockout in APP/PS1 mice moderately alters AD-like pathology.Hum Mol Genet. 2023;32:2558–75. [DOI] [PubMed]
Morris-Blanco KC, Kim T, Bertogliat MJ, Mehta SL, Chokkalla AK, Vemuganti R. Inhibition of the Epigenetic Regulator REST Ameliorates Ischemic Brain Injury.Mol Neurobiol. 2019;56:2542–50. [DOI] [PubMed] [PMC]
Ginsberg SD, Malek-Ahmadi MH, Alldred MJ, Chen Y, Chen K, Chao MV, et al. Brain-derived neurotrophic factor (BDNF) and TrkB hippocampal gene expression are putative predictors of neuritic plaque and neurofibrillary tangle pathology.Neurobiol Dis. 2019;132:104540. [DOI] [PubMed] [PMC]
Flavell SW, Kim TK, Gray JM, Harmin DA, Hemberg M, Hong EJ, et al. Genome-Wide Analysis of MEF2 Transcriptional Program Reveals Synaptic Target Genes and Neuronal Activity-Dependent Polyadenylation Site Selection.Neuron. 2008;60:1022–38. [DOI] [PubMed] [PMC]
Liu B, Ou WC, Fang L, Tian CW, Xiong Y. Myocyte Enhancer Factor 2A Plays a Central Role in the Regulatory Networks of Cellular Physiopathology.Aging Dis. 2023;14:331–49. [DOI] [PubMed] [PMC]
Basu S, Ro EJ, Liu Z, Kim H, Bennett A, Kang S, et al. The Mef2c Gene Dose-Dependently Controls Hippocampal Neurogenesis and the Expression of Autism-Like Behaviors.J Neurosci. 2024;44:e1058232023. [DOI] [PubMed] [PMC]
Akhtar MW, Kim MS, Adachi M, Morris MJ, Qi X, Richardson JA, et al. In Vivo Analysis of MEF2 Transcription Factors in Synapse Regulation and Neuronal Survival.PLoS One. 2012;7:e34863. [DOI] [PubMed] [PMC]
Chen ZW, Liu A, Liu Q, Chen J, Li WM, Chao XJ, et al. MEF2D Mediates the Neuroprotective Effect of Methylene Blue Against Glutamate-Induced Oxidative Damage in HT22 Hippocampal Cells.Mol Neurobiol. 2017;54:2209–22. [DOI] [PubMed]
Latchney SE, Jiang Y, Petrik DP, Eisch AJ, Hsieh J. Inducible knockout of Mef2a, -c, and -d from nestin-expressing stem/progenitor cells and their progeny unexpectedly uncouples neurogenesis and dendritogenesis in vivo.FASEB J. 2015;29:5059–71. [DOI] [PubMed] [PMC]
Okamoto S, Li Z, Ju C, Scholzke MN, Mathews E, Cui J, et al. Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis.Proc Natl Acad Sci U S A. 2002;99:3974–9. [DOI] [PubMed] [PMC]
Abe P, Wüst HM, Arnold SJ, van de Pavert SA, Stumm R. CXCL12-mediated feedback from granule neurons regulates generation and positioning of new neurons in the dentate gyrus.Glia. 2018;66:1566–76. [DOI] [PubMed]
Trousse F, Jemli A, Silhol M, Garrido E, Crouzier L, Naert G, et al. Knockdown of the CXCL12/CXCR7 chemokine pathway results in learning deficits and neural progenitor maturation impairment in mice.Brain Behav Immun. 2019;80:697–710. [DOI] [PubMed]
Hsu WJ, Scala F, Nenov MN, Wildburger NC, Elferink H, Singh AK, et al. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal excitability.FASEB J. 2016;30:2171–86. [DOI] [PubMed] [PMC]
Pablo JL, Pitt GS. FGF14 is a regulator of KCNQ2/3 channels.Proc Natl Acad Sci U S A. 2017;114:154–9. [DOI] [PubMed] [PMC]
Chatzi C, Zhang Y, Shen R, Westbrook GL, Goodman RH. Transcriptional Profiling of Newly Generated Dentate Granule Cells Using TU Tagging Reveals Pattern Shifts in Gene Expression during Circuit Integration.eNeuro. 2016;3:ENEURO.0024–16.2016. [DOI] [PubMed] [PMC]
Sudarov A, Zhang XJ, Braunstein L, LoCastro E, Singh S, Taniguchi Y, et al. Mature Hippocampal Neurons Require LIS1 for Synaptic Integrity: Implications for Cognition.Biol Psychiatry. 2018;83:518–29. [DOI] [PubMed] [PMC]
Moon HM, Hippenmeyer S, Luo L, Wynshaw-Boris A. LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility.Elife. 2020;9:e51512. [DOI] [PubMed] [PMC]
Li A, Zhu HM, Chen Y, Yan F, Liu ZY, Li ZL, et al. Cdc42 Facilitates Axonogenesis by Enhancing Microtubule Stabilization in Primary Hippocampal Neurons.Cell Mol Neurobiol. 2021;41:1599–610. [DOI] [PubMed] [PMC]
Kim IH, Wang H, Soderling SH, Yasuda R. Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall.Elife. 2014;3:e02839. [DOI] [PubMed] [PMC]
Zheng WH, Quirion R. Comparative signaling pathways of insulin-like growth factor-1 and brain-derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival.J Neurochem. 2004;89:844–52. [DOI] [PubMed]
Yang J, Lindahl M, Lindholm P, Virtanen H, Coffey E, Runeberg-Roos P, et al. PSPN/GFRα4 has a significantly weaker capacity than GDNF/GFRα1 to recruit RET to rafts, but promotes neuronal survival and neurite outgrowth.FEBS Lett. 2004;569:267–71. [DOI] [PubMed]
Newburn EN, Duchemin AM, Neff NH, Hadjiconstantinou M. GM1 ganglioside enhances Ret signaling in striatum.J Neurochem. 2014;130:541–54. [DOI] [PubMed]
Glerup S, Lume M, Olsen D, Nyengaard JR, Vaegter CB, Gustafsen C, et al. SorLA Controls Neurotrophic Activity by Sorting of GDNF and Its Receptors GFRα1 and RET.Cell Rep. 2013;3:186–99. [DOI] [PubMed]
Schirò G, Iacono S, Ragonese P, Aridon P, Salemi G, Balistreri CR. A Brief Overview on BDNF-Trk Pathway in the Nervous System: A Potential Biomarker or Possible Target in Treatment of Multiple Sclerosis?Front Neurol. 2022;13:917527. [DOI] [PubMed] [PMC]
Schorova L, Martin S. Sumoylation in Synaptic Function and Dysfunction.Front Synaptic Neurosci. 2016;8:9. [DOI] [PubMed] [PMC]
Lee J, Kim I, Oh SR, Ko SJ, Lim MK, Kim DG, et al. Regulation of DREAM Expression by Group I mGluR.Korean J Physiol Pharmacol. 2011;15:95–100. [DOI] [PubMed] [PMC]
Takimoto K, Yang EK, Conforti L. Palmitoylation of KChIP Splicing Variants Is Required for Efficient Cell Surface Expression of Kv4.3 Channel.J Biol Chem. 2002;277:26904–11. [DOI] [PubMed]
Ruiz-Gomez A, Mellström B, Tornero D, Morato E, Savignac M, Holguín H, et al. G Protein-coupled Receptor Kinase 2-mediated Phosphorylation of Downstream Regulatory Element Antagonist Modulator Regulates Membrane Trafficking of Kv4.2 Potassium Channel.J Biol Chem. 2007;282:1205–15. [DOI] [PubMed]
Choi EK, Zaidi NF, Miller JS, Crowley AC, Merriam DE, Lilliehook C, et al. Calsenilin Is a Substrate for Caspase-3 That Preferentially Interacts with the Familial Alzheimer's Disease-associated C-terminal Fragment of Presenilin 2.J Biol Chem. 2001;276:19197–204. [DOI] [PubMed]
Zhang Y, Su P, Liang P, Liu T, Liu X, Liu XY, et al. The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit.J Neurosci. 2010;30:7575–86. [DOI] [PubMed] [PMC]
Molinaro P, Sanguigno L, Casamassa A, Valsecchi V, Sirabella R, Pignataro G, et al. Emerging Role of DREAM in Healthy Brain and Neurological Diseases.Int J Mol Sci. 2023;24:9177. [DOI] [PubMed] [PMC]
Viana da Silva S, Zhang P, Haberl MG, Labrousse V, Grosjean N, Blanchet C, et al. Hippocampal Mossy Fibers Synapses in CA3 Pyramidal Cells Are Altered at an Early Stage in a Mouse Model of Alzheimer’s Disease.J Neurosci. 2019;39:4193–205. [DOI] [PubMed] [PMC]
Tan JW, An JJ, Deane H, Xu H, Liao GY, Xu B. Neurotrophin-3 from the dentate gyrus supports postsynaptic sites of mossy fiber-CA3 synapses and hippocampus-dependent cognitive functions.Mol Psychiatry. 2024;29:1192–204. [DOI] [PubMed]
Nandi S, Alviña K, Lituma PJ, Castillo PE, Hébert JM. Neurotrophin and FGF Signaling Adapter Proteins, FRS2 and FRS3, Regulate Dentate Granule Cell Maturation and Excitatory Synaptogenesis.Neuroscience. 2018;369:192–201. [DOI] [PubMed] [PMC]
Arias-Hervert ER, Xu N, Njus M, Murphy GG, Hou Y, Williams JA, et al. Actions of Rab27B-GTPase on mammalian central excitatory synaptic transmission.Physiol Rep. 2020;8:e14428. [DOI] [PubMed] [PMC]
Schlüter OM, Schmitz F, Jahn R, Rosenmund C, Südhof TC. A complete genetic analysis of neuronal Rab3 function.J Neurosci. 2004;24:6629–37. [DOI] [PubMed] [PMC]
Perrin L, Lacas-Gervais S, Gilleron J, Ceppo F, Prodon F, Benmerah A, et al. Rab4b controls an early endosome sorting event by interacting with the γ-subunit of the clathrin adaptor complex 1.J Cell Sci. 2013;126:4950–62. [DOI] [PubMed]
Barks A, Fretham SJB, Georgieff MK, Tran PV. Early-Life Neuronal-Specific Iron Deficiency Alters the Adult Mouse Hippocampal Transcriptome.J Nutr. 2018;148:1521–8. [DOI] [PubMed] [PMC]
Fröhlich F, Petit C, Kory N, Christiano R, Hannibal-Bach HK, Graham M, et al. The GARP complex is required for cellular sphingolipid homeostasis.Elife. 2015;4:e08712. [DOI] [PubMed] [PMC]
Yamada M, Kumamoto K, Mikuni S, Arai Y, Kinjo M, Nagai T, et al. Rab6a releases LIS1 from a dynein idling complex and activates dynein for retrograde movement.Nat Commun. 2013;4:2033. [DOI] [PubMed]
Kumar R, Donakonda S, Müller SA, Bötzel K, Höglinger GU, Koeglsperger T. FGF2 Affects Parkinson’s Disease-Associated Molecular Networks Through Exosomal Rab8b/Rab31.Front Genet. 2020;11:572058. [DOI] [PubMed] [PMC]
Woodbury ME, Ikezu T. Fibroblast Growth Factor-2 Signaling in Neurogenesis and Neurodegeneration.J Neuroimmune Pharmacol. 2014;9:92–101. [DOI] [PubMed] [PMC]
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders.Nat Rev Neurol. 2018;14:133–50. [DOI] [PubMed] [PMC]
Custodia A, Ouro A, Romaus-Sanjurjo D, Pías-Peleteiro JM, de Vries HE, Castillo J, et al. Endothelial Progenitor Cells and Vascular Alterations in Alzheimer’s Disease.Front Aging Neurosci. 2022;13:811210. [DOI] [PubMed] [PMC]
Pons-Espinal M, de Luca E, Marzi MJ, Beckervordersandforth R, Armirotti A, Nicassio F, et al. Synergic Functions of miRNAs Determine Neuronal Fate of Adult Neural Stem Cells.Stem Cell Reports. 2017;8:1046–61. [DOI] [PubMed] [PMC]
Bonzano S, Crisci I, Podlesny-Drabiniok A, Rolando C, Krezel W, Studer M, et al. Neuron-Astroglia Cell Fate Decision in the Adult Mouse Hippocampal Neurogenic Niche Is Cell-Intrinsically Controlled by COUP-TFI In Vivo.Cell Rep. 2018;24:329–41. [DOI] [PubMed]
Machado-Santos AR, Loureiro-Campos E, Patrício P, Araújo B, Alves ND, Mateus-Pinheiro A, et al. Beyond New Neurons in the Adult Hippocampus: Imipramine Acts as a Pro-Astrogliogenic Factor and Rescues Cognitive Impairments Induced by Stress Exposure.Cells. 2022;11:390. [DOI] [PubMed] [PMC]
Pacholko AG, Wotton CA, Bekar LK. Astrocytes—The Ultimate Effectors of Long-Range Neuromodulatory Networks?Front Cell Neurosci. 2020;14:581075. [DOI] [PubMed] [PMC]
Refaeli R, Kreisel T, Yaish TR, Groysman M, Goshen I. Astrocytes control recent and remote memory strength by affecting the recruitment of the CA1→ACC projection to engrams.Cell Rep. 2024;43:113943. [DOI] [PubMed] [PMC]
Durkee C, Kofuji P, Navarrete M, Araque A. Astrocyte and neuron cooperation in long-term depression.Trends Neurosci. 2021;44:837–48. [DOI] [PubMed] [PMC]
Chen J, Tan Z, Zeng L, Zhang X, He Y, Gao W, et al. Heterosynaptic long-term depression mediated by ATP released from astrocytes.Glia. 2013;61:178–91. [DOI] [PubMed]
Wang F, Han J, Higashimori H, Wang J, Liu J, Tong L, et al. Long-term depression induced by endogenous cannabinoids produces neuroprotection via astroglial CB1R after stroke in rodents.J Cereb Blood Flow Metab. 2019;39:1122–37. [DOI] [PubMed] [PMC]
Mango D, Braksator E, Battaglia G, Marcelli S, Mercuri NB, Feligioni M, et al. Acid-sensing ion channel 1a is required for mGlu receptor dependent long-term depression in the hippocampus.Pharmacol Res. 2017;119:12–9. [DOI] [PubMed]
Billard JM. D-Serine in the aging hippocampus.J Pharm Biomed Anal. 2015;116:18–24. [DOI] [PubMed]
Nava-Gómez L, Calero-Vargas I, Higinio-Rodríguez F, Vázquez-Prieto B, Olivares-Moreno R, Ortiz-Retana J, et al. AGING-ASSOCIATED COGNITIVE DECLINE IS REVERSED BY D-SERINE SUPPLEMENTATION.eNeuro. 2022;9:ENEURO.0176–22.2022. [DOI] [PubMed] [PMC]
Baier MP, Nagaraja RY, Yarbrough HP, Owen DB, Masingale AM, Ranjit R, et al. Selective Ablation of Sod2 in Astrocytes Induces Sex-Specific Effects on Cognitive Function, d-Serine Availability, and Astrogliosis.J Neurosci. 2022;42:5992–6006. [PubMed] [PMC]
Li S, Tian X, Hartley DM, Feig LA. Distinct roles for Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 in the induction of long-term potentiation and long-term depression.J Neurosci. 2006;26:1721–9. [DOI] [PubMed] [PMC]
Jin SX, Arai J, Tian X, Kumar-Singh R, Feig LA. Acquisition of Contextual Discrimination Involves the Appearance of a RAS-GRF1/p38 Mitogen-activated Protein (MAP) Kinase-mediated Signaling Pathway That Promotes Long Term Potentiation (LTP).J Biol Chem. 2013;288:21703–13. [DOI] [PubMed] [PMC]
Navarrete M, Araque A. Endocannabinoids Potentiate Synaptic Transmission through Stimulation of Astrocytes.Neuron. 2010;68:113–26. [DOI] [PubMed]
Alkadhi KA. Cellular and Molecular Differences Between Area CA1 and the Dentate Gyrus of the Hippocampus.Mol Neurobiol. 2019;56:6566–80. [DOI] [PubMed]
Traub RD, Bibbig A. A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons.J Neurosci. 2000;20:2086–93. [DOI] [PubMed] [PMC]
Xu Y, Shen FY, Liu YZ, Wang L, Wang YW, Wang Z. Dependence of Generation of Hippocampal CA1 Slow Oscillations on Electrical Synapses.Neurosci Bull. 2020;36:39–48. [DOI] [PubMed] [PMC]
Jones OD, Hulme SR, Abraham WC. Purinergic receptor- and gap junction-mediated intercellular signalling as a mechanism of heterosynaptic metaplasticity.Neurobiol Learn Mem. 2013;105:31–9. [DOI] [PubMed]
Hösli L, Binini N, Ferrari KD, Thieren L, Looser ZJ, Zuend M, et al. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning.Cell Rep. 2022;38:110484. [DOI] [PubMed]
Cheung G, Chever O, Rollenhagen A, Quenech’du N, Ezan P, Lübke JHR, et al. Astroglial Connexin 43 Regulates Synaptic Vesicle Release at Hippocampal Synapses.Cells. 2023;12:1133. [DOI] [PubMed] [PMC]
Traub RD, Whittington MA, Gutiérrez R, Draguhn A. Electrical coupling between hippocampal neurons: contrasting roles of principal cell gap junctions and interneuron gap junctions.Cell Tissue Res. 2018;373:671–91. [DOI] [PubMed]
Colgin LL. Rhythms of the hippocampal network.Nat Rev Neurosci. 2016;17:239–49. [DOI] [PubMed] [PMC]
Nuñez A, Buño W. The Theta Rhythm of the Hippocampus: From Neuronal and Circuit Mechanisms to Behavior.Front Cell Neurosci. 2021;15:649262. [DOI] [PubMed] [PMC]
Joo HR, Frank LM. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation.Nat Rev Neurosci. 2018;19:744–57. [DOI] [PubMed] [PMC]
Xie B, Zhen Z, Guo O, Li H, Guo M, Zhen J. Progress on the hippocampal circuits and functions based on sharp wave ripples.Brain Res Bull. 2023;200:110695. [DOI] [PubMed]
Sun X, Bernstein MJ, Meng M, Rao S, Sørensen AT, Yao L, et al. Functionally Distinct Neuronal Ensembles within the Memory Engram.Cell. 2020;181:410–23.e17. [DOI] [PubMed] [PMC]
Csernus EA, Werber T, Kamondi A, Horvath AA. The Significance of Subclinical Epileptiform Activity in Alzheimer’s Disease: A Review.Front Neurol. 2022;13:856500. [DOI] [PubMed] [PMC]
Nous A, Seynaeve L, Feys O, Wens V, De Tiège X, Van Mierlo P, et al. Subclinical epileptiform activity in the Alzheimer continuum: association with disease, cognition and detection method.Alzheimers Res Ther. 2024;16:19. [DOI] [PubMed] [PMC]
Cuesta P, Ochoa-Urrea M, Funke M, Hasan O, Zhu P, Marcos A, et al. Gamma band functional connectivity reduction in patients with amnestic mild cognitive impairment and epileptiform activity.Brain Commun. 2022;4:fcac012. [DOI] [PubMed] [PMC]
Scaduto P, Lauterborn JC, Cox CD, Fracassi A, Zeppillo T, Gutierrez BA, et al. Functional excitatory to inhibitory synaptic imbalance and loss of cognitive performance in people with Alzheimer’s disease neuropathologic change.Acta Neuropathol. 2023;145:303–24. [DOI] [PubMed] [PMC]
Belloy ME, Andrews SJ, Le Guen Y, Cuccaro M, Farrer LA, Napolioni V, et al. APOE Genotype and Alzheimer Disease Risk Across Age, Sex, and Population Ancestry.JAMA Neurol. 2023;80:1284–94. [DOI] [PubMed] [PMC]
Gureje O, Ogunniyi A, Baiyewu O, Price B, Unverzagt FW, Evans RM, et al. APOE ε4 is not associated with Alzheimer’s disease in elderly Nigerians.Ann Neurol. 2006;59:182–5. [DOI] [PubMed] [PMC]
Weuve J, Barnes LL, Mendes de Leon CF, Rajan KB, Beck T, Aggarwal NT, et al. Cognitive Aging in Black and White Americans: Cognition, Cognitive Decline, and Incidence of Alzheimer Disease Dementia.Epidemiology. 2018;29:151–9. [DOI] [PubMed] [PMC]
Beydoun MA, Weiss J, Beydoun HA, Hossain S, Maldonado AI, Shen B, et al. Race, APOE genotypes, and cognitive decline among middle-aged urban adults.Alzheimers Res Ther. 2021;13:120. [DOI] [PubMed] [PMC]
Nwosu A, Qian M, Phillips J, Hellegers CA, Rushia S, Sneed J, et al. Computerized Cognitive Training in Mild Cognitive Impairment: Findings in African Americans and Caucasians.J Prev Alzheimers Dis. 2024;11:149–54. [DOI] [PubMed]
Whitehair DC, Sherzai A, Emond J, Raman R, Aisen PS, Petersen RC, et al. Influence of apolipoprotein E ε4 on rates of cognitive and functional decline in mild cognitive impairment.Alzheimers Dement. 2010;6:412–9. [DOI] [PubMed] [PMC]
Barnes LL, Bennett DA. Dementia: Cognitive resilience in APOE*ε4 carriers—is race important?Nat Rev Neurol. 2015;11:190–1. [DOI] [PubMed] [PMC]
Burke SL, Cadet T, Maddux M. Chronic Health Illnesses as Predictors of Mild Cognitive Impairment Among African American Older Adults.J Natl Med Assoc. 2018;110:314–25. [DOI] [PubMed] [PMC]
Misiura MB, Butts B, Hammerschlag B, Munkombwe C, Bird A, Fyffe M, et al. Intersectionality in Alzheimer’s Disease: The Role of Female Sex and Black American Race in the Development and Prevalence of Alzheimer’s Disease.Neurotherapeutics. 2023;20:1019–36. [DOI] [PubMed] [PMC]
Bujang MA, Sa’at N, Sidik TMITAB, Joo LC. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data.Malays J Med Sci. 2018;25:122–30. [DOI] [PubMed] [PMC]
Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. The Role of APOE4 in Disrupting the Homeostatic Functions of Astrocytes and Microglia in Aging and Alzheimer’s Disease.Front Aging Neurosci. 2019;11:14. [DOI] [PubMed] [PMC]
Konings SC, Torres-Garcia L, Martinsson I, Gouras GK. Astrocytic and Neuronal Apolipoprotein E Isoforms Differentially Affect Neuronal Excitability.Front Neurosci. 2021;15:734001. [DOI] [PubMed] [PMC]
Zhou X, Shi Q, Zhang X, Gu L, Li J, Quan S, et al. ApoE4-mediated blood-brain barrier damage in Alzheimer’s disease: Progress and prospects.Brain Res Bull. 2023;199:110670. [DOI] [PubMed]
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, et al. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases.Mol Neurodegener. 2022;17:62. [DOI] [PubMed] [PMC]
Manu DR, Slevin M, Barcutean L, Forro T, Boghitoiu T, Balasa R. Astrocyte Involvement in Blood-Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions.Int J Mol Sci. 2023;24:17146. [DOI] [PubMed] [PMC]
Lee SH, Lutz D, Drexler D, Frotscher M, Shen J. Differential modulation of short-term plasticity at hippocampal mossy fiber and Schaffer collateral synapses by mitochondrial Ca2+.PLoS One. 2020;15:e0240610. [DOI] [PubMed] [PMC]
do Canto AM, Vieira AS, Matos AHB, Carvalho BS, Henning B, Norwood BA, et al. Laser microdissection-based microproteomics of the hippocampus of a rat epilepsy model reveals regional differences in protein abundances.Sci Rep. 2020;10:4412. [DOI] [PubMed] [PMC]
Shigemizu D, Asanomi Y, Akiyama S, Mitsumori R, Niida S, Ozaki K. Whole-genome sequencing reveals novel ethnicity-specific rare variants associated with Alzheimer’s disease.Mol Psychiatry. 2022;27:2554–62. [DOI] [PubMed] [PMC]
Wang Y, Sarnowski C, Lin H, Pitsillides AN, Heard-Costa NL, Choi SH, et al.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Boerwinkle E, De Jager PL, Fornage M, Wijsman EM, Seshadri S, Dupuis J, et al.; Alzheimer’s Disease Sequencing Project (ADSP). Key variants via the Alzheimer’s Disease Sequencing Project whole genome sequence data.Alzheimers Dement. 2024;20:3290–304. [DOI] [PubMed] [PMC]
Khan TK. An Algorithm for Preclinical Diagnosis of Alzheimer’s Disease.Front Neurosci. 2018;12:275. [DOI] [PubMed] [PMC]
Jack CR Jr, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup.Alzheimers Dement. 2024;20:5143–69. [DOI] [PubMed] [PMC]
Luo C, Li M, Qin R, Chen H, Yang D, Huang L, et al. White Matter Microstructural Damage as an Early Sign of Subjective Cognitive Decline.Front Aging Neurosci. 2020;11:378. [DOI] [PubMed] [PMC]
Chen Y, Wang Y, Song Z, Fan Y, Gao T, Tang X. Abnormal white matter changes in Alzheimer’s disease based on diffusion tensor imaging: A systematic review.Ageing Res Rev. 2023;87:101911. [DOI] [PubMed]
Ezzati A, Zammit AR, Habeck C, Hall CB, Lipton RB; Alzheimer’s Disease Neuroimaging Initiative. Detecting biological heterogeneity patterns in ADNI amnestic mild cognitive impairment based on volumetric MRI.Brain Imaging Behav. 2020;14:1792–804. [DOI] [PubMed] [PMC]
Lin SY, Lin PC, Lin YC, Lee YJ, Wang CY, Peng SW, et al. The Clinical Course of Early and Late Mild Cognitive Impairment.Front Neurol. 2022;13:685636. [DOI] [PubMed] [PMC]
Hashimoto Y, Yasunaga H. Theory and practice of propensity score analysis.Ann Clin Epidemiol. 2022;4:101–9. [DOI] [PubMed] [PMC]
Glymour C, Zhang K, Spirtes P. Review of Causal Discovery Methods Based on Graphical Models.Front Genet. 2019;10:524. [DOI] [PubMed] [PMC]
Shiba K, Kawahara T. Using Propensity Scores for Causal Inference: Pitfalls and Tips.J Epidemiol. 2021;31:457–63. [DOI] [PubMed] [PMC]