AUC: area under curve; NN: neural network; BN: Bayesian network; LARC: locally advanced rectal cancer; EUS: endorectal ultrasound; IC50: half maximal inhibitory concentration; LOG: Laplacian of Gaussian; NMR: nuclear magnetic resonance; CT: computed tomography; MRI: magnetic resonance imaging; pCR: pathologic complete response; EMLMs: ensemble machine learning models; pNR: pathologic non responder
Declarations
Acknowledgments
We are thankful to Department of Biotechnology, Jaypee Institute of Information Technology, Noida for necessary facilities.
Author contributions
KD, PKT, MP, and CKJ: Conceptualization. KD and PKT: Investigation, Writing—original draft. KD, PKT, and MP: Visualization. SK, CKJ, RK, and SV: Writing—review & editing, Supervision. All authors read and approved the submitted version.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Qiu H, Ding S, Liu J, Wang L, Wang X. Applications of artificial intelligence in screening, diagnosis, treatment, and prognosis of colorectal cancer.Curr Oncol. 2022;29:1773–95. [DOI] [PubMed] [PMC]
Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, et al. Cancer treatment and survivorship statistics, 2022.CA Cancer J Clin. 2022;72:409–36. [DOI] [PubMed]
Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A new era.Curr Oncol. 2021;28:1581–607. [DOI] [PubMed] [PMC]
Stanzione A, Verde F, Romeo V, Boccadifuoco F, Mainenti PP, Maurea S. Radiomics and machine learning applications in rectal cancer: current update and future perspectives.World J Gastroenterol. 2021;27:5306–21. [DOI] [PubMed] [PMC]
Boniolo F, Dorigatti E, Ohnmacht AJ, Saur D, Schubert B, Menden MP. Artificial intelligence in early drug discovery enabling precision medicine.Expert Opin Drug Discov. 2021;16:991–1007. [DOI] [PubMed]
Yu C, Helwig EJ. The role of AI technology in prediction, diagnosis and treatment of colorectal cancer.Artif Intell Rev. 2022;55:323–43. [DOI] [PubMed] [PMC]
Nowak-Sliwinska P, Scapozza L, Ruiz i Altaba A. Drug repurposing in oncology: compounds, pathways, phenotypes and computational approaches for colorectal cancer.Biochim Biophys Acta Rev Cancer. 2019;1871:434–54. [DOI] [PubMed] [PMC]
Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N, Cedrón F, Novoa FJ, Carballal A, et al. A review on machine learning approaches and trends in drug discovery.Comput Struct Biotechnol J. 2021;19:4538–58. [DOI] [PubMed] [PMC]
Sharma A, Jain S, Chatterjee S. Applications of machine learning algorithms in cancer diagnosis. In: Saxena A, Chandra S, editors. Artificial intelligence and machine learning in healthcare. Singapore: Springer; 2021.
Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine learning methods in drug discovery.Molecules. 2020;25:5277. [DOI] [PubMed] [PMC]
Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development.Nat Rev Drug Discov. 2019;18:463–77. [DOI] [PubMed] [PMC]
Zararsiz G, Elmali F, Ozturk A. Bagging support vector machines for leukemia classification.IJCSI. 2012;9:365–8.
Heikamp K, Bajorath J. Support vector machines for drug discovery.Expert Opin Drug Discov. 2014;9:93–104. [DOI] [PubMed]
Salmi N, Rustam Z. Naïve bayes classifier models for predicting the colon cancer. 9th Annual Basic Science International Conference (BaSIC 2019); 2019 Mar 20–21; Malang, Indonesia. Bristol: IOP Publishing; 2019. pp. 1–8.
Saxena A, Chandra S, editors. Artificial intelligence and machine learning in healthcare. Singapore: Springer; 2021.
Shrestha A, Mahmood A. Review of deep learning algorithms and architectures.IEEE. 2019;7:53040–65. [DOI]
Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, et al. A survey on deep learning: algorithms, techniques, and applications.ACM Comput Surv. 2018;51:1–36. [DOI]
LeCun Y, Bengio Y, Hinton G. Deep learning.Nature. 2015;521:436–44. [DOI] [PubMed]
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.Mol Divers. 2021;25:1315–60. [DOI] [PubMed] [PMC]
Cui W, Aouidate A, Wang S, Yu Q, Li Y, Yuan S. Discovering anti-cancer drugs via computational methods.Front Pharmacol. 2020;11:733. [DOI] [PubMed] [PMC]
Hinkson IV, Madej B, Stahlberg EA. Accelerating therapeutics for opportunities in medicine: a paradigm shift in drug discovery.Front Pharmacol. 2020;11:770. [DOI] [PubMed] [PMC]
Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence.Trends Pharmacol Sci. 2019;40:592–604.Erratum in: Trends Pharmacol Sci. 2019;40:801. [DOI] [PubMed]
Karger E, Kureljusic M. Using artificial intelligence for drug discovery: a bibliometric study and future research agenda.Pharmaceuticals (Basel). 2022;15:1492. [DOI] [PubMed] [PMC]
Farghali H, Kutinová Canová N, Arora M. The potential applications of artificial intelligence in drug discovery and development.Physiol Res. 2021;70:S715–22. [DOI] [PubMed] [PMC]
Zhavoronkov A, Vanhaelen Q, Oprea TI. Will artificial intelligence for drug discovery impact clinical pharmacology?Clin Pharmacol Ther. 2020;107:780–5. [DOI] [PubMed] [PMC]
Ramsundar B, Eastman P, Walters P, Pande V. Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more. 1st ed. Sebastopol (CA): O’Reilly Media; 2019.
Nag S, Baidya ATK, Mandal A, Mathew AT, Das B, Devi B, et al. Deep learning tools for advancing drug discovery and development.3 Biotech. 2022;12:110. [DOI] [PubMed] [PMC]
Steiner S, Wolf J, Glatzel S, Andreou A, Granda JM, Keenan G, et al. Organic synthesis in a modular robotic system driven by a chemical programming language.Science. 2019;363:eaav2211. [DOI] [PubMed]
Wang C, Zhang Y. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest.J Comput Chem. 2017;38:169–77. [DOI] [PubMed] [PMC]
Wan F, Zhu Y, Hu H, Dai A, Cai X, Chen L, et al. DeepCPI: a deep learning-based framework for large-scale in silico drug screening.Genomics Proteomics Bioinformatics. 2019;17:478–95. [DOI] [PubMed] [PMC]
Feinberg EN, Sur D, Wu Z, Husic BE, Mai H, Li Y, et al. PotentialNet for molecular property prediction.ACS Cent Sci. 2018;4:1520–30. [DOI] [PMC]
Xu Y, Ma J, Liaw A, Sheridan RP, Svetnik V. Demystifying multitask deep neural networks for quantitative structure-activity relationships.J Chem Inf Model. 2017;57:2490–504. [DOI] [PubMed]
Stork C, Chen Y, Šícho M, Kirchmair J. Hit Dexter 2.0: machine-learning models for the prediction of frequent hitters.J Chem Inf Model. 2019;59:1030–43. [DOI] [PubMed]
Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: toxicity prediction using deep learning.Front Environ Sci. 2016;3:00080. [DOI]
Yasuo N, Sekijima M. Improved method of structure-based virtual screening via interaction-energy-based learning.J Chem Inf Model. 2019;59:1050–61. [DOI] [PubMed]
Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design through deep reinforcement learning.J Cheminform. 2017;9:48. [DOI] [PubMed] [PMC]
Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: recent advances and future perspectives.Expert Opin Drug Discov. 2021;16:949–59. [DOI] [PubMed]
Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects.Drug Discov Today. 2019;24:773–80. [DOI] [PubMed]
Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA Jr, et al. Rethinking drug design in the artificial intelligence era.Nat Rev Drug Discov. 2020;19:353–64. [DOI] [PubMed]
Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.Drug Discov Today. 2017;22:1680–5. [DOI] [PubMed]
Chen W, Liu X, Zhang S, Chen S. Artificial intelligence for drug discovery: resources, methods, and applications.Mol Ther Nucleic Acids. 2023;31:691–702. [DOI] [PubMed] [PMC]
Bondeven P, Laurberg S, Hagemann-Madsen RH, Ginnerup Pedersen B. Suboptimal surgery and omission of neoadjuvant therapy for upper rectal cancer is associated with a high risk of local recurrence.Colorectal Dis. 2015;17:216–24. [DOI] [PubMed]
Quero G, Mascagni P, Kolbinger FR, Fiorillo C, De Sio D, Longo F, et al. Artificial intelligence in colorectal cancer surgery: present and future perspectives.Cancers (Basel). 2022;14:3803. [DOI] [PubMed] [PMC]
Yin Z, Yao C, Zhang L, Qi S. Application of artificial intelligence in diagnosis and treatment of colorectal cancer: a novel prospect.Front Med (Lausanne). 2023;10:1128084. [DOI] [PubMed] [PMC]
Abbaspour S, Abdollahi H, Arabalibeik H, Barahman M, Arefpour AM, Fadavi P, et al. Endorectal ultrasound radiomics in locally advanced rectal cancer patients: despeckling and radiotherapy response prediction using machine learning.Abdom Radiol (NY). 2022;47:3645–59. [DOI] [PubMed]
Tochigi T, Kamran SC, Parakh A, Noda Y, Ganeshan B, Blaszkowsky LS, et al. Response prediction of neoadjuvant chemoradiation therapy in locally advanced rectal cancer using CT-based fractal dimension analysis.Eur Radiol. 2022;32:2426–36. [DOI] [PubMed]
Huang CM, Huang MY, Huang CW, Tsai HL, Su WC, Chang WC, et al. Machine learning for predicting pathological complete response in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy.Sci Rep. 2020;10:12555. [DOI] [PubMed] [PMC]
Tan Y, Fu D, Li D, Kong X, Jiang K, Chen L, et al. Predictors and risk factors of pathologic complete response following neoadjuvant chemoradiotherapy for rectal cancer: a population-based analysis.Front Oncol. 2019;9:497. [DOI] [PubMed] [PMC]
Shayesteh SP, Alikhassi A, Fard Esfahani A, Miraie M, Geramifar P, Bitarafan-Rajabi A, et al. Neo-adjuvant chemoradiotherapy response prediction using MRI based ensemble learning method in rectal cancer patients.Phys Med. 2019;62:111–9. [DOI] [PubMed]
Ferrari R, Mancini-Terracciano C, Voena C, Rengo M, Zerunian M, Ciardiello A, et al. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer.Eur J Radiol. 2019;118:1–9. [DOI] [PubMed]
Oyaga-Iriarte E, Insausti A, Sayar O, Aldaz A. Prediction of irinotecan toxicity in metastatic colorectal cancer patients based on machine learning models with pharmacokinetic parameters.J Pharmacol Sci. 2019;140:20–5. [DOI] [PubMed]
Cruz S, Gomes SE, Borralho PM, Rodrigues CMP, Gaudêncio SP, Pereira F. In silico HCT116 human colon cancer cell-based models en route to the discovery of lead-like anticancer drugs.Biomolecules. 2018;8:56. [DOI] [PubMed] [PMC]
Clark AJ, Negron C, Hauser K, Sun M, Wang L, Abel R, et al. Relative binding affinity prediction of charge-changing sequence mutations with FEP in protein-protein interfaces.J Mol Biol. 2019;431:1481–93. [DOI] [PubMed] [PMC]
Das S, Krein MP, Breneman CM. Binding affinity prediction with property-encoded shape distribution signatures.J Chem Inf Model. 2010;50:298–308. [DOI] [PubMed] [PMC]
Śledź P, Caflisch A. Protein structure-based drug design: from docking to molecular dynamics.Curr Opin Struct Biol. 2018;48:93–102. [DOI] [PubMed]
Blomme EA, Will Y. Toxicology strategies for drug discovery: present and future.Chem Res Toxicol. 2016;29:473–504. [DOI] [PubMed]
Keefer CE, Chang G, Kauffman GW. Extraction of tacit knowledge from large ADME data sets via pairwise analysis.Bioorg Med Chem. 2011;19:3739–49. [DOI] [PubMed]
Zhong F, Xing J, Li X, Liu X, Fu Z, Xiong Z, et al. Artificial intelligence in drug design.Sci China Life Sci. 2018;61:1191–204. [DOI] [PubMed]
Ding J, Li X, Gudivada VN. Augmentation and evaluation of training data for deep learning. 2017 IEEE International Conference on Big Data (Big Data); 2017 Dec 11-14; Boston (MA), USA. New York (NY): IEEE. pp. 2603–11. [DOI]
Voosen P. The AI detectives.Science. 2017;357:22–7. [DOI] [PubMed]