Arancio W, Coronnello C. Repetitive Sequence Transcription in Breast Cancer.Cells. 2022;11:2522. [DOI] [PubMed] [PMC]
Kaprin AD, Starnisky VV, Shakhzadova AO. Malignant neoplasms in Russia in 2020 (morbidity and mortality). Коллектив авторов, МНИОИ им. П.А. Герцена – филиал; 2021.
Strunkin DN, Kononchuk VV, Gulyaeva LF, Bogachev SS, Proskurina A. Current aspects of systematics, diagnosis and treatment of breast cancer.Tumors Female Reprod Syst. 2022;18:25–39. [DOI]
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point.Nature. 2017;541:321–30. [DOI] [PubMed]
Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions.Mol Cancer. 2022;21:28. [DOI] [PubMed] [PMC]
Ali HR, Glont SE, Blows FM, Provenzano E, Dawson SJ, Liu B, et al. PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes.Ann Oncol. 2015;26:1488–93. [DOI] [PubMed]
Muenst S, Schaerli AR, Gao F, Däster S, Trella E, Droeser RA, et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer.Breast Cancer Res Treat. 2014;146:15–24. [DOI] [PubMed] [PMC]
Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali HR, et al. Prognostic and predictive value of PDL1 expression in breast cancer.Oncotarget. 2015;6:5449–64. [DOI] [PubMed] [PMC]
Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study.J Clin Oncol. 2016;34:2460–7. [DOI] [PubMed] [PMC]
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al.; IMpassion130 Trial Investigators. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer.N Engl J Med. 2018;379:2108–21. [DOI] [PubMed]
Rugo HS, Delord JP, Im SA, Ott PA, Piha-Paul SA, Bedard PL, et al. Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer.Clin Cancer Res. 2018;24:2804–11. [DOI] [PubMed]
Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau HT, Forero-Torres A, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study.Breast Cancer Res Treat. 2018;167:671–86. [DOI] [PubMed] [PMC]
Quintela-Fandino M, Holgado E, Manso L, Morales S, Bermejo B, Colomer R, et al. Immuno-priming durvalumab with bevacizumab in HER2-negative advanced breast cancer: a pilot clinical trial.Breast Cancer Res. 2020;22:124. [DOI] [PubMed] [PMC]
Monk BJ, Colombo N, Oza AM, Fujiwara K, Birrer MJ, Randall L, et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial.Lancet Oncol. 2021;22:1275–89. [DOI] [PubMed]
Røssevold AH, Andresen NK, Bjerre CA, Gilje B, Jakobsen EH, Raj SX, et al. Atezolizumab plus anthracycline-based chemotherapy in metastatic triple-negative breast cancer: the randomized, double-blind phase 2b ALICE trial.Nat Med. 2022;28:2573–83. [DOI] [PubMed] [PMC]
Buisseret L, Loirat D, Aftimos P, Maurer C, Punie K, Debien V, et al. Paclitaxel plus carboplatin and durvalumab with or without oleclumab for women with previously untreated locally advanced or metastatic triple-negative breast cancer: the randomized SYNERGY phase I/II trial.Nat Commun. 2023;14:7018. [DOI] [PubMed] [PMC]
Li Q, Liu J, Zhang Q, Ouyang Q, Zhang Y, Liu Q, et al. The anti-PD-L1/CTLA-4 bispecific antibody KN046 in combination with nab-paclitaxel in first-line treatment of metastatic triple-negative breast cancer: a multicenter phase II trial.Nat Commun. 2024;15:1015. [DOI] [PubMed] [PMC]
Zhang X, Ran Y, Wang K, Zhu Y, Li J. Incidence and risk of hepatic toxicities with PD-1 inhibitors in cancer patients: a meta-analysis.Drug Des Devel Ther. 2016;10:3153–61. [DOI] [PubMed] [PMC]
Loi S, Giobbie-Hurder A, Gombos A, Bachelot T, Hui R, Curigliano G, et al.; International Breast Cancer Study Group and the Breast International Group. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial.Lancet Oncol. 2019;20:371–82. [DOI] [PubMed]
Qi L, Mo HN, Chen XL, Wang X, Wu DW, Lan B, et al. Clinical observation of thyroid-related adverse events induced by anti-PD-1 antibody SHR-1210 in patients with advanced solid tumor.Zhonghua Zhong Liu Za Zhi. 2018;40:772–5. Chinese. [DOI] [PubMed]
Lin CC, Garralda E, Schöffski P, Hong DS, Siu LL, Martin M, et al. A phase 2, multicenter, open-label study of anti-LAG-3 ieramilimab in combination with anti-PD-1 spartalizumab in patients with advanced solid malignancies.Oncoimmunology. 2023;13:2290787. [DOI] [PubMed] [PMC]
Guo E, Xiao R, Wu Y, Lu F, Liu C, Yang B, et al. WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway.J Exp Med. 2022;219:e20210789. [DOI] [PubMed] [PMC]
Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, et al. The role of retrotransposable elements in ageing and age-associated diseases.Nature. 2021;596:43–53. [DOI] [PubMed] [PMC]
Jiang JC, Rothnagel JA, Upton KR. Widespread Exaptation of L1 Transposons for Transcription Factor Binding in Breast Cancer.Int J Mol Sci. 2021;22:5625. [DOI] [PubMed] [PMC]
Johanning GL, Malouf GG, Zheng X, Esteva FJ, Weinstein JN, Wang-Johanning F, et al. Expression of human endogenous retrovirus-K is strongly associated with the basal-like breast cancer phenotype.Sci Rep. 2017;7:41960. [DOI] [PubMed] [PMC]
Fazza AC, Sabino FC, de Setta N, Bordin NA Jr, da Silva EH, Carareto CM. Estimating genomic instability mediated by Alu retroelements in breast cancer.Genet Mol Biol. 2009;32:25–31. [DOI] [PubMed] [PMC]
Phan NL, Trinh NV, Pham PV. Low concentrations of 5-aza-2’-deoxycytidine induce breast cancer stem cell differentiation by triggering tumor suppressor gene expression.Onco Targets Ther. 2015;9:49–59. [DOI] [PubMed] [PMC]
Luo N, Nixon MJ, Gonzalez-Ericsson PI, Sanchez V, Opalenik SR, Li H, et al. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer.Nat Commun. 2018;9:248. [DOI] [PubMed] [PMC]
Luker AJ, Graham LJ, Smith TM Jr, Camarena C, Zellner MP, Gilmer JS, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer.BMC Immunol. 2020;21:8. [DOI] [PubMed] [PMC]
Mirza S, Sharma G, Pandya P, Ralhan R. Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer agents.Mol Cell Biochem. 2010;342:101–9. [DOI] [PubMed]
Borges S, Döppler H, Perez EA, Andorfer CA, Sun Z, Anastasiadis PZ, et al. Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis.Breast Cancer Res. 2013;15:R66. [DOI] [PubMed] [PMC]
Taylor K, Loo Yau H, Chakravarthy A, Wang B, Shen SY, Ettayebi I, et al. An open-label, phase II multicohort study of an oral hypomethylating agent CC-486 and durvalumab in advanced solid tumors.J Immunother Cancer. 2020;8:e000883. [DOI] [PubMed] [PMC]
Fan W, Li W, Li L, Qin M, Mao C, Yuan Z, et al. Bifunctional HDAC and DNMT inhibitor induces viral mimicry activates the innate immune response in triple-negative breast cancer.Eur J Pharm Sci. 2024;197:106767. [DOI] [PubMed]
Primeau M, Gagnon J, Momparler RL. Synergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2’-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells.Int J Cancer. 2003;103:177–84. [DOI] [PubMed]
Chang J, Varghese DS, Gillam MC, Peyton M, Modi B, Schiltz RL, et al. Differential response of cancer cells to HDAC inhibitors trichostatin A and depsipeptide.Br J Cancer. 2012;106:116–25. [DOI] [PubMed] [PMC]
Benvenuto JA, Newman RA, Bignami GS, Raybould TJ, Raber MN, Esparza L, et al. Phase II clinical and pharmacological study of didemnin B in patients with metastatic breast cancer.Invest New Drugs. 1992;10:113–7. [DOI] [PubMed]
Wei M, Xie M, Zhang Z, Wei Y, Zhang J, Pan H, et al. Design and synthesis of novel Flavone-based histone deacetylase inhibitors antagonizing activation of STAT3 in breast cancer.Eur J Med Chem. 2020;206:112677. [DOI] [PubMed]
Wu B, Fathi S, Mortley S, Mohiuddin M, Jang YC, Oyelere AK. Pyrimethamine conjugated histone deacetylase inhibitors: Design, synthesis and evidence for triple negative breast cancer selective cytotoxicity.Bioorg Med Chem. 2020;28:115345. [DOI] [PubMed]
Kong Y, Ren W, Fang H, Shah NA, Shi Y, You D, et al. Histone Deacetylase Inhibitors (HDACi) Promote KLF5 Ubiquitination and Degradation in Basal-like Breast Cancer.Int J Biol Sci. 2022;18:2104–15. [DOI] [PubMed] [PMC]
Yardley DA, Ismail-Khan RR, Melichar B, Lichinitser M, Munster PN, Klein PM, et al. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor.J Clin Oncol. 2013;31:2128–35. [DOI] [PubMed] [PMC]
Luu T, Kim KP, Blanchard S, Anyang B, Hurria A, Yang L, et al. Phase IB trial of ixabepilone and vorinostat in metastatic breast cancer.Breast Cancer Res Treat. 2018;167:469–78. [DOI] [PubMed]
Xu B, Zhang Q, Hu X, Li Q, Sun T, Li W, et al. Entinostat, a class I selective histone deacetylase inhibitor, plus exemestane for Chinese patients with hormone receptor-positive advanced breast cancer: A multicenter, randomized, double-blind, placebo-controlled, phase 3 trial.Acta Pharm Sin B. 2023;13:2250–8. [DOI] [PubMed] [PMC]
Nassa G, Salvati A, Tarallo R, Gigantino V, Alexandrova E, Memoli D, et al. Inhibition of histone methyltransferase DOT1L silences ERα gene and blocks proliferation of antiestrogen-resistant breast cancer cells.Sci Adv. 2019;5:eaav5590. [DOI] [PubMed] [PMC]
Kurani H, Razavipour SF, Harikumar KB, Dunworth M, Ewald AJ, Nasir A, et al. DOT1L Is a Novel Cancer Stem Cell Target for Triple-Negative Breast Cancer.Clin Cancer Res. 2022;28:1948–65. [DOI] [PubMed] [PMC]
Wang C, Chen X, Liu X, Lu D, Li S, Qu L, et al. Discovery of precision targeting EZH2 degraders for triple-negative breast cancer.Eur J Med Chem. 2022;238:114462. [DOI] [PubMed]
Lazaro-Camp VJ, Salari K, Meng X, Yang S. SETDB1 in cancer: overexpression and its therapeutic implications.Am J Cancer Res. 2021;11:1803–27. [PubMed] [PMC]
Lu A, Wang W, Wang-Renault SF, Ring BZ, Tanaka Y, Weng J, et al. 5-Aza-2’-deoxycytidine advances the epithelial-mesenchymal transition of breast cancer cells by demethylating Sipa1 promoter-proximal elements.J Cell Sci. 2020;133:jcs236125. [DOI] [PubMed] [PMC]
Hu Z, Wei F, Su Y, Wang Y, Shen Y, Fang Y, et al. Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression.Signal Transduct Target Ther. 2023;8:11. [DOI] [PubMed] [PMC]
Lyu H, Hou D, Liu H, Ruan S, Tan C, Wu J, et al. HER3 targeting augments the efficacy of panobinostat in claudin-low triple-negative breast cancer cells.NPJ Precis Oncol. 2023;7:72. [DOI] [PubMed] [PMC]
Wang-Johanning F, Frost AR, Johanning GL, Khazaeli MB, LoBuglio AF, Shaw DR, et al. Expression of human endogenous retrovirus k envelope transcripts in human breast cancer.Clin Cancer Res. 2001;7:1553–60. [PubMed]
Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL. Quantitation of HERV-K env gene expression and splicing in human breast cancer.Oncogene. 2003;22:1528–35. [DOI] [PubMed]
Zhou F, Li M, Wei Y, Lin K, Lu Y, Shen J, et al. Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells.Oncotarget. 2016;7:84093–117. [DOI] [PubMed] [PMC]
Lemaître C, Tsang J, Bireau C, Heidmann T, Dewannieux M. A human endogenous retrovirus-derived gene that can contribute to oncogenesis by activating the ERK pathway and inducing migration and invasion.PLoS Pathog. 2017;13:e1006451. [DOI] [PubMed] [PMC]
Kankava K, Kvaratskhelia E, Burkadze G, Kokhreidze I, Gogokhia N, Abzianidze E. LINE-1 methylation in blood and tissues of patients with breast cancer.Georgian Med News. 2018:107–12. [PubMed]
Berrino E, Miglio U, Bellomo SE, Debernardi C, Bragoni A, Petrelli A, et al. The Tumor-Specific Expression of L1 Retrotransposons Independently Correlates with Time to Relapse in Hormone-Negative Breast Cancer Patients.Cells. 2022;11:1944. [DOI] [PubMed] [PMC]
Wang-Johanning F, Rycaj K, Plummer JB, Li M, Yin B, Frerich K, et al. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors.J Natl Cancer Inst. 2012;104:189–210. [DOI] [PubMed] [PMC]
Cornec A, Poirier EZ. Interplay between RNA interference and transposable elements in mammals.Front Immunol. 2023;14:1212086. [DOI] [PubMed] [PMC]
Wei G, Qin S, Li W, Chen L, Ma F. MDTE DB: a database for microRNAs derived from Transposable element.IEEE/ACM Trans Comput Biol Bioinform. 2016;13:1155–60. [DOI] [PubMed]
Wong NW, Chen Y, Chen S, Wang X. OncomiR: an online resource for exploring pan-cancer microRNA dysregulation.Bioinformatics. 2018;34:713–5. [DOI] [PubMed] [PMC]
Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM, et al. Transposable elements drive widespread expression of oncogenes in human cancers.Nat Genet. 2019;51:611–7. [DOI] [PubMed] [PMC]
Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis.PLoS One. 2014;9:e109478. [DOI] [PubMed] [PMC]
Ye D, Jiang D, Zhang X, Mao Y. Alu Methylation and Risk of Cancer: A Meta-analysis.Am J Med Sci. 2020;359:271–80. [DOI] [PubMed]
Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F, Demeulemeester J, et al.; PCAWG Structural Variation Working Group; Campbell PJ, Tubio JMC; PCAWG Consortium. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition.Nat Genet. 2020;52:306–19. [DOI] [PubMed] [PMC]
Rhyu DW, Kang YJ, Ock MS, Eo JW, Choi YH, Kim WJ, et al. Expression of human endogenous retrovirus env genes in the blood of breast cancer patients.Int J Mol Sci. 2014;15:9173–83. [DOI] [PubMed] [PMC]
Wang-Johanning F, Li M, Esteva FJ, Hess KR, Yin B, Rycaj K, et al. Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer.Int J Cancer. 2014;134:587–95. [DOI] [PubMed] [PMC]
van Hoesel AQ, van de Velde CJ, Kuppen PJ, Liefers GJ, Putter H, Sato Y, et al. Hypomethylation of LINE-1 in primary tumor has poor prognosis in young breast cancer patients: a retrospective cohort study.Breast Cancer Res Treat. 2012;134:1103–14. [DOI] [PubMed]
Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho NY, et al. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer.PLoS One. 2014;9:e100429. [DOI] [PubMed] [PMC]
Bouras A, Leone M, Bonadona V, Lebrun M, Calender A, Boutry-Kryza N. Identification and Characterization of New Alu Element Insertion in the BRCA1 Exon 14 Associated with Hereditary Breast and Ovarian Cancer.Genes (Basel). 2021;12:1736. [DOI] [PubMed] [PMC]
Concolino P, Rizza R, Hackmann K, Paris I, Minucci A, De Paolis E, et al. Characterization of a new BRCA1 rearrangement in an Italian woman with hereditary breast and ovarian cancer syndrome.Breast Cancer Res Treat. 2017;164:497–503. [DOI] [PubMed]
Steely CJ, Russell KL, Feusier JE, Qiao Y, Tavtigian SV, Marth G, et al. Mobile element insertions and associated structural variants in longitudinal breast cancer samples.Sci Rep. 2021;11:13020. [DOI] [PubMed] [PMC]
Patnala R, Lee SH, Dahlstrom JE, Ohms S, Chen L, Dheen ST, et al. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells.Breast Cancer Res Treat. 2014;143:239–53. [DOI] [PubMed] [PMC]
Chiou PT, Ohms S, Board PG, Dahlstrom JE, Rangasamy D, Casarotto MG. Efavirenz as a potential drug for the treatment of triple-negative breast cancers.Clin Transl Oncol. 2021;23:353–63. [DOI] [PubMed]
Şekeroğlu ZA, Şekeroğlu V, Küçük N. Effects of Reverse Transcriptase Inhibitors on Proliferation, Apoptosis, and Migration in Breast Carcinoma Cells.Int J Toxicol. 2021;40:52–61. [DOI] [PubMed]
Johnson AT, Ntloedibe T, Mendez Reyes JE, Matshaba MS, Dryden-Peterson SL, Chiao EY. Impact of efavirenz on hormone-positive breast cancer survival in women living with HIV.AIDS. 2024;38:1439–42. [DOI] [PubMed] [PMC]
Harmeyer KM, Facompre ND, Herlyn M, Basu D. JARID1 Histone Demethylases: Emerging Targets in Cancer.Trends Cancer. 2017;3:713–25. [DOI] [PubMed] [PMC]
Watcharanurak P, Mutirangura A. Human RNA-directed DNA methylation methylates high-mobility group box 1 protein-produced DNA gaps.Epigenomics. 2022;14:741–56. [DOI] [PubMed]
Steiner MC, Marston JL, Iñiguez LP, Bendall ML, Chiappinelli KB, Nixon DF, et al. Locus-Specific Characterization of Human Endogenous Retrovirus Expression in Prostate, Breast, and Colon Cancers.Cancer Res. 2021;81:3449–60. [DOI] [PubMed] [PMC]
Piriyapongsa J, Mariño-Ramírez L, Jordan IK. Origin and evolution of human microRNAs from transposable elements.Genetics. 2007;176:1323–37. [DOI] [PubMed] [PMC]
Filshtein TJ, Mackenzie CO, Dale MD, Dela-Cruz PS, Ernst DM, Frankenberger EA, et al. OrbId: Origin-based identification of microRNA targets.Mob Genet Elements. 2012;2:184–92. [DOI] [PubMed] [PMC]
Tempel S, Pollet N, Tahi F. ncRNAclassifier: a tool for detection and classification of transposable element sequences in RNA hairpins.BMC Bioinformatics. 2012;13:246. [DOI] [PubMed] [PMC]
Qin S, Jin P, Zhou X, Chen L, Ma F. The Role of Transposable Elements in the Origin and Evolution of MicroRNAs in Human.PLoS One. 2015;10:e0131365. [DOI] [PubMed] [PMC]
Lee HE, Huh JW, Kim HS. Bioinformatics Analysis of Evolution and Human Disease Related Transposable Element-Derived microRNAs.Life (Basel). 2020;10:95. [DOI] [PubMed] [PMC]
Jin X, Xu XE, Jiang YZ, Liu YR, Sun W, Guo YJ, et al. The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation.Sci Adv. 2019;5:eaat9820. [DOI] [PubMed] [PMC]
Wang Z, Yang L, Wu P, Li X, Tang Y, Ou X, et al. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin.Mol Cancer. 2022;21:29. [DOI] [PubMed] [PMC]
Peng F, Tang H, Liu P, Shen J, Guan X, Xie X, et al. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis.Sci Rep. 2017;7:9022. [DOI] [PubMed] [PMC]
Wu S, Lu J, Zhu H, Wu F, Mo Y, Xie L, et al. A novel axis of circKIF4A-miR-637-STAT3 promotes brain metastasis in triple-negative breast cancer.Cancer Lett. 2024;581:216508. [DOI]
Liang HF, Zhang XZ, Liu BG, Jia GT, Li WL. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271.Am J Cancer Res. 2017;7:1566–76. [PubMed] [PMC]
Ding J, Wu W, Yang J, Wu M. Long non-coding RNA MIF-AS1 promotes breast cancer cell proliferation, migration and EMT process through regulating miR-1249-3p/HOXB8 axis.Pathol Res Pract. 2019;215:152376. [DOI] [PubMed]
Xiu B, Chi Y, Liu L, Chi W, Zhang Q, Chen J, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription.Mol Cancer. 2019;18:187. [DOI] [PubMed] [PMC]