The authors declare that they have no conflicts of interest.
Ethical approval
According to Italian law, the content of this article does not require ethical approval.
Consent to participate
According to Italian law, the content of this article does not require consent to participate. The images could be used for diulgative purpose for the italian law, since they are totally anonymized.
Rioja P, Ruiz R, Galvez-Nino M, Lozano S, Valdiviezo N, Olivera M, et al. Epidemiology of thymic epithelial tumors: 22-years experience from a single-institution.Thorac Cancer. 2021;12:420–5. [DOI] [PubMed] [PMC]
Lucà S, Zannini G, Morgillo F, Della Corte CM, Fiorelli A, Zito Marino F, et al. The prognostic value of histopathology in invasive lung adenocarcinoma: a comparative review of the main proposed grading systems.Expert Rev Anticancer Ther. 2023;23:265–77. [DOI] [PubMed]
Bade BC, Dela Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention.Clin Chest Med. 2020;41:1–24. [DOI] [PubMed]
Bibby AC, Tsim S, Kanellakis N, Ball H, Talbot DC, Blyth KG, et al. Malignant pleural mesothelioma: an update on investigation, diagnosis and treatment.Eur Respir Rev. 2016;25:472–86. [DOI] [PubMed] [PMC]
Hsu CH, Chan JK, Yin CH, Lee CC, Chern CU, Liao CI. Trends in the incidence of thymoma, thymic carcinoma, and thymic neuroendocrine tumor in the United States.PLoS One. 2019;14:e0227197. [DOI] [PubMed] [PMC]
Radovich M, Pickering CR, Felau I, Ha G, Zhang H, Jo H, et al. The integrated genomic landscape of thymic epithelial tumors.Cancer Cell. 2018;33:244–58.e10. [DOI] [PubMed] [PMC]
Enkner F, Pichlhöfer B, Zaharie AT, Krunic M, Holper TM, Janik S, et al. Molecular profiling of thymoma and thymic carcinoma: genetic differences and potential novel therapeutic targets.Pathol Oncol Res. 2017;23:551–64. [DOI] [PubMed] [PMC]
Girard N, Basse C, Schrock A, Ramkissoon S, Killian K, Ross JS. Comprehensive genomic profiling of 274 thymic epithelial tumors unveils oncogenic pathways and predictive biomarkers.Oncologist. 2022;27:919–29. [DOI] [PubMed] [PMC]
Wang Y, Thomas A, Lau C, Rajan A, Zhu Y, Killian JK, et al. Mutations of epigenetic regulatory genes are common in thymic carcinomas.Sci Rep. 2014;4:7336. [DOI] [PubMed] [PMC]
Marx A, Willcox N, Leite MI, Chuang WY, Schalke B, Nix W, et al. Thymoma and paraneoplastic myasthenia gravis.Autoimmunity. 2010;43:413–27. [DOI] [PubMed]
Tartarone A, Lerose R, Lettini AR, Tartarone M. Current treatment approaches for thymic epithelial tumors.Life (Basel). 2023;13:1170. [DOI] [PubMed] [PMC]
Merveilleux du Vignaux C, Dansin E, Mhanna L, Greillier L, Pichon E, Kerjouan M, et al. Systemic therapy in advanced thymic epithelial tumors: insights from the RYTHMIC prospective cohort.J Thorac Oncol. 2018;13:1762–70. [DOI] [PubMed]
Rajan A, Giaccone G. Treatment of advanced thymoma and thymic carcinoma.Curr Treat Options Oncol. 2008;9:277–87. [DOI] [PubMed] [PMC]
Thomas A, Rajan A, Berman A, Tomita Y, Brzezniak C, Lee MJ, et al. Sunitinib in patients with chemotherapy-refractory thymoma and thymic carcinoma: an open-label phase 2 trial.Lancet Oncol. 2015;16:177–86.Erratum in: Lancet Oncol. 2015;16:e105. [DOI] [PubMed] [PMC]
Zucali PA, De Pas T, Palmieri G, Favaretto A, Chella A, Tiseo M, et al. Phase II study of everolimus in patients with thymoma and thymic carcinoma previously treated with cisplatin-based chemotherapy.J Clin Oncol. 2018;36:342–9. [DOI] [PubMed]
Chen Y, Gharwan H, Thomas A. Novel biologic therapies for thymic epithelial tumors.Front Oncol. 2014;4:103. [DOI] [PubMed] [PMC]
Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer.Surg Pathol Clin. 2020;13:17–33. [DOI] [PubMed]
Lucà S, Franco R, Napolitano A, Soria V, Ronchi A, Zito Marino F, et al. PATZ1 in non-small cell lung cancer: a new biomarker that negatively correlates with PD-L1 expression and suppresses the malignant phenotype.Cancers (Basel). 2023;15:2190. [DOI] [PubMed] [PMC]
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications.Cell Mol Immunol. 2020;17:807–21. [DOI] [PubMed] [PMC]
Alves NL, Takahama Y, Ohigashi I, Ribeiro AR, Baik S, Anderson G, et al. Serial progression of cortical and medullary thymic epithelial microenvironments.Eur J Immunol. 2014;44:16–22.Erratum in: Eur J Immunol. 2014;44:2197. [DOI] [PubMed] [PMC]
Willner J, Zhou F, Moreira AL. Diagnostic challenges in the cytology of thymic epithelial neoplasms.Cancers (Basel). 2022;14:2013. [DOI] [PubMed] [PMC]
Marx A, Chan JK, Coindre JM, Detterbeck F, Girard N, Harris NL, et al. The 2015 World Health Organization classification of tumors of the thymus: continuity and changes.J Thorac Oncol. 2015;10:1383–95. [DOI] [PubMed] [PMC]
Marx A, Chan JKC, Chalabreysse L, Dacic S, Detterbeck F, French CA, et al. The 2021 WHO classification of tumors of the thymus and mediastinum: what is new in thymic epithelial, germ cell, and mesenchymal tumors?J Thorac Oncol. 2022;17:200–13. [DOI] [PubMed]
Kuhn E, Pescia C, Mendogni P, Nosotti M, Ferrero S. Thymic epithelial tumors: an evolving field.Life (Basel). 2023;13:314. [DOI] [PubMed] [PMC]
Moran CA, Weissferdt A, Kalhor N, Solis LM, Behrens C, Wistuba II, et al. Thymomas I: a clinicopathologic correlation of 250 cases with emphasis on the World Health Organization schema.Am J Clin Pathol. 2012;137:444–50. [DOI] [PubMed]
Moran CA, Walsh G, Suster S, Kaiser L. Thymomas II: a clinicopathologic correlation of 250 cases with a proposed staging system with emphasis on pathologic assessment.Am J Clin Pathol. 2012;137:451–61. [DOI] [PubMed]
Weissferdt A. Common thymomas: classification, histology, staging and prognosis.Diagn Histopathol. 2023;29:94–104.
Alqaidy D, Moran CA. Thymic carcinoma: a review.Front Oncol. 2022;12:808019. [DOI] [PubMed] [PMC]
Bohnenberger H, Dinter H, König A, Ströbel P. Neuroendocrine tumors of the thymus and mediastinum.J Thorac Dis. 2017;9:S1448–57. [DOI] [PubMed] [PMC]
Forde PM, Reiss KA, Zeidan AM, Brahmer JR. What lies within: novel strategies in immunotherapy for non-small cell lung cancer.Oncologist. 2013;18:1203–13. [DOI] [PubMed] [PMC]
Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer.J Clin Invest. 2015;125:3335–7. [DOI] [PubMed] [PMC]
Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors.Int Immunopharmacol. 2018;62:29–39. [DOI] [PubMed]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy.Nat Rev Cancer. 2012;12:252–64. [DOI] [PubMed] [PMC]
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade.Science. 2018;359:1350–55. [DOI] [PubMed] [PMC]
Song Y, Li Z, Xue W, Zhang M. Predictive biomarkers for PD-1 and PD-L1 immune checkpoint blockade therapy.Immunotherapy. 2019;11:515–29. [DOI] [PubMed]
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.Nature. 2014;515:563–7. [DOI] [PubMed] [PMC]
Lin H, Wei S, Hurt EM, Green MD, Zhao L, Vatan L, et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression.J Clin Invest. 2018;128:1708.Erratum in: J Clin Invest. 2018;128:805–15. [DOI] [PubMed] [PMC]
Ao YQ, Gao J, Wang S, Jiang JH, Deng J, Wang HK, et al. Immunotherapy of thymic epithelial tumors: molecular understandings and clinical perspectives.Mol Cancer. 2023;22:70. [DOI] [PubMed] [PMC]
Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types.Nat Genet. 2019;51:202–6. [DOI] [PubMed] [PMC]
Cho J, Kim HS, Ku BM, Choi YL, Cristescu R, Han J, et al. Pembrolizumab for patients with refractory or relapsed thymic epithelial tumor: an open-label phase II trial.J Clin Oncol. 2019;37:2162–70. [DOI] [PubMed]
Giaccone G, Kim C, Thompson J, McGuire C, Kallakury B, Chahine JJ, et al. Pembrolizumab in patients with thymic carcinoma: a single-arm, single-centre, phase 2 study.Lancet Oncol. 2018;19:347–55. [DOI] [PubMed] [PMC]
Heery CR, O’Sullivan-Coyne G, Madan RA, Cordes L, Rajan A, Rauckhorst M, et al. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial.Lancet Oncol. 2017;18:587–98. [DOI] [PubMed] [PMC]
June CH, Warshauer JT, Bluestone JA. Is autoimmunity the Achilles’ heel of cancer immunotherapy?Nat Med. 2017;23:540–7.Erratum in: Nat Med. 2017;23:1004. [DOI] [PubMed]
Weissferdt A, Fujimoto J, Kalhor N, Rodriguez J, Bassett R, Wistuba II, et al. Expression of PD-1 and PD-L1 in thymic epithelial neoplasms.Mod Pathol. 2017;30:826–33. [DOI] [PubMed]
Arbour KC, Naidoo J, Steele KE, Ni A, Moreira AL, Rekhtman N, et al. Expression of PD-L1 and other immunotherapeutic targets in thymic epithelial tumors.PLoS One. 2017;12:e0182665. [DOI] [PubMed] [PMC]
Suster D, Pihan G, Mackinnon AC, Suster S. Expression of PD-L1/PD-1 in lymphoepithelioma-like carcinoma of the thymus.Mod Pathol. 2018;31:1801–6. [DOI] [PubMed]
Higuchi R, Goto T, Hirotsu Y, Nakagomi T, Yokoyama Y, Otake S, et al. PD-L1 expression and tumor-infiltrating lymphocytes in thymic epithelial neoplasms.J Clin Med. 2019;8:1833. [DOI] [PubMed] [PMC]
Wei YF, Chu CY, Chang CC, Lin SH, Su WC, Tseng YL, et al. Different pattern of PD-L1, IDO, and FOXP3 Tregs expression with survival in thymoma and thymic carcinoma.Lung Cancer. 2018;125:35–42. [DOI] [PubMed]
Duan J, Liu X, Chen H, Sun Y, Liu Y, Bai H, et al. Impact of PD-L1, transforming growth factor-β expression and tumor-infiltrating CD8+ T cells on clinical outcome of patients with advanced thymic epithelial tumors.Thorac Cancer. 2018;9:1341–53. [DOI] [PubMed] [PMC]
Funaki S, Shintani Y, Fukui E, Yamamoto Y, Kanzaki R, Ose N, et al. The prognostic impact of programmed cell death 1 and its ligand and the correlation with epithelial-mesenchymal transition in thymic carcinoma.Cancer Med. 2019;8:216–26. [DOI] [PubMed] [PMC]
Katsuya Y, Fujita Y, Horinouchi H, Ohe Y, Watanabe S, Tsuta K. Immunohistochemical status of PD-L1 in thymoma and thymic carcinoma.Lung Cancer. 2015;88:154–9. [DOI] [PubMed]
Padda SK, Riess JW, Schwartz EJ, Tian L, Kohrt HE, Neal JW, et al. Diffuse high intensity PD-L1 staining in thymic epithelial tumors.J Thorac Oncol. 2015;10:500–8. [DOI] [PubMed] [PMC]
Marchevsky AM, Walts AE. PD-L1, PD-1, CD4, and CD8 expression in neoplastic and nonneoplastic thymus.Hum Pathol. 2017;60:16–23. [DOI] [PubMed]
Katsuya Y, Horinouchi H, Asao T, Kitahara S, Goto Y, Kanda S, et al. Expression of programmed death 1 (PD-1) and its ligand (PD-L1) in thymic epithelial tumors: Impact on treatment efficacy and alteration in expression after chemotherapy.Lung Cancer. 2016;99:4–10. [DOI] [PubMed]
Yokoyama S, Miyoshi H, Nishi T, Hashiguchi T, Mitsuoka M, Takamori S, et al. Clinicopathologic and prognostic implications of programmed death ligand 1 expression in thymoma.Ann Thorac Surg. 2016;101:1361–9. [DOI] [PubMed]
Tiseo M, Damato A, Longo L, Barbieri F, Bertolini F, Stefani A, et al. Analysis of a panel of druggable gene mutations and of ALK and PD-L1 expression in a series of thymic epithelial tumors (TETs).Lung Cancer. 2017;104:24–30. [DOI] [PubMed]
Owen D, Chu B, Lehman AM, Annamalai L, Yearley JH, Shilo K, et al. Expression patterns, prognostic value, and intratumoral heterogeneity of PD-L1 and PD-1 in thymoma and thymic carcinoma.J Thorac Oncol. 2018;13:1204–12. [DOI] [PubMed] [PMC]
Hakiri S, Fukui T, Mori S, Kawaguchi K, Nakamura S, Ozeki N, et al. Clinicopathologic features of thymoma with the expression of programmed death ligand 1.Ann Thorac Surg. 2019;107:418–24. [DOI] [PubMed]
Guleria P, Husain N, Shukla S, Kumar S, Parshad R, Jain D. PD-L1 immuno-expression assay in thymomas: study of 84 cases and review of literature.Ann Diagn Pathol. 2018;34:135–41. [DOI] [PubMed]
Chen Y, Zhang Y, Chai X, Gao J, Chen G, Zhang W, et al. Correlation between the expression of PD-L1 and clinicopathological features in patients with thymic epithelial tumors.Biomed Res Int. 2018;2018:5830547. [DOI] [PubMed] [PMC]
Bagir EK, Acikalin A, Avci A, Gumurdulu D, Paydas S. PD-1 and PD-L1 expression in thymic epithelial tumours and non-neoplastic thymus.J Clin Pathol. 2018;71:637–41. [DOI] [PubMed]
Ishihara S, Okada S, Ogi H, Kodama Y, Shimomura M, Tsunezuka H, et al. Programmed death-ligand 1 expression profiling in thymic epithelial cell tumors: clinicopathological features and quantitative digital image analyses.Lung Cancer. 2020;145:40–7. [DOI] [PubMed]
Berardi R, Goteri G, Brunelli A, Pagliaretta S, Paolucci V, Caramanti M, et al. Prognostic relevance of programmed cell death protein 1/programmed death-ligand 1 pathway in thymic malignancies with combined immunohistochemical and biomolecular approach.Expert Opin Ther Targets. 2020;24:937–43. [DOI] [PubMed]
Rouquette I, Taranchon-Clermont E, Gilhodes J, Bluthgen MV, Perallon R, Chalabreysse L, et al. Immune biomarkers in thymic epithelial tumors: expression patterns, prognostic value and comparison of diagnostic tests for PD-L1.Biomark Res. 2019;7:28. [DOI] [PubMed] [PMC]
Jakopovic M, Bitar L, Seiwerth F, Marusic A, Krpina K, Samarzija M. Immunotherapy for thymoma.J Thorac Dis. 2020;12:7635–41. [DOI] [PubMed] [PMC]
Zhao C, Rajan A. Immune checkpoint inhibitors for treatment of thymic epithelial tumors: how to maximize benefit and optimize risk?Mediastinum. 2019;3:35. [DOI] [PubMed] [PMC]
Chen HF, Wu LX, Li XF, Zhu YC, Pan WW, Wang WX, et al. PD-L1 expression level in different thymoma stages and thymic carcinoma: a meta-analysis.Tumori. 2020;106:306–11. [DOI] [PubMed]
Yan X, Feng J, Hong B, Qian Y. The expression of PD-L1 and B7-H4 in thymic epithelial tumor and its relationship with tumor immune-infiltrating cells.Front Oncol. 2021;11:662010. [DOI] [PubMed] [PMC]
Shen L, Qian Y, Wu W, Weng T, Wang FXC, Hong B, et al. B7-H4 is a prognostic biomarker for poor survival in patients with pancreatic cancer.Hum Pathol. 2017;66:79–85. [DOI] [PubMed]
Zheng C, Yang R. RCD24, B7-H4 and PCNA expression and clinical significance in ovarian cancer.J BUON. 2019;24:715–9. [PubMed]
Kim NI, Park MH, Kweon SS, Lee JS. B7-H3 and B7-H4 expression in breast cancer and their association with clinicopathological variables and T cell infiltration.Pathobiology. 2020;87:179–92. [DOI] [PubMed]
Qi Y, Huang X, Ji C, Wang C, Yao Y. The co-inhibitory immune checkpoint proteins B7-H1(PD-L1) and B7-H4 in high grade glioma: from bench to bedside.Transl Oncol. 2024;39:101793. [DOI] [PubMed] [PMC]
Takahashi N, Zhao C, Rajan A. WT1 as an immunotherapy target for thymic epithelial tumors: a novel method to activate anti-tumor immunity.Mediastinum. 2019;3:11. [DOI] [PubMed] [PMC]
Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus.Cell. 1990;60:509–20. [DOI] [PubMed]
Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia.Blood. 1994;84:3071–9. [PubMed]
Oji Y, Miyoshi S, Maeda H, Hayashi S, Tamaki H, Nakatsuka S, et al. Overexpression of the Wilms’ tumor gene WT1 in de novo lung cancers.Int J Cancer. 2002;100:297–303. [DOI] [PubMed]
Loeb DM, Evron E, Patel CB, Sharma PM, Niranjan B, Buluwela L, et al. Wilms’ tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation.Cancer Res. 2001;61:921–5. [PubMed]
Oji Y, Yamamoto H, Nomura M, Nakano Y, Ikeba A, Nakatsuka S, et al. Overexpression of the Wilms’ tumor gene WT1 in colorectal adenocarcinoma.Cancer Sci. 2003;94:712–7. [DOI] [PubMed]
Oji Y, Nakamori S, Fujikawa M, Nakatsuka S, Yokota A, Tatsumi N, et al. Overexpression of the Wilms’ tumor gene WT1 in pancreatic ductal adenocarcinoma.Cancer Sci. 2004;95:583–7. [DOI] [PubMed]
Oji Y, Suzuki T, Nakano Y, Maruno M, Nakatsuka S, Jomgeow T, et al. Overexpression of the Wilms’ tumor gene WT1 in primary astrocytic tumors.Cancer Sci. 2004;95:822–7. [DOI] [PubMed]
Algar EM, Khromykh T, Smith SI, Blackburn DM, Bryson GJ, Smith PJ. A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines.Oncogene. 1996;12:1005–14. [PubMed]
Ito K, Oji Y, Tatsumi N, Shimizu S, Kanai Y, Nakazawa T, et al. Antiapoptotic function of 17AA(+)WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway.Oncogene. 2006;25:4217–29. [DOI] [PubMed]
Jomgeow T, Oji Y, Tsuji N, Ikeda Y, Ito K, Tsuda A, et al. Wilms’ tumor gene WT1 17AA(-)/KTS(-) isoform induces morphological changes and promotes cell migration and invasion in vitro.Cancer Sci. 2006;97:259–70. [DOI] [PubMed]
Wagner N, Michiels JF, Schedl A, Wagner KD. The Wilms’ tumour suppressor WT1 is involved in endothelial cell proliferation and migration: expression in tumour vessels in vivo.Oncogene. 2008;27:3662–72. [DOI] [PubMed]
Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H, et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression.Proc Natl Acad Sci U S A. 2004;101:13885–90. [DOI] [PubMed] [PMC]
Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Blau IW, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS.Blood. 2009;113:6541–8. [DOI] [PubMed]
Van Tendeloo VF, Van de Velde A, Van Driessche A, Cools N, Anguille S, Ladell K, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination.Proc Natl Acad Sci U S A. 2010;107:13824–9. [DOI] [PubMed] [PMC]
Maslak PG, Dao T, Krug LM, Chanel S, Korontsvit T, Zakhaleva V, et al. Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia.Blood. 2010;116:171–9. [DOI] [PubMed] [PMC]
Oji Y, Inoue M, Takeda Y, Hosen N, Shintani Y, Kawakami M, et al. WT1 peptide-based immunotherapy for advanced thymic epithelial malignancies.Int J Cancer. 2018;142:2375–82. [DOI] [PubMed]
Ballman M, Zhao C, McAdams MJ, Rajan A. Immunotherapy for management of thymic epithelial tumors: a double-edged sword.Cancers (Basel). 2022;14:2060. [DOI] [PubMed] [PMC]
Suzuki M, Hishida T, Asakura K, Asamura H. WT1 peptide-based immunotherapy for refractory thymic epithelial malignancies.Mediastinum. 2019;3:12. [DOI] [PubMed] [PMC]