Occurrence of selected linker motifs in the Maple database of published degrader structures. Wavy lines indicate attachment to other linker motifs, protein-binding ligands, or connecting functional groups. Since many PROTACs combine more than one structural motifs into their linkers therefore these percentages sum to more than 100
Structure
Linker motif
Occurrence in Maple Database structures (%)
PEG
54
Alkyl
31
Other Glycol
14
Alkyne
7
Triazole
6
Piperazine
4
Piperidine
4
Declarations
Author contributions
All authors contributed to the conception and organisation of this review. RT prepared the first draft of the manuscript, and all authors contributed to the writing and development of additional sections. All authors contributed to manuscript revision and approved the submitted version.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This work was supported by AstraZeneca with a CASE award, and the EPSRC with a CASE Conversion grant (EP/R513325/1). AstraZeneca approved the final submitted version of the manuscript. The industrial supervisor/author (CF), together with the other authors, contributed to the design, writing, proof-reading and submission of this review.
Paiva SL, Crews CM.Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol.2019;50:111–9. [DOI] [PubMed] [PMC]
Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, et al. PROTACs: great opportunities for academia and industry. Signal Transduction Targeted Ther.2019;4:64. [DOI]
Burslem GM, Crews CM.Small-molecule modulation of protein homeostasis. Chem Rev.2017;117:11269–301. [DOI] [PubMed]
Huang X, Dixit VM.Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res.2016;26:484–98. [DOI] [PubMed] [PMC]
Schapira M, Calabrese MF, Bullock AN, Crews CM.Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov.2019;18:949–63. [DOI] [PubMed]
Schneekloth JS Jr, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc.2004;126:3748–54. [DOI] [PubMed]
Adams J.The proteasome: structure, function, and role in the cell. Cancer Treat Rev.2003;29Suppl 1:3–9. [DOI]
Metzger MB, Hristova VA, Weissman AM.HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci.2012;125:531–7. [DOI] [PubMed] [PMC]
Zheng N, Shabek N.Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem.2017;86:129–57. [DOI] [PubMed]
Bondeson DP, Mares A, Smith IE, Ko E, Campos S, Miah AH, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol.2015;11:611–7. [DOI] [PubMed] [PMC]
Zengerle M, Chan KH, Ciulli A.Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol.2015;10:1770–7. [DOI] [PubMed] [PMC]
Crews CM.Targeting the undruggable proteome: the small molecules of my dreams. Chem Biol.2010;17:551–5. [DOI] [PubMed] [PMC]
Zhou H, Bai L, Xu R, Zhao Y, Chen J, McEachern D, et al. Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein. J Med Chem.2019;62:11280–300. [DOI] [PubMed]
Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol.2015;22:755–63. [DOI] [PubMed] [PMC]
Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science.2015;348:1376–81. [DOI] [PubMed] [PMC]
Sakamoto KM, Kim KB, Kumagi A, Mercurio F, Crews CM, Deshaies RJ.Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A.2001;98:8554–9. [DOI] [PubMed] [PMC]
Sakamoto KM, Kim KB, Verma R, Ransick A, Stein B, Crews CM, et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics.2003;2:1350–8. [DOI] [PubMed]
Fosgerau K, Hoffmann T.Peptide therapeutics: current status and future directions. Drug Discov Today.2015;20:122–8. [DOI] [PubMed]
Schneekloth AR, Pucheault M, Tae HS, Crews CM.Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett.2008;18:5904–8. [DOI] [PubMed] [PMC]
Hines J, Lartigue S, Dong H, Qian Y, Crews CM.MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res.2019;79:251–62. [DOI] [PubMed] [PMC]
Bulatov E, Ciulli A.Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J.2015;467:365–86. [DOI] [PubMed] [PMC]
Galdeano C, Gadd MS, Soares P, Scaffidi S, Van Molle I, Birced I, et al. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel– Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J Med Chem.2014;57:8657–63. [DOI] [PubMed] [PMC]
Buckley DL, Gustafson JL, Van Molle I, Roth AG, Tae HS, Gareiss PC, et al. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew Chem Int Ed Engl.2012;51:11463–7. [DOI] [PubMed] [PMC]
Semenza GL.Life with oxygen. Science.2007;318:62–4. [DOI] [PubMed]
Hon WC, Wilson MI, Harlos K, Claridge TDW, Schofield CJ, Pugh CW, et al. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature.2002;417:975–8. [DOI] [PubMed]
Brahimi-Horn MC, Pouysségur J.Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol.2007;73:450–7. [DOI] [PubMed]
Clague MJ, Heride C, Urbé S.The demographics of the ubiquitin system. Trends Cell Biol.2015;25:417–26. [DOI] [PubMed]
Brand M, Winter GE.Stick it to E3s. Nat Chem Biol.2019;15:655–6. [DOI] [PubMed]
Lai AC, Toure M, Hellerschmied D, Salami J, Jamie-Figueroa S, Ko E, et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew Chem Int Ed Engl.2016;55:807–10. [DOI] [PubMed] [PMC]
Zhang L, Riley-Gillis B, Vijay P, Shen Y.Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol Cancer Ther.2019;18:1302–11. [DOI] [PubMed]
Naito M, Ohoka N, Shibata N.SNIPERs–Hijacking IAP activity to induce protein degradation. Drug Discov Today Technol.2019;31:35–42. [DOI] [PubMed]
Itoh Y, Kitaguchi R, Ishikawa M, Naito M, Hashimoto Y.Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg Med Chem.2011;19:6768–78. [DOI] [PubMed]
Itoh Y, Ishikawa M, Naito M, Hashimoto Y.Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J Am Chem Soc.2010;132:5820–6. [DOI] [PubMed]
Ohoka N, Okuhira K, Ito M, Nagai K, Shibata N, Hattori T, et al. In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs). J Biol Chem.2017;292:4556–70. [DOI] [PubMed] [PMC]
Ohoka N, Morita Y, Nagai K, Shimokawa K, Ujikawa O, Fujimori I, et al. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation. J Biol Chem.2018;293:6776–90. [DOI] [PubMed] [PMC]
Zhang X, Crowley VM, Wucherpfennig TG, Dix MM, Cravatt BF.Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat Chem Biol.2019;15:737–46. [DOI] [PubMed] [PMC]
Ward CC, Kleinman JI, Brittain SM, Lee PS, Chung CYS, Kim K, et al. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem Biol.2019;14:2430–40. [PubMed] [PMC]
Lu M, Liu T, Jiao Q, Ji J, Tao M, Liu Y, et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem.2018;146:251–9. [DOI] [PubMed]
Ottis P, Toure M, Cromm PM, Ko E, Gustafson JL, Crews CM.Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem Biol.2017;12:2570–8. [DOI] [PubMed]
Nunes J, McGonagle GA, Eden J, Kiritharan G, Touzet M, Lewell X, et al. Targeting IRAK4 for degradation with PROTACs. ACS Med Chem Lett.2019;10:1081–5. [DOI] [PubMed] [PMC]
de Wispelaere M, Du G, Donovan KA, Zhang T, Eleuteri NA, Yuan JC, et al. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat Commun.2019;10:3468. [DOI] [PubMed] [PMC]
Silva MC, Ferguson FM, Cai Q, Donovan KA, Nandi G, Patnaik D, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife.2019;8:e45457. [DOI] [PubMed] [PMC]
Chu TT, Gao N, Li QQ, Chen PG, Yang XF, Chen YX, et al. Specific knockdown of endogenous Tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem Biol.2016;23:453–61. [DOI] [PubMed]
Lee H, Puppala D, Choi EY, Swanson H, Kim KB.Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool. ChemBioChem.2007;8:2058–62. [DOI] [PubMed]
Zhao B, Burgess K.PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chem Commun (Camb).2019;55:2704–7. [DOI] [PubMed]
Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol.2018;25:67–77.e3. [DOI] [PubMed] [PMC]
Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem.2019;62:699–726. [DOI] [PubMed] [PMC]
Yang K, Song Y, Xie H, Wu H, Wu YT, Leisten ED, et al. Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorg Med Chem Lett.2018;28:2493–7. [DOI] [PubMed]
Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A.2010;107:13075–80. [DOI] [PubMed] [PMC]
Gabizon R, Shraga A, Gehrtz P, Livnah E, Shorer Y, Gurwicz N, et al. Efficient targeted degradation via reversible and irreversible covalent PROTACs. J Am Chem Soc.2020;142:11734–42. [DOI] [PubMed] [PMC]
Arthur R, Valle-Argos B, Steele AJ, Packham G.Development of PROTACs to address clinical limitations associated with BTK-targeted kinase inhibitors. Explor Target Antitumor Ther.2020;1:131–52. [DOI] [PubMed] [PMC]
Sun Y, Zhao X, Ding N, Gao H, Wu Y, Yang Y, et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res.2018;28:779–81. [DOI] [PubMed] [PMC]
Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol.2017;13:514–21. [DOI] [PubMed] [PMC]
Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol.2018;25:78–87.e5. [DOI] [PubMed] [PMC]
Smith BE, Wang SL, Jaime-Figueroa S, Harbin A, Wang J, Hamman BD, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun.2019;10:131. [DOI] [PubMed] [PMC]
Mullard A.First targeted protein degrader hits the clinic. Nat Rev Drug Discov.2019;18:237–9. [DOI] [PubMed]
Liu J, Ma J, Liu Y, Xia J, Li Y, Wang ZP, et al. PROTACs: a novel strategy for cancer therapy. Semin Cancer Biol.2020;[Epub ahead of print]. [DOI]
Roy MJ, Winkler S, Hughes SJ, Whitworth C, Galant M, Farnaby W, et al. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem Biol.2019;14:361–8. [DOI] [PubMed] [PMC]
Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, Smith J, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci U S A.2018;115:E7285–92. [DOI] [PubMed] [PMC]
Borsari C, Trader DJ, Tait A, Costi MP.Designing chimeric molecules for drug discovery by leveraging chemical biology. J Med Chem.2020;63:1908–28. [DOI] [PubMed]
Maple HJ, Clayden N, Baron A, Stacey C, Felix R.Developing degraders: principles and perspectives on design and chemical space. MedChemComm.2019;10:1755–64. [DOI] [PubMed] [PMC]
Smalley JP, Adams GE, Millard CJ, Song Y, Norris JKS, Schwabe JWR, et al. PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes. Chem Commun (Camb).2020;56:4476–9. [DOI] [PubMed]
Zhang X, Xu F, Tong L, Zhang T, Xie H, Lu X, et al. Design and synthesis of selective degraders of EGFRL858R/T790M mutant. Eur J Med Chem.2020;192:112199. [DOI] [PubMed]
Cyrus K, Wehenkel M, Choi EY, Han HJ, Lee H, Swanson H, et al. Impact of linker length on the activity of PROTACs. Mol Biosyst.2011;7:359–64. [DOI] [PubMed] [PMC]
Zhang D, Baek SH, Ho A, Kim K.Degradation of target protein in living cells by small-molecule proteolysis inducer. Bioorg Med Chem Lett.2004;14:645–8. [DOI] [PubMed]
Cyrus K, Wehenkel M, Choi EY, Lee H, Swanson H, Kim KB.Jostling for position: optimizing linker location in the design of estrogen receptor-targeting PROTACS. ChemMedChem.2010;5:979–85. [DOI] [PubMed] [PMC]
Rana S, Bendjennat M, Kour S, King HM, Kizhake S, Zahid M, et al. Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorg Med Chem Lett.2019;29:1375–9. [DOI] [PubMed] [PMC]
Wang B, Wu S, Liu J, Yang K, Xie H, Tang W.Development of selective small molecule MDM2 degraders based on nutlin. Eur J Med Chem.2019;176:476–91. [DOI] [PubMed]
Li Y, Yang J, Aguilar A, McEachern D, Przybranowski S, Liu L, et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J Med Chem.2019;62:448–66. [DOI] [PubMed] [PMC]
Yang J, Li Y, Aguilar A, Liu Z, Yang CY, Wang S.Simple structural modifications converting a bona fide MDM2 PROTAC degrader into a molecular glue molecule: a cautionary tale in the design of PROTAC degraders. J Med Chem.2019;62:9471–87. [DOI] [PubMed] [PMC]
Crew AP, Raina K, Dong H, Qian Y, Wang J, Vigil D, et al. Identification and characterization of von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J Med Chem.2018;61:583–98. [DOI] [PubMed]
Kim K, Lee DH, Park S, Jo SH, Ku B, Park SG, et al. Disordered region of cereblon is required for efficient degradation by proteolysis-targeting chimera. Sci Rep.2019;9:19654. [DOI] [PubMed] [PMC]
Steinebach C, Sosič I, Lindner S, Bricelj A, Kohl F, Ng YLD, et al. A MedChem toolbox for cereblon-directed PROTACs. MedChemComm.2019;10:1037–41. [DOI] [PubMed] [PMC]
Steinebach C, Kehm H, Lindner S, Vu LP, Köpff S, Mármol MÁL, et al. PROTAC-mediated crosstalk between E3 ligases. Chem Commun (Camb).2019;55:1821–4. [DOI] [PubMed]
Qiu X, Sun N, Kong Y, Li Y, Yang X, Jiang B.Chemoselective synthesis of lenalidomide-based PROTAC library using alkylation reaction. Org Lett.2019;21:3838–41. [DOI] [PubMed]
Qin C, Hu Y, Zhou B, Fernandez-Salas E, Yang CY, Liu L, et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J Med Chem.2018;61:6685–704. [DOI] [PubMed] [PMC]
Han X, Wang C, Qin C, Xiang W, Fernandez-Salas E, Yang CY, et al. Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer. J Med Chem.2019;62:941–64. [DOI] [PubMed]
Han X, Zhao L, Xiang W, Qin C, Miao B, Xu T, et al. Discovery of highly potent and efficient PROTAC degraders of androgen receptor (AR) by employing weak binding affinity VHL E3 ligase ligands. J Med Chem.2019;62:11218–31. [DOI] [PubMed]
Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, Trainor N, et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol.2019;15:672–80. [DOI] [PubMed] [PMC]
Shibata N, Nagai K, Morita Y, Ujikawa O, Ohoka N, Hattori T, et al. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands. J Med Chem.2018;61:543–75. [DOI] [PubMed]
Xia LW, Ba MY, Liu W, Cheng W, Hu CP, Zhao Q, et al. Triazol: a privileged scaffold for proteolysis targeting chimeras. Future Med Chem.2019;11:2919–73. [DOI] [PubMed]
Kolb HC, Finn MG, Sharpless KB.Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl.2001;40:2004–21. [DOI] [PubMed]
Moses JE, Moorhouse AD.The growing applications of click chemistry. Chem Soc Rev.2007;36:1249–62. [DOI] [PubMed]
Chen H, Chen F, Liu N, Wang X, Gou S.Chemically induced degradation of CK2 by proteolysis targeting chimeras based on a ubiquitin–proteasome pathway. Bioorg Chem.2018;81:536–44. [DOI] [PubMed]
Zhou L, Chen W, Cao C, Shi Y, Ye W, Hu J, et al. Design and synthesis of α-naphthoflavone chimera derivatives able to eliminate cytochrome P450 (CYP)1B1-mediated drug resistance via targeted CYP1B1 degradation. Eur J Med Chem.2020;189:112028. [DOI] [PubMed]
Wurz RP, Dellamaggiore K, Dou H, Javier N, Lo MC, McCarter JD, et al. A “click chemistry platform” for the rapid synthesis of bispecific molecules for inducing protein degradation. J Med Chem.2018;61:453–61. [DOI] [PubMed]
Zhao Q, Lan T, Su S, Rao Y.Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem Commun (Camb).2019;55:369–72. [DOI] [PubMed]
Schiedel M, Herp D, Hammelmann S, Swyter S, Lehotzky A, Robaa D, et al. Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). J Med Chem.2018;61:482–91. [DOI] [PubMed]
Lebraud H, Wright DJ, Johnson CN, Heightman TD.Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent Sci.2016;2:927–34. [DOI] [PubMed] [PMC]
Blackman ML, Royzen M, Fox JM.Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc.2008;130:13518–9. [DOI] [PubMed] [PMC]
Fischer ES, Böhm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature.2014;512:49–53. [DOI] [PubMed] [PMC]
Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AMK, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A.2016;113:7124–9. [DOI] [PubMed] [PMC]
Bolden JE, Tasdemir N, Dow LE, van Es JH, Wilkinson JE, Zhao Z, et al. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep.2014;8:1919–29. [DOI] [PubMed] [PMC]
Velema WA, Szymanski W, Feringa BL.Photopharmacology: beyond proof of principle. J Am Chem Soc.2014;136:2178–91. [DOI] [PubMed]
Liu J, Chen H, Ma L, He Z, Wang D, Liu Y, et al. Light-induced control of protein destruction by opto-PROTAC. Sci Adv.2020;6:eaay5154. [DOI] [PubMed] [PMC]
Kounde CS, Shchepinova MM, Saunders CN, Muelbaier M, Rackham MD, Harling JD, et al. A caged E3 ligase ligand for PROTAC-mediated protein degradation with light. Chem Commun (Camb).2020;56:5532–5. [DOI] [PubMed]
Naro Y, Darrah K, Deiters A.Optical control of small molecule-induced protein degradation. J Am Chem Soc.2020;142:2193–7. [DOI] [PubMed] [PMC]
Xue G, Wang K, Zhou D, Zhong H, Pan Z.Light-induced protein degradation with photocaged PROTACs. J Am Chem Soc.2019;141:18370–4. [DOI] [PubMed]
Pfaff P, Samarasinghe KTG, Crews CM, Carreira EM.Reversible spatiotemporal control of induced protein degradation by bistable photoPROTACs. ACS Cent Sci.2019;5:1682–90. [DOI] [PubMed] [PMC]
Jin YH, Lu MC, Wang Y, Shan WX, Wang XY, You QD, et al. Azo-PROTAC: novel light-controlled small-molecule tool for protein knockdown. J Med Chem.2020;63:4644–54. [DOI] [PubMed]
Reynders M, Matsuura BS, Bérouti M, Simoneschi D, Marzio A, Pagano M, et al. PHOTACs enable optical control of protein degradation. Sci Adv.2020;6:eaay5064. [DOI] [PubMed] [PMC]
Zhao Q, Ren C, Liu L, Chen J, Shao Y, Sun N, et al. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von Hippel-Lindau (VHL) E3 ubiquitin ligase. J Med Chem.2019;62:9281–98. [DOI] [PubMed]
Zhang X, Thummuri D, Liu X, Hu W, Zhang P, Khan S, et al. Discovery of PROTAC BCL-XL degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem.2020;192:112186. [DOI] [PubMed] [PMC]
Su S, Yang Z, Gao H, Yang H, Zhu S, An Z, et al. Potent and preferential degradation of CDK6 via proteolysis targeting chimera degraders. J Med Chem.2019;62:7575–82. [DOI] [PubMed] [PMC]
Churcher I.Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones?J Med Chem. 2018;61:444–52. [DOI] [PubMed]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ.Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev.2001;46:3–26. [DOI] [PubMed]
Neklesa T, Snyder LB, Willard RR, Vitale N, Pizzano J, Gordon DA, et al. ARV-110: an oral androgen receptor PROTAC degrader for prostate cancer. J Clin Oncol.2019;37:259.
Egbert M, Whitty A, Keserű GM, Vajda S.Why some targets benefit from beyond rule of five drugs. J Med Chem.2019;62:10005–25. [DOI] [PubMed] [PMC]
Shultz MD.Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J Med Chem.2019;62:1701–14. [DOI] [PubMed]
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD.Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem.2002;45:2615–23. [DOI] [PubMed]
DeGoey DA, Chen HJ, Cox PB, Wendt MD.Beyond the rule of 5: lessons learned from Abbvie’s drugs and compound collection. J Med Chem.2018;61:2636–51. [DOI] [PubMed]
Doak BC, Zheng J, Dobritzsch D, Kihlberg J.How beyond rule of 5 drugs and clinical candidates bind to their targets. J Med Chem.2016;59:2312–27. [DOI] [PubMed]
Poongavanam V, Doak BC, Kihlberg J.Opportunities and guidelines for discovery of orally absorbed drugs in beyond rule of 5 space. Curr Opin Chem Bio.2018;44:23–9. [DOI] [PubMed]
Edmondson SD, Yang B, Fallan C.Proteolysis targeting chimeras (PROTACs) in ‘beyond rule-of-five’ chemical space: recent progress and future challenges. Bioorg Med Chem Lett.2019;29:1555–64. [DOI] [PubMed]
Matthews SJ, McCoy C.Thalidomide: a review of approved and investigational uses. Clin Ther.2003;25:342–95. [DOI] [PubMed]
Webster R, Didier E, Harris P, Siegel N, Stadler J, Tilbury L, et al. PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos.2007;35:9–16. [DOI] [PubMed]
Baumann A, Tuerck D, Prabhu S, Dickmann L, Sims J.Pharmacokinetics, metabolism and distribution of PEGs and PEGylated proteins: quo vadis?Drug Discov Today. 2014;19:1623–31. [DOI] [PubMed]
Webster R, Elliott VL, Park BK, Walker D, Hankin M, Taupin P.PEG and PEG conjugates toxicity: towards an understanding of the toxicity of PEG and its relevance to PEGylated biologicals. In: Veronese FM, editor. PEGylated Protein Drugs: Basic Science and Clinical Applications. Basel: Birkhäuser; 2009. pp. 127–46.
Cantrill C, Chaturvedi P, Rynn C, Schaffland JP, Walter I, Wittwer MB.Fundamental aspects of DMPK optimization of targeted protein degraders. Drug Discov Today.2020;25:969–82. [DOI] [PubMed]
Jaime-Figueroa S, Buhimschi AD, Toure M, Hines J, Crews CM.Design, synthesis and biological evaluation of proteolysis targeting chimeras (PROTACs) as a BTK degraders with improved pharmacokinetic properties. Bioorg Med Chem Lett.2020;30:126877. [DOI] [PubMed] [PMC]
Zeng M, Xiong Y, Safaee N, Nowak RP, Donovan KA, Yuan CJ, et al. Exploring targeted degradation strategy for oncogenic KRASG12C. Cell Chem Biol.2020;27:19–31.e6. [DOI] [PubMed]
Steinebach C, Ng YLD, Sosič I, Lee CS, Chen S, Lindner S, et al. Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders. Chem Sci.2020;11:3474–86. [DOI]
Shah RR, Redmond JM, Mihut A, Menon M, Evans JP, Murphy JA, et al. Hi-JAK-ing the ubiquitin system: the design and physicochemical optimisation of JAK PROTACs. Bioorg Med Chem.2020;28:115326. [DOI] [PubMed]
Mares A, Miah AH, Smith IED, Rackham M, Thawani AR, Cryan J., et al. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Commun Biol.2020;3:140. [DOI] [PubMed] [PMC]
Chessum NEA, Sharp SY, Caldwell JJ, Pasqua AE, Wilding B, Colombano G, et al. Demonstrating in-cell target engagement using a pirin protein degradation probe (CCT367766). J Med Chem.2018;61:918–33. [DOI] [PubMed] [PMC]
Reist M, Carrupt PA, Francotte E, Testa B.Chiral inversion and hydrolysis of thalidomide: mechanisms and catalysis by bases and serum albumin, and chiral stability of teratogenic metabolites. Chem Res Toxicol.1998;11:1521–8. [DOI] [PubMed]
Chan KH, Zengerle M, Testa A, Ciulli A.Impact of target warhead and linkage vector on inducing protein degradation: comparison of bromodomain and extra-terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J Med Chem.2018;61:504–13. [DOI] [PubMed] [PMC]
Huang HT, Dobrovolsky D, Paulk J, Yang G, Weisberg EL, Doctor ZM, et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem Biol.2018;25:88–99.e6. [DOI] [PubMed] [PMC]
Zhang X, Thummuri D, He Y, Liu X, Zhang P, Zhou D, et al. Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-XL. Chem Commun.2019;55:14765–8. [DOI]
Potjewyd F, Turner AMW, Beri J, Rectenwald JM, Norris-Drouin JL, Cholensky SH, et al. Degradation of polycomb repressive complex 2 with an EED-targeted bivalent chemical degrader. Cell Chem Biol.2020;27:47–56.e15. [DOI] [PubMed] [PMC]
Cheng M, Yu X, Lu K, Xie L, Wang L, Meng F, et al. Discovery of potent and selective epidermal growth factor receptor (EGFR) bifunctional small-molecule degraders. J Med Chem.2020;63:1216–32. [DOI] [PubMed] [PMC]
Maniaci C, Hughes SJ, Testa A, Chen W, Lamont DJ, Rocha S, et al. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat Commun.2017;8:830. [DOI] [PubMed] [PMC]
Tovell H, Testa A, Zhou H, Shpiro N, Crafter C, Ciull A, et al. Design and characterization of SGK3-PROTAC1, an isoform specific SGK3 kinase PROTAC degrader. ACS Chem Biol.2019;14:2024–34. [DOI] [PubMed] [PMC]
Douglass EF, Miller CJ, Sparer G, Shapiro H, Spiegel DA.A comprehensive mathematical model for three-body binding equilibria. J Am Chem Soc.2013;135:6092–9. [DOI] [PubMed] [PMC]
Zhang Y, Loh C, Chen J, Mainolfi N.Targeted protein degradation mechanisms. Drug Discov Today Technol.2019;31:53–60. [DOI] [PubMed]
Testa A, Hughes SJ, Lucas X, Wright JE, Ciulli A.Structure-based design of a macrocyclic PROTAC. Angew Chem Int Ed Engl.2020;59:1727–34. [DOI] [PubMed] [PMC]
Baud MGJ, Lin-Shiao E, Zengerle M, Tallant C, Ciulli A.New synthetic routes to triazolo-benzodiazepine analogues: expanding the scope of the bump-and-hole approach for selective bromo and extra-terminal (BET) bromodomain inhibition. J Med Chem.2016;59:1492–500. [DOI] [PubMed] [PMC]
Demizu Y, Shibata N, Hattori T, Ohoka N, Motoi H, Misawa T, et al. Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand. Bioorg Med Chem Lett.2016;26:4865–9. [DOI] [PubMed]
Winzker M, Friese A, Koch U, Janning P, Ziegler S, Waldmann H.Development of a PDEδ-targeting PROTACs that impair lipid metabolism. Angew Chem Int Ed Engl.2020;59:5595–601. [DOI] [PubMed] [PMC]
Bian J, Ren J, Li Y, Wang J, Xu X, Feng Y, et al. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg Chem.2018;81:373–81. [DOI] [PubMed]
Drummond ML, Williams CI.In silico modeling of PROTAC-mediated ternary complexes: validation and application. J Chem Inf Model.2019;59:1634–44. [DOI] [PubMed]
Yang H, Lv W, He M, Deng H, Li H, Wu W, et al. Plasticity in designing PROTACs for selective and potent degradation of HDAC6. Chem Commun (Camb).2019;55:14848–51. [DOI] [PubMed]
An Z, Lv W, Su S, Wu W, Rao Y.Developing potent PROTACs tools for selective degradation of HDAC6 protein. Protein Cell.2019;10:606–9. [DOI] [PubMed] [PMC]
Wang Z, He N, Guo Z, Niu C, Song T, Guo Y, et al. Proteolysis targeting chimeras for the selective degradation of Mcl-1/Bcl-2 derived from nonselective target binding ligands. J Med Chem.2019;62:8152–63. [DOI] [PubMed]
Nowak RP, DeAngelo SL, Buckley D, He Z, Donovan KA, An J, et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat Chem Biol.2018;14:706–14. [DOI] [PubMed] [PMC]
Imrie F, Bradley AR, van der Schaar M, Deane CM.Deep generative models for 3D linker design. J Chem Inf Model.2020;60:1983–95. [DOI] [PubMed] [PMC]
Saur M, Hartshorn MJ, Dong J, Reeks J, Bunkoczi G, Jhoti H, et al. Fragment-based drug discovery using cryo-EM. Drug Discov Today.2020;25:485–90. [DOI] [PubMed]
Scapin G, Potter CS, Carragher B.Cryo-EM for small molecules discovery, design, understanding, and application. Cell Chem Biol.2018;25:1318–25. [DOI] [PubMed] [PMC]
Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown PMGE, et al. Single-particle cryo-EM at atomic resolution. bioRxiv: 10.1101/2020.05.22.110189v1 [Preprint]. 2020 [cited 2020 Jun 14]: [31 p.]. Available from: https://www.biorxiv.org/content/10.1101/2020.05.22.110189v1
McCoull W, Cheung T, Anderson E, Barton P, Burgess J, Byth K, et al. Development of a novel B-cell lymphoma 6 (BCL6) PROTAC to provide insight into small molecule targeting of BCL6. ACS Chem Biol.2018;13:3131–41. [DOI] [PubMed]
Hughes SJ, Ciulli A.Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem.2017;61:505–16. [DOI] [PubMed] [PMC]
Mayer M, Meyer B.Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc.2001;123:6108–17. [DOI] [PubMed]
Dias DM, Van Molle I, Baud MGJ, Galdeano C, Geraldes CFGC, Ciulli A.Is NMR fragment screening fine-tuned to assess druggability of protein-protein interactions?ACS Med Chem Lett. 2014;5:23–8. [DOI] [PubMed] [PMC]
Scott DE, Rooney TPC, Bayle ED, Mirza T, Willems HMG, Clarke JH, et al. Systematic investigation of the permeability of androgen receptor PROTACs. ACS Med Chem Lett.2020;11:1539–47. [DOI] [PubMed] [PMC]
Dong M, Babalhavaeji A, Samanta S, Beharry AA, Woolley GA.Red-shifting azobenzene photoswitches for in vivo use. Acc Chem Res.2015;48:2662–70. [DOI] [PubMed]
Roberts BL, Ma ZX, Gao A, Leisten ED, Yin D, Xu W, et al. Two-stage strategy for development of proteolysis targeting chimeras and its application for estrogen receptor degraders. ACS Chem Biol.2020;15:1487–96. [DOI] [PubMed]
Burslem GM, Bondeson DP, Crews CM.Scaffold hopping enables direct access to more potent PROTACs with in vivo activity. Chem Commun (Camb).2020;56:6890–2. [DOI] [PubMed] [PMC]
Baud MGJ, Lin-Shiao E, Cardote T, Tallant C, Pschibul A, Chan KH, et al. Chemical biology. A bump- and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science.2014;346:638–41. [DOI] [PubMed] [PMC]
Runcie AC, Zengerle M, Chan KH, Testa A, van Beurden L, Baud MGJ, et al. Optimization of a “bump-and-hole” approach to allele-selective BET bromodomain inhibition. Chem Sci.2018;9:2452–68. [DOI] [PubMed] [PMC]
Moreau K, Coen M, Zhang AX, Pachl F, Castaldi MP, Dahl G, et al. Proteolysis-targeting chimeras in drug development: a safety perspective. Br J Pharmacol.2020;177:1709–18. [DOI] [PubMed] [PMC]
Pillow TH, Adhikari P, Blake RA, Chen J, Del Rosario G, Deshmukh G, et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem.2020;15:17–25. [DOI] [PubMed]