Potential aids of immunopeptidomics to improve the efficacy of cancer immunotherapies
Immunotherapy
Limitation and drawbacks
Potential immunopeptidomics aids
Peptide-based cancer vaccines
The diversity of MHC genetics and binding of antigenic peptides must be specific, the binding, consequently, can elicit the T-cell response [73].
Design of synthetic peptides directly from patients [74].
Immune checkpoint inhibitors
Low neoantigen burden, low expression of immune checkpoint, and MHC deficiency may reduce the efficacy. Prediction of neoantigen uses only WES, which does not exactly correlate with pMHC [75].
Combination the treatment with personalized peptide-based vaccines or other cancer treatments and use of immunopeptidome for predictive biomarkers [76].
Oncolytic viruses
Difficulties in delivering the viral particles to the tumors, viral tropism targeting to the tumor, defense of cancer innate immune, OVs cannot sufficiently elicit T-cell response because of tumor heterogeneity [77, 78].
Identification of personalized pMHC and coat on OV capsid with personalized antigenic peptides for incline elicit T-cell response [41].
Chimeric T-cells (CAR T-cell)
CAR cannot recognize neoantigens derived intracellular mutated proteins [50].
Increase of CAR to visualize neoantigens intracellular proteins by discovery of personalized MHC ligandome [48].
Kuzbari Z, Bandlamudi C, Loveday C, Garrett A, Mehine M, George A, et al. Germline-focused analysis of tumour-detected variants in 49,264 cancer patients: ESMO Precision Medicine Working Group recommendations.Ann Oncol. 2023;34:215–27. [DOI] [PubMed]
Mbemi A, Khanna S, Njiki S, Yedjou CG, Tchounwou PB. Impact of Gene-Environment Interactions on Cancer Development.Int J Environ Res Public Health. 2020;17:8089. [DOI] [PubMed] [PMC]
Schiller JT, Lowy DR. An Introduction to Virus Infections and Human Cancer.Recent Results Cancer Res. 2021;217:1–11. [DOI] [PubMed] [PMC]
Anderson NM, Simon MC. The tumor microenvironment.Curr Biol. 2020;30:R921–5. [DOI] [PubMed] [PMC]
Mellman I, Chen DS, Powles T, Turley SJ. The cancer-immunity cycle: Indication, genotype, and immunotype.Immunity. 2023;56:2188–205. [DOI] [PubMed]
He Q, Jiang X, Zhou X, Weng J. Targeting cancers through TCR-peptide/MHC interactions.J Hematol Oncol. 2019;12:139. [DOI] [PubMed] [PMC]
Batalia MA, Collins EJ. Peptide binding by class I and class II MHC molecules.Biopolymers. 1997;43:281–302. [DOI] [PubMed]
Gonzalez S, González-Rodríguez AP, Suárez-Álvarez B, López-Soto A, Huergo-Zapico L, Lopez-Larrea C. Conceptual aspects of self and nonself discrimination.Self Nonself. 2011;2:19–25. [DOI] [PubMed] [PMC]
Kisielow P. How does the immune system learn to distinguish between good and evil? The first definitive studies of T cell central tolerance and positive selection.Immunogenetics. 2019;71:513–8. [DOI] [PubMed] [PMC]
Stanculeanu DL, Daniela Z, Lazescu A, Bunghez R, Anghel R. Development of new immunotherapy treatments in different cancer types.J Med Life. 2016;9:240–8. [PubMed] [PMC]
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications.Cell Mol Immunol. 2020;17:807–21. [DOI] [PubMed] [PMC]
Yewdell JW. MHC Class I Immunopeptidome: Past, Present, and Future.Mol Cell Proteomics. 2022;21:100230. [DOI] [PubMed] [PMC]
Marcu A, Bichmann L, Kuchenbecker L, Kowalewski DJ, Freudenmann LK, Backert L, et al. HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy.J Immunother Cancer. 2021;9:e002071. [DOI] [PubMed] [PMC]
Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy.Signal Transduct Target Ther. 2023;8:9. [DOI] [PubMed] [PMC]
Abelin JG, Bergstrom EJ, Rivera KD, Taylor HB, Klaeger S, Xu C, et al. Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues.Nat Commun. 2023;14:1851. [DOI] [PubMed] [PMC]
Sun Y, Young MC, Woodward CH, Danon JN, Truong HV, Gupta S, et al. Universal open MHC-I molecules for rapid peptide loading and enhanced complex stability across HLA allotypes.Proc Natl Acad Sci U S A. 2023;120:e2304055120. [DOI] [PubMed] [PMC]
León-Letelier RA, Katayama H, Hanash S. Mining the Immunopeptidome for Antigenic Peptides in Cancer.Cancers (Basel). 20221;14:4968. [DOI] [PubMed] [PMC]
Pyke RM, Mellacheruvu D, Dea S, Abbott C, Zhang SV, Phillips NA, et al. Precision Neoantigen Discovery Using Large-Scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation.Mol Cell Proteomics. 2023;22:100506. [DOI] [PubMed] [PMC]
Mei S, Li F, Leier A, Marquez-Lago TT, Giam K, Croft NP, et al. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction.Brief Bioinform. 2020;21:1119–35. [DOI] [PubMed] [PMC]
Bassani-Sternberg M. Mass Spectrometry Based Immunopeptidomics for the Discovery of Cancer Neoantigens.Methods Mol Biol. 2018;1719:209–21. [DOI] [PubMed]
Muth T, Hartkopf F, Vaudel M, Renard BY. A Potential Golden Age to Come-Current Tools, Recent Use Cases, and Future Avenues for De Novo Sequencing in Proteomics.Proteomics. 2018;18:e1700150. [DOI] [PubMed]
Karunratanakul K, Tang HY, Speicher DW, Chuangsuwanich E, Sriswasdi S. Uncovering Thousands of New Peptides with Sequence-Mask-Search Hybrid De Novo Peptide Sequencing Framework.Mol Cell Proteomics. 2019;18:2478–91. [DOI] [PubMed] [PMC]
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al.; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer.N Engl J Med. 2010;363:411–22. [DOI] [PubMed]
Abd-Aziz N, Poh CL. Development of Peptide-Based Vaccines for Cancer.J Oncol. 2022;2022:9749363. [DOI] [PubMed] [PMC]
Mühlenbruch L, Abou-Kors T, Dubbelaar ML, Bichmann L, Kohlbacher O, Bens M, et al. The HLA ligandome of oropharyngeal squamous cell carcinomas reveals shared tumour-exclusive peptides for semi-personalised vaccination.Br J Cancer. 2023;128:1777–87. [DOI] [PubMed] [PMC]
Stern PL, Dalianis T. Oropharyngeal Squamous Cell Carcinoma Treatment in the Era of Immune Checkpoint Inhibitors.Viruses. 2021;13:1234. [DOI] [PubMed] [PMC]
Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, et al. Immune Checkpoint Inhibitors in Cancer Therapy.Curr Oncol. 2022;29:3044–60. [DOI] [PubMed] [PMC]
Aggarwal C, Ben-Shachar R, Gao Y, Hyun SW, Rivers Z, Epstein C, et al. Assessment of Tumor Mutational Burden and Outcomes in Patients With Diverse Advanced Cancers Treated With Immunotherapy.JAMA Netw Open. 2023;6:e2311181. [DOI] [PubMed] [PMC]
Paganini J, Pontarotti P. Search for MHC/TCR-Like Systems in Living Organisms.Front Immunol. 2021;12:635521. [DOI] [PubMed] [PMC]
Klempner SJ, Fabrizio D, Bane S, Reinhart M, Peoples T, Ali SM, et al. Tumor Mutational Burden as a Predictive Biomarker for Response to Immune Checkpoint Inhibitors: A Review of Current Evidence.Oncologist. 2020;25:e147–59. [DOI] [PubMed] [PMC]
Taylor BC, Balko JM. Mechanisms of MHC-I Downregulation and Role in Immunotherapy Response.Front Immunol. 2022;13:844866. [DOI] [PubMed] [PMC]
Yoshihama S, Cho SX, Yeung J, Pan X, Lizee G, Konganti K, et al. NLRC5/CITA expression correlates with efficient response to checkpoint blockade immunotherapy.Sci Rep. 2021;11:3258. [DOI] [PubMed] [PMC]
Lee JH, Shklovskaya E, Lim SY, Carlino MS, Menzies AM, Stewart A, et al. Transcriptional downregulation of MHC class I and melanoma de- differentiation in resistance to PD-1 inhibition.Nat Commun. 2020;11:1897. [DOI] [PubMed] [PMC]
Lauss M, Donia M, Harbst K, Andersen R, Mitra S, Rosengren F, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma.Nat Commun. 2017;8:1738.Erratum in: Nat Commun. 2020;11:1714. [DOI] [PubMed] [PMC]
Fritsche J, Rakitsch B, Hoffgaard F, Römer M, Schuster H, Kowalewski DJ, et al. Translating Immunopeptidomics to Immunotherapy-Decision-Making for Patient and Personalized Target Selection.Proteomics. 2018;18:e1700284. [DOI] [PubMed] [PMC]
Melcher A, Harrington K, Vile R. Oncolytic virotherapy as immunotherapy.Science. 2021;374:1325–6. [DOI] [PubMed] [PMC]
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways.Mol Cancer. 2022;21:196. [DOI] [PubMed] [PMC]
Lemos de Matos A, Franco LS, McFadden G. Oncolytic Viruses and the Immune System: The Dynamic Duo.Mol Ther Methods Clin Dev. 2020;17:349–58. [DOI] [PubMed] [PMC]
Roy DG, Geoffroy K, Marguerie M, Khan ST, Martin NT, Kmiecik J, et al. Adjuvant oncolytic virotherapy for personalized anti-cancer vaccination.Nat Commun. 2021;12:2626. [DOI] [PubMed] [PMC]
Ylösmäki E, Malorzo C, Capasso C, Honkasalo O, Fusciello M, Martins B, et al. Personalized Cancer Vaccine Platform for Clinically Relevant Oncolytic Enveloped Viruses.Mol Ther. 2018;26:2315–25. [DOI] [PubMed] [PMC]
Li QX, Liu G, Wong-Staal F. Oncolytic virotherapy as a personalized cancer vaccine.Int J Cancer. 2008;123:493–9. [DOI] [PubMed]
Feola S, Russo S, Martins B, Lopes A, Vandermeulen G, Fluhler V, et al. Peptides-Coated Oncolytic Vaccines for Cancer Personalized Medicine.Front Immunol. 2022;13:826164. [DOI] [PubMed] [PMC]
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It.Int J Mol Sci. 2021;22:6741. [DOI] [PubMed] [PMC]
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, et al. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments.J Transl Med. 2023;21:449. [DOI] [PubMed] [PMC]
Cornel AM, Mimpen IL, Nierkens S. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy.Cancers (Basel). 2020;12:1760. [DOI] [PubMed] [PMC]
Nawaz W, Huang B, Xu S, Li Y, Zhu L, Yiqiao H, et al. AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia.Blood Cancer J. 2021;11:119. [DOI] [PubMed] [PMC]
Moço PD, Aharony N, Kamen A. Adeno-Associated Viral Vectors for Homology-Directed Generation of CAR-T Cells.Biotechnol J. 2020;15:e1900286. [DOI] [PubMed]
Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: State of the art and perspectives.Sci Adv. 2023;9:eadf3700. [DOI] [PubMed] [PMC]
Griffin GK. CAR keys to unlock the intracellular immunopeptidome.Sci Immunol. 2022;7:eabn9189. [DOI] [PubMed]
Irving M, Zoete V, Bassani-Sternberg M, Coukos G. A roadmap for driving CAR T cells toward the oncogenic immunopeptidome.Cancer Cell. 2022;40:20–2. [DOI] [PubMed]
Yarmarkovich M, Marshall QF, Warrington JM, Premaratne R, Farrel A, Groff D, et al. Targeting of intracellular oncoproteins with peptide-centric CARs.Nature. 2023;623:820–7.
Kraemer AI, Chong C, Huber F, Pak H, Stevenson BJ, Müller M, et al. The immunopeptidome landscape associated with T cell infiltration, inflammation and immune editing in lung cancer.Nat Cancer. 2023;4:608–28. [DOI] [PubMed] [PMC]
Mei S, Ayala R, Ramarathinam SH, Illing PT, Faridi P, Song J, et al. Immunopeptidomic Analysis Reveals That Deamidated HLA-bound Peptides Arise Predominantly from Deglycosylated Precursors.Mol Cell Proteomics. 2020;19:1236–47. [DOI] [PubMed] [PMC]
Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma.Nat Genet. 2013;45:279–84. [DOI] [PubMed] [PMC]
Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma.Nat Rev Dis Primers. 2016;2:16078. [DOI] [PubMed]
Chmielewski M, Hombach AA, Abken H. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells.Front Immunol. 2013;4:371. [DOI] [PubMed] [PMC]
Akahori Y, Wang L, Yoneyama M, Seo N, Okumura S, Miyahara Y, et al. Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination.Blood. 2018;132:1134–45. [DOI] [PubMed] [PMC]
Alpízar A, Marino F, Ramos-Fernández A, Lombardía M, Jeko A, Pazos F, et al. A Molecular Basis for the Presentation of Phosphorylated Peptides by HLA-B Antigens.Mol Cell Proteomics. 2017;16:181–93. [DOI] [PubMed] [PMC]
Mukherjee S, Sanchez-Bernabeu A, Demmers LC, Wu W, Heck AJR. The HLA Ligandome Comprises a Limited Repertoire of O-GlcNAcylated Antigens Preferentially Associated With HLA-B*07:02.Front Immunol. 2021;12:796584. [DOI] [PubMed] [PMC]
Rudnick PA, Markey SP, Roth J, Mirokhin Y, Yan X, Tchekhovskoi DV, et al. A Description of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Common Data Analysis Pipeline.J Proteome Res. 2016;15:1023–32. [DOI] [PubMed] [PMC]
Geffen Y, Anand S, Akiyama Y, Yaron TM, Song Y, Johnson JL, et al.; Clinical Proteomic Tumor Analysis Consortium. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation.Cell. 2023;186:3945–67.e26. [DOI] [PubMed] [PMC]
Xu Z, Zhang Y, Ocansey DKW, Wang B, Mao F. Glycosylation in Cervical Cancer: New Insights and Clinical Implications.Front Oncol. 2021;11:706862. [DOI] [PubMed] [PMC]
Bedran G, Polasky DA, Hsiao Y, Yu F, da Veiga Leprevost F, Alfaro JA, et al. Unraveling the glycosylated immunopeptidome with HLA-Glyco.Nat Commun. 2023;14:3461. [DOI] [PubMed] [PMC]
Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics.Nat Methods. 2017;14:513–20. [DOI] [PubMed] [PMC]
Krug K, Mertins P, Zhang B, Hornbeck P, Raju R, Ahmad R, et al. A Curated Resource for Phosphosite-specific Signature Analysis.Mol Cell Proteomics. 2019;18:576–93. [DOI] [PubMed] [PMC]
Pascovici D, Wu JX, McKay MJ, Joseph C, Noor Z, Kamath K, et al. Clinically Relevant Post-Translational Modification Analyses-Maturing Workflows and Bioinformatics Tools.Int J Mol Sci. 2018;20:16. [DOI] [PubMed] [PMC]
Rasmussen M, Fenoy E, Harndahl M, Kristensen AB, Nielsen IK, Nielsen M, et al. Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity.J Immunol. 2016;197:1517–24. [DOI] [PubMed] [PMC]
Miller RM, Millikin RJ, Rolfs Z, Shortreed MR, Smith LM. Enhanced Proteomic Data Analysis with MetaMorpheus.Methods Mol Biol. 2023;2426:35–66. [DOI] [PubMed] [PMC]
Sun W, Zhang Q, Zhang X, Tran NH, Ziaur Rahman M, Chen Z, et al. Glycopeptide database search and de novo sequencing with PEAKS GlycanFinder enable highly sensitive glycoproteomics.Nat Commun. 2023;14:4046.Erratum in: Nat Commun. 2024;15:701. [DOI] [PubMed] [PMC]
Naeimi R, Bahmani A, Afshar S. Investigating the role of peptides in effective therapies against cancer.Cancer Cell Int. 2022;22:139. [DOI] [PubMed] [PMC]
Scull KE, Pandey K, Ramarathinam SH, Purcell AW. Immunopeptidogenomics: Harnessing RNA-Seq to Illuminate the Dark Immunopeptidome.Mol Cell Proteomics. 2021;20:100143. [DOI] [PubMed] [PMC]
Xin L, Qiao R, Chen X, Tran H, Pan S, Rabinoviz S, et al. A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics.Nat Commun. 2022;13:3108. [DOI] [PubMed] [PMC]
Feola S, Chiaro J, Cerullo V. Integrating immunopeptidome analysis for the design and development of cancer vaccines.Semin Immunol. 2023;67:101750. [DOI] [PubMed]
Li B, Jin J, Guo D, Tao Z, Hu X. Immune Checkpoint Inhibitors Combined with Targeted Therapy: The Recent Advances and Future Potentials.Cancers (Basel). 2023;15:2858. [DOI] [PubMed] [PMC]
Martinez-Quintanilla J, Seah I, Chua M, Shah K. Oncolytic viruses: overcoming translational challenges.J Clin Invest. 2019;129:1407–18. [DOI] [PubMed] [PMC]
Buntval K, Dobrovolny HM. Modeling of oncolytic viruses in a heterogeneous cell population to predict spread into non-cancerous cells.Comput Biol Med. 2023;165:107362. [DOI] [PubMed]
Zhang Q, Liu F. Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas.Cell Death Dis. 2020;11:485.Erratum in: Cell Death Dis. 2020;11:1007. [DOI] [PubMed] [PMC]