-: no data. N/R: no reference; VLA4: very late antigen 4; VCAM1: vascular adhesion molecule 1; VEGF: vascular endothelial growth factor; FAO: fatty acid β-oxidation; PD1: programmed death 1; CTLA4: cytotoxic T-lymphocyte associated protein 4
Declarations
Author contributions
SK: Conceptualization, Writing—original draft, Writing—review & editing. MES and AEG: Data collection. GV: Funding acquisition. PPP: Supervision.
Conflicts of interest
Pier Paolo Piccaluga is the Editorial Board Member of Exploration of Targeted Anti-tumor Therapy and Guest Editor of Mechanisms of Targeted Therapy Resistance and Reversal Strategies, but he had no involvement in the journal review process of this manuscript. The other authors declare that there is no conflict of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
The work reported in this publication was funded by the Italian Ministry of Health [RC-2023-2778976, PRIN 2022NXK38S, and FIRB Futura 2011 RBFR12D1CB]. Giuseppe Visani received the support of AIL Pesaro Onlus. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Kumar R, Godavarthy PS, Krause DS. The bone marrow microenvironment in health and disease at a glance.J Cell Sci. 2018;131:jcs201707. [DOI] [PubMed]
Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Domínguez Á, et al. The bone marrow microenvironment at single-cell resolution.Nature. 2019;569:222–8. [DOI] [PubMed] [PMC]
Pimenta DB, Varela VA, Datoguia TS, Caraciolo VB, Lopes GH, Pereira WO. The Bone Marrow Microenvironment Mechanisms in Acute Myeloid Leukemia.Front Cell Dev Biol. 2021;9:764698. [DOI] [PubMed] [PMC]
Shafat MS, Gnaneswaran B, Bowles KM, Rushworth SA. The bone marrow microenvironment-Home of the leukemic blasts.Blood Rev. 2017;31:277–86. [DOI] [PubMed]
Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region.Nat Biotechnol. 2007;25:1315–21. [DOI] [PubMed]
Balderman SR, Li AJ, Hoffman CM, Frisch BJ, Goodman AN, LaMere MW, et al. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome.Blood. 2016;127:616–25. [DOI] [PubMed] [PMC]
Jagannathan-Bogdan M, Zon LI. Hematopoiesis.Development. 2013;140:2463–7. [DOI] [PubMed] [PMC]
Wittamer V, Bertrand JY. Yolk sac hematopoiesis: does it contribute to the adult hematopoietic system?Cell Mol Life Sci. 2020;77:4081–91. [DOI] [PubMed] [PMC]
Ginhoux F, Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis.Immunity. 2016;44:439–49. [DOI] [PubMed]
Utz SG, See P, Mildenberger W, Thion MS, Silvin A, Lutz M, et al. Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development.Cell. 2020;181:557–73.e18. [DOI] [PubMed]
Galloway JL, Zon LI. Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo.Curr Top Dev Biol. 2003;53:139–58. [DOI] [PubMed]
Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology.Cell. 2008;132:631–44. [DOI] [PubMed] [PMC]
Mikkola HKA, Gekas C, Orkin SH, Dieterlen-Lievre F. Placenta as a site for hematopoietic stem cell development.Exp Hematol. 2005;33:1048–54. [DOI] [PubMed]
Kricun ME. Red-yellow marrow conversion: its effect on the location of some solitary bone lesions.Skeletal Radiol. 1985;14:10–9. [DOI] [PubMed]
Nakada D, Oguro H, Levi BP, Ryan N, Kitano A, Saitoh Y, et al. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy.Nature. 2014;505:555–8. [DOI] [PubMed] [PMC]
Fu Y, Li Z, Lin W, Yao J, Jiang X, Shu Q, et al. Extramedullary hematopoiesis contributes to enhanced erythropoiesis during pregnancy via TGF-β signaling.Front Immunol. 2023;14:1295717. [DOI] [PubMed] [PMC]
Kim CH. Homeostatic and pathogenic extramedullary hematopoiesis.J Blood Med. 2010;1:13–9. [DOI] [PubMed] [PMC]
Kawasaki N, Matsuo Y, Yoshino T, Yanai H, Oka T, Teramoto N, et al. Metastatic potential of lymphoma/leukemia cell lines in SCID mice is closely related to expression of CD44.Jpn J Cancer Res. 1996;87:1070–7. [DOI] [PubMed] [PMC]
Zen K, Liu D, Guo Y, Wang C, Shan J, Fang M, et al. CD44v4 is a major E-selectin ligand that mediates breast cancer cell transendothelial migration.PLoS One. 2008;3:e1826. [DOI] [PubMed] [PMC]
Liu J, Jiang G. CD44 and hematologic malignancies.Cell Mol Immunol. 2006;3:359–65. [PubMed]
Schepers K, Campbell TB, Passegué E. Normal and leukemic stem cell niches: insights and therapeutic opportunities.Cell Stem Cell. 2015;16:254–67. [DOI] [PubMed] [PMC]
Krause DS, Scadden DT. A hostel for the hostile: the bone marrow niche in hematologic neoplasms.Haematologica. 2015;100:1376–87. [DOI] [PubMed] [PMC]
Kumar B, Garcia M, Weng L, Jung X, Murakami JL, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion.Leukemia. 2018;32:575–87. [DOI] [PubMed] [PMC]
Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow.Ann N Y Acad Sci. 2016;1370:82–96. [DOI] [PubMed] [PMC]
Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells.Nature. 2014;505:327–34. [DOI] [PubMed] [PMC]
Anjos-Afonso F, Currie E, Palmer HG, Foster KE, Taussig DC, Bonnet D. CD34() cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures.Cell Stem Cell. 2013;13:161–74. [DOI] [PubMed]
Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes.Nature. 2018;553:418–26. [DOI] [PubMed] [PMC]
Galán-Díez M, Cuesta-Domínguez Á, Kousteni S. The Bone Marrow Microenvironment in Health and Myeloid Malignancy.Cold Spring Harb Perspect Med. 2018;8:a031328. [DOI] [PubMed] [PMC]
Yang L, Bryder D, Adolfsson J, Nygren J, Månsson R, Sigvardsson M, et al. Identification of Lin(−)Sca1(+)kit(+)CD34(+)Flt3-short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients.Blood. 2005;105:2717–23. [DOI] [PubMed]
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell.Blood Cells. 1978;4:7–25. [PubMed]
Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells.Cell. 2005;121:1109–21. [DOI] [PubMed]
Gong JK. Endosteal marrow: a rich source of hematopoietic stem cells.Science. 1978;199:1443–5. [DOI] [PubMed]
Grassinger J, Haylock DN, Williams B, Olsen GH, Nilsson SK. Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biologic potential.Blood. 2010;116:3185–96. [DOI] [PubMed]
Zhang J, Niu C, Ye L, Huang H, He X, Tong W, et al. Identification of the haematopoietic stem cell niche and control of the niche size.Nature. 2003;425:836–41. [DOI] [PubMed]
Sato M, Asada N, Kawano Y, Wakahashi K, Minagawa K, Kawano H, et al. Osteocytes regulate primary lymphoid organs and fat metabolism.Cell Metab. 2013;18:749–58. [DOI] [PubMed]
Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches.Nature. 2013;495:231–5. [DOI] [PubMed] [PMC]
Yu VWC, Saez B, Cook C, Lotinun S, Pardo-Saganta A, Wang Y, et al. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow.J Exp Med. 2015;212:759–74. [DOI] [PubMed] [PMC]
Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation.Endocr Rev. 1992;13:66–80. [DOI] [PubMed]
Lévesque J, Winkler IG. Hierarchy of immature hematopoietic cells related to blood flow and niche.Curr Opin Hematol. 2011;18:220–5. [DOI] [PubMed]
Cho K, Joo S, Han H, Ryu K, Woo S. Osteoclast activation by receptor activator of NF-kappaB ligand enhances the mobilization of hematopoietic progenitor cells from the bone marrow in acute injury.Int J Mol Med. 2010;26:557–63. [DOI] [PubMed]
Blin-Wakkach C, Wakkach A, Quincey D, Carle GF. Interleukin-7 partially rescues B-lymphopoiesis in osteopetrotic oc/oc mice through the engagement of B220+ CD11b+ progenitors.Exp Hematol. 2006;34:851–9. [DOI] [PubMed]
Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues.Science. 1997;276:71–4. [DOI] [PubMed]
Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine.Nat Med. 2013;19:35–42. [DOI] [PubMed] [PMC]
Gerson SL. Mesenchymal stem cells: no longer second class marrow citizens.Nat Med. 1999;5:262–4. [DOI] [PubMed]
Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells.J Cell Physiol. 1998;176:57–66. [DOI] [PubMed]
Battiwalla M, Hematti P. Mesenchymal stem cells in hematopoietic stem cell transplantation.Cytotherapy. 2009;11:503–15. [DOI] [PubMed] [PMC]
Noort WA, Kruisselbrink AB, Anker PSi, Kruger M, Bezooijen RLv, Paus RAd, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice.Exp Hematol. 2002;30:870–8. [DOI] [PubMed]
Meirelles LdS, Nardi NB. Methodology, biology and clinical applications of mesenchymal stem cells.Front Biosci (Landmark Ed). 2009;14:4281–98. [DOI] [PubMed]
Nagasawa T. New niches for B cells.Nat Immunol. 2008;9:345–6. [DOI] [PubMed]
Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche.Immunity. 2010;33:387–99. [DOI] [PubMed]
Rafii S, Shapiro F, Rimarachin J, Nachman RL, Ferris B, Weksler B, et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion.Blood. 1994;84:10–9. [PubMed]
Jr GCB, Heinrich MC. Vascular endothelial cells and hematopoiesis: regulation of gene expression in human vascular endothelial cells.Hematol Pathol. 1991;5:93–9. [PubMed]
Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells.Cell Stem Cell. 2010;6:251–64. [DOI] [PubMed] [PMC]
Rafii S, Mohle R, Shapiro F, Frey BM, Moore MA. Regulation of hematopoiesis by microvascular endothelium.Leuk Lymphoma. 1997;27:375–86. [DOI] [PubMed]
Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment.Nature. 2009;460:259–63. [DOI] [PubMed] [PMC]
Poloni A, Maurizi G, Serrani F, Mancini S, Zingaretti MC, Frontini A, et al. Molecular and functional characterization of human bone marrow adipocytes.Exp Hematol. 2013;41:558–66.e2. [DOI] [PubMed]
Claycombe K, King LE, Fraker PJ. A role for leptin in sustaining lymphopoiesis and myelopoiesis.Proc Natl Acad Sci U S A. 2008;105:2017–21. [DOI] [PubMed] [PMC]
Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration.Nat Med. 2014;20:833–46. [DOI] [PubMed] [PMC]
Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche.Cell. 2011;147:1146–58. [DOI] [PubMed]
Malara A, Abbonante V, Buduo CAD, Tozzi L, Currao M, Balduini A. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control.Cell Mol Life Sci. 2015;72:1517–36. [DOI] [PubMed] [PMC]
Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L, et al. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice.Exp Hematol. 2003;31:413–20. [DOI] [PubMed]
Olson TS, Caselli A, Otsuru S, Hofmann TJ, Williams R, Paolucci P, et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning.Blood. 2013;121:5238–49. [DOI] [PubMed] [PMC]
Nakamura-Ishizu A, Takubo K, Fujioka M, Suda T. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin.Biochem Biophys Res Commun. 2014;454:353–7. [DOI] [PubMed]
Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells.Nat Med. 2014;20:1321–6. [DOI] [PubMed]
Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion.Nat Med. 2014;20:1315–20. [DOI] [PubMed] [PMC]
Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche.Nature. 2011;474:216–9. [DOI] [PubMed] [PMC]
Barlozzari T, Herberman RB, Reynolds CW. Inhibition of pluripotent hematopoietic stem cells of bone marrow by large granular lymphocytes.Proc Natl Acad Sci U S A. 1987;84:7691–5. [DOI] [PubMed] [PMC]
Monteiro JP, Benjamin A, Costa ES, Barcinski MA, Bonomo A. Normal hematopoiesis is maintained by activated bone marrow CD4+ T cells.Blood. 2005;105:1484–91. [DOI] [PubMed]
Andersen MH. The targeting of immunosuppressive mechanisms in hematological malignancies.Leukemia. 2014;28:1784–92. [DOI] [PubMed]
Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function.Science. 2008;322:271–5. [DOI] [PubMed]
Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies.J Hematol Oncol. 2013;6:74. [DOI] [PubMed] [PMC]
Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape.Sci Transl Med. 2012;4:127ra37. [DOI] [PubMed] [PMC]
Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs.Blood. 2010;116:4815–28. [DOI] [PubMed]
Albiero M, Poncina N, Ciciliot S, Cappellari R, Menegazzo L, Ferraro F, et al. Bone Marrow Macrophages Contribute to Diabetic Stem Cell Mobilopathy by Producing Oncostatin M.Diabetes. 2015;64:2957–68. [DOI] [PubMed]
Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chèvre R, A-González N, et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance.Cell. 2013;153:1025–35. [DOI] [PubMed] [PMC]
Yu VWC, Scadden DT. Hematopoietic Stem Cell and Its Bone Marrow Niche.Curr Top Dev Biol. 2016;118:21–44. [DOI] [PubMed] [PMC]
Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The Neutrophil.Immunity. 2021;54:1377–91. [DOI] [PubMed]
Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview.Clin Transl Med. 2022;12:e694. [DOI] [PubMed] [PMC]
Dolgalev I, Tikhonova AN. Connecting the Dots: Resolving the Bone Marrow Niche Heterogeneity.Front Cell Dev Biol. 2021;9:622519. [DOI] [PubMed] [PMC]
Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, et al. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia.Cell. 2019;177:1915–32.e16. [DOI] [PubMed] [PMC]
Baccin C, Al-Sabah J, Velten L, Helbling PM, Grünschläger F, Hernández-Malmierca P, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization.Nat Cell Biol. 2020;22:38–48. [DOI] [PubMed] [PMC]
Li H, Bräunig S, Dhapolar P, Karlsson G, Lang S, Scheding S. Identification of phenotypically, functionally, and anatomically distinct stromal niche populations in human bone marrow based on single-cell RNA sequencing.Elife. 2023;12:e81656. [DOI] [PubMed] [PMC]
Severe N, Karabacak NM, Gustafsson K, Baryawno N, Courties G, Kfoury Y, et al. Stress-Induced Changes in Bone Marrow Stromal Cell Populations Revealed through Single-Cell Protein Expression Mapping.Cell Stem Cell. 2019;25:570–83.e7. [DOI] [PubMed] [PMC]
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.Nat Med. 1997;3:730–7. [DOI] [PubMed]
Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature. 1994;367:645–8. [DOI] [PubMed]
Reyal Y, Bonnet D. Cancer Stem Cells: Lessons from AML. In: Calegari F, Waskow C, editors. Stem Cells: From Basic Research to Therapy, Volume Two. Boca Raton: CRC Press; 2014. pp. 14574.
Hope KJ, Jin L, Dick JE. Human acute myeloid leukemia stem cells.Arch Med Res. 2003;34:507–14. [DOI] [PubMed]
Lutz C, Hoang VT, Buss E, Ho AD. Identifying leukemia stem cells--is it feasible and does it matter?Cancer Lett. 2013;338:10–4. [DOI] [PubMed]
Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, Galen Pv, et al. Stem cell gene expression programs influence clinical outcome in human leukemia.Nat Med. 2011;17:1086–93. [DOI] [PubMed]
Pearce DJ, Taussig D, Zibara K, Smith L, Ridler CM, Preudhomme C, et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML.Blood. 2006;107:1166–73. [DOI] [PubMed] [PMC]
Rhenen Av, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S, et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival.Clin Cancer Res. 2005;11:6520–7. [DOI] [PubMed]
Ran D, Schubert M, Taubert I, Eckstein V, Bellos F, Jauch A, et al. Heterogeneity of leukemia stem cell candidates at diagnosis of acute myeloid leukemia and their clinical significance.Exp Hematol. 2012;40:155–65.e1. [DOI] [PubMed]
Terwijn M, Zeijlemaker W, Kelder A, Rutten AP, Snel AN, Scholten WJ, et al. Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia.PLoS One. 2014;9:e107587. [DOI] [PubMed] [PMC]
Zeijlemaker W, Kelder A, Oussoren-Brockhoff YJM, Scholten WJ, Snel AN, Veldhuizen D, et al. A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia.Leukemia. 2016;30:439–46. [DOI] [PubMed]
Lane SW. Bad to the bone.Blood. 2012;119:323–5. [DOI] [PubMed]
Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells.Science. 2008;322:1861–5. [DOI] [PubMed]
Yao Y, Li F, Huang J, Jin J, Wang H. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development.Exp Hematol Oncol. 2021;10:39. [DOI] [PubMed] [PMC]
Bendall LJ, Bradstock KF, Gottlieb DJ. Expression of CD44 variant exons in acute myeloid leukemia is more common and more complex than that observed in normal blood, bone marrow or CD34+ cells.Leukemia. 2000;14:1239–46. [DOI] [PubMed]
Quéré R, Andradottir S, Brun ACM, Zubarev RA, Karlsson G, Olsson K, et al. High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event.Leukemia. 2011;25:515–26. [DOI] [PubMed] [PMC]
Gul-Uludağ H, Valencia-Serna J, Kucharski C, Marquez-Curtis LA, Jiang X, Larratt L, et al. Polymeric nanoparticle-mediated silencing of CD44 receptor in CD34+ acute myeloid leukemia cells.Leuk Res. 2014;38:1299–308. [DOI] [PubMed]
Chien S, Haq SU, Pawlus M, Moon RT, Estey EH, Appelbaum FR, et al. Adhesion of acute myeloid leukemia blasts to E-selectin in the vascular niche enhances their survival by mechanisms such as Wnt activation.Blood. 2013;122:61. [DOI]
DeAngelo DJ, Jonas BA, Liesveld JL, Bixby DL, Advani AS, Marlton P, et al. Uproleselan (GMI-1271), an E-selectin antagonist, improves the efficacy and safety of chemotherapy in relapsed/refractory (R/R) and newly diagnosed older patients with acute myeloid leukemia: final, correlative, and subgroup analyses.Blood. 2018;132:331. [DOI]
DeAngelo DJ, Jonas BA, Liesveld JL, Bixby DL, Advani AS, Marlton P, et al. Phase 1/2 study of uproleselan added to chemotherapy in patients with relapsed or refractory acute myeloid leukemia.Blood. 2022;139:1135–46. [DOI] [PubMed] [PMC]
Layani-Bazar A, Skornick I, Berrebi A, Pauker MH, Noy E, Silberman A, et al. Redox modulation of adjacent thiols in VLA-4 by AS101 converts myeloid leukemia cells from a drug-resistant to drug-sensitive state.Cancer Res. 2014;74:3092–103. [DOI] [PubMed]
Peled A, Tavor S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia.Theranostics. 2013;3:34–9. [DOI] [PubMed] [PMC]
Möhle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1.Blood. 1998;91:4523–30. [DOI] [PubMed]
Burger JA, Spoo A, Dwenger A, Burger M, Behringer D. CXCR4 chemokine receptors (CD184) and alpha4beta1 integrins mediate spontaneous migration of human CD34+ progenitors and acute myeloid leukaemia cells beneath marrow stromal cells (pseudoemperipolesis).Br J Haematol. 2003;122:579–89. [DOI] [PubMed]
Fukuda S, Onishi C, Pelus LM. Trafficking of Acute Leukemia Cells-Chemokine Receptor Pathways that Modulate Leukemia Cell Dissemination. In: Antica., editor. Acute Leukemia-The Scientist’s Perspective and Challenge. Rijeka: IntechOpen; 2011. pp. 13856. [DOI]
Zeng Z, Shi YX, Samudio IJ, Wang R, Ling X, Frolova O, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML.Blood. 2009;113:6215–24. [DOI] [PubMed] [PMC]
Spoo AC, Lübbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia.Blood. 2007;109:786–91. [DOI] [PubMed]
Schürch CM. Therapeutic Antibodies for Myeloid Neoplasms-Current Developments and Future Directions.Front Oncol. 2018;8:152. [DOI] [PubMed] [PMC]
Cho B, Zeng Z, Mu H, Wang Z, Konoplev S, McQueen T, et al. Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy.Blood. 2015;126:222–32. [DOI] [PubMed] [PMC]
Michelis FV, Hedley DW, Malhotra S, Chow S, Loach D, Gupta V, et al. Mobilization of Leukemic Cells Using Plerixafor as Part of a Myeloablative Preparative Regimen for Patients with Acute Myelogenous Leukemia Undergoing Allografting: Assessment of Safety and Tolerability.Biol Blood Marrow Transplant. 2019;25:1158–63. [DOI] [PubMed]
Borthakur G, Zeng Z, Cortes JE, Chen H, Huang X, Konopleva M, et al. Phase 1 study of combinatorial sorafenib, G-CSF, and plerixafor treatment in relapsed/refractory, FLT3-ITD-mutated acute myelogenous leukemia patients.Am J Hematol. 2020;95:1296–303. [DOI] [PubMed]
Boddu P, Borthakur G, Koneru M, Huang X, Naqvi K, Wierda W, et al. Initial Report of a Phase I Study of LY2510924, Idarubicin, and Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia.Front Oncol. 2018;8:369. [DOI] [PubMed] [PMC]
Kuhne MR, Mulvey T, Belanger B, Chen S, Pan C, Chong C, et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies.Clin Cancer Res. 2013;19:357–66. [DOI] [PubMed]
Chien S, Beyerle LE, Wood BL, Estey EH, Appelbaum FR, Cardarelli PM, et al. Mobilization of blasts and leukemia stem cells by anti-CXCR4 antibody BMS-936564 (MDX 1338) in patients with relapsed/refractory acute myeloid leukemia.Blood. 2013;122:3882. [DOI]
Becker PS, Foran JM, Altman JK, Yacoub A, Castro JE, Sabbatini P, et al. Targeting the CXCR4 pathway: safety, tolerability and clinical activity of ulocuplumab (BMS-936564), an anti-CXCR4 antibody, in relapsed/refractory acute myeloid leukemia.Blood. 2014;124:386. [DOI]
Poon RT, Fan ST, Wong J. Clinical implications of circulating angiogenic factors in cancer patients.J Clin Oncol. 2001;19:1207–25. [DOI] [PubMed]
Haouas H. Angiogenesis and acute myeloid leukemia.Hematology. 2014;19:311–23. [DOI] [PubMed]
Rabitsch W, Sperr WR, Lechner K, Chott A, Prinz E, Valent P, et al. Bone marrow microvessel density and its prognostic significance in AML.Leuk Lymphoma. 2004;45:1369–73. [DOI] [PubMed]
Matuszewski L, Persigehl T, Wall A, Meier N, Bieker R, Kooijman H, et al. Assessment of bone marrow angiogenesis in patients with acute myeloid leukemia by using contrast-enhanced MR imaging with clinically approved iron oxides: initial experience.Radiology. 2007;242:217–24. [DOI] [PubMed]
Negaard HFS, Iversen N, Bowitz-Lothe IM, Sandset PM, Steinsvik B, Ostenstad B, et al. Increased bone marrow microvascular density in haematological malignancies is associated with differential regulation of angiogenic factors.Leukemia. 2009;23:162–9. [DOI] [PubMed]
Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia.Blood. 2000;95:309–13. [PubMed]
Hatfield K, Ryningen A, Corbascio M, Bruserud O. Microvascular endothelial cells increase proliferation and inhibit apoptosis of native human acute myelogenous leukemia blasts.Int J Cancer. 2006;119:2313–21. [DOI] [PubMed]
Katoh O, Takahashi T, Oguri T, Kuramoto K, Mihara K, Kobayashi M, et al. Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor.Cancer Res. 1998;58:55659. [PubMed]
Aguayo A, Kantarjian HM, Estey EH, Giles FJ, Verstovsek S, Manshouri T, et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes.Cancer. 2002;95:1923–30. [DOI] [PubMed]
Lal D, Park JA, Demock K, Marinaro J, Perez AM, Lin M, et al. Aflibercept exerts antivascular effects and enhances levels of anthracycline chemotherapy in vivo in human acute myeloid leukemia models.Mol Cancer Ther. 2010;9:2737–51. [DOI] [PubMed]
Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo C, et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-β-D-arabinofuranosylcytosine, mitoxantrone, and bevacizumab.Clin Cancer Res. 2004;10:3577–85. [DOI] [PubMed]
El-Ghandour AH, Ghanem AM, Bedewy AM, El-Rahman AABD, Khattab SS. Angiopoitin-2/Angiopoitin-1 Ratio in Acute Leukemia Patients with Febrile Neutropenia.The Journal of the Egyptian Society of Haematology & Research. 2018;14:17.
Passaro D, Tullio AD, Abarrategi A, Rouault-Pierre K, Foster K, Ariza-McNaughton L, et al. Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia.Cancer Cell. 2017;32:324–41.e6. [DOI] [PubMed] [PMC]
Wang ES, Fetterly G, Brady W, Tan W, Greene J, Gaudy A, et al. Clinical and biologic effects of the angiopoietin 1/2 neutralizing peptibody, trebananib (AMG 386), in acute myeloid leukemia patients.Blood. 2013;122:2701. [DOI]
Schmiedel BJ, Grosse-Hovest L, Salih HR. A “vicious cycle” of NK-cell immune evasion in acute myeloid leukemia mediated by RANKL?Oncoimmunology. 2013;2:e23850. [DOI] [PubMed] [PMC]
Krevvata M, Silva BC, Manavalan JS, Galan-Diez M, Kode A, Matthews BG, et al. Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts.Blood. 2014;124:2834–46. [DOI] [PubMed] [PMC]
Frisch BJ, Ashton JM, Xing L, Becker MW, Jordan CT, Calvi LM. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia.Blood. 2012;119:540–50. [DOI] [PubMed] [PMC]
Aplenc R, Meshinchi S, Sung L, Alonzo T, Choi J, Fisher B, et al. Bortezomib with standard chemotherapy for children with acute myeloid leukemia does not improve treatment outcomes: a report from the Children’s Oncology Group.Haematologica. 2020;105:1879–86. [DOI] [PubMed] [PMC]
Wartman LD, Fiala MA, Fletcher T, Hawkins ER, Cashen A, DiPersio JF, et al. A phase I study of carfilzomib for relapsed or refractory acute myeloid and acute lymphoblastic leukemia.Leuk Lymphoma. 2016;57:728–30. [DOI] [PubMed] [PMC]
Advani AS, Cooper B, Visconte V, Elson P, Chan R, Carew J, et al. A Phase I/II Trial of MEC (Mitoxantrone, Etoposide, Cytarabine) in Combination with Ixazomib for Relapsed Refractory Acute Myeloid Leukemia.Clin Cancer Res. 2019;25:4231–7. [DOI] [PubMed] [PMC]
Fathi AT, Blonquist TM, Hernandez D, Amrein PC, Ballen KK, McMasters M, et al. Cabozantinib is well tolerated in acute myeloid leukemia and effectively inhibits the resistance-conferring FLT3/tyrosine kinase domain/F691 mutation.Cancer. 2018;124:306–14. [DOI] [PubMed] [PMC]
Kim Y, Jekarl DW, Kim J, Kwon A, Choi H, Lee S, et al. Genetic and epigenetic alterations of bone marrow stromal cells in myelodysplastic syndrome and acute myeloid leukemia patients.Stem Cell Res. 2015;14:177–84. [DOI] [PubMed]
Blau O, Hofmann W, Baldus CD, Thiel G, Serbent V, Schümann E, et al. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia.Exp Hematol. 2007;35:221–9. [DOI] [PubMed]
Kim J, Shim J, Lee G, Yim HW, Kim T, Kim M, et al. Microenvironmental remodeling as a parameter and prognostic factor of heterogeneous leukemogenesis in acute myelogenous leukemia.Cancer Res. 2015;75:2222–31. [DOI] [PubMed]
Azadniv M, Myers JR, McMurray HR, Guo N, Rock P, Coppage ML, et al. Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support.Leukemia. 2020;34:391–403. [DOI] [PubMed] [PMC]
Xia B, Tian C, Guo S, Zhang L, Zhao D, Qu F, et al. c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia.Leuk Res. 2015;39:92–9. [DOI] [PubMed]
Cogle CR, Goldman DC, Madlambayan GJ, Leon RP, Masri AA, Clark HA, et al. Functional integration of acute myeloid leukemia into the vascular niche.Leukemia. 2014;28:1978–87. [DOI] [PubMed] [PMC]
Stucki A, Rivier AS, Gikic M, Monai N, Schapira M, Spertini O. Endothelial cell activation by myeloblasts: molecular mechanisms of leukostasis and leukemic cell dissemination.Blood. 2001;97:2121–9. [DOI] [PubMed]
Zhang J, Ye J, Ma D, Liu N, Wu H, Yu S, et al. Cross-talk between leukemic and endothelial cells promotes angiogenesis by VEGF activation of the Notch/Dll4 pathway.Carcinogenesis. 2013;34:667–77. [DOI] [PubMed]
Ryningen A, Wergeland L, Glenjen N, Gjertsen BT, Bruserud O. In vitro crosstalk between fibroblasts and native human acute myelogenous leukemia (AML) blasts via local cytokine networks results in increased proliferation and decreased apoptosis of AML cells as well as increased levels of proangiogenic Interleukin 8.Leuk Res. 2005;29:185–96. [DOI] [PubMed]
Kuzu I, Beksac M, Arat M, Celebi H, Elhan AH, Erekul S. Bone marrow microvessel density (MVD) in adult acute myeloid leukemia (AML): therapy induced changes and effects on survival.Leuk Lymphoma. 2004;45:1185–90. [DOI] [PubMed]
Duarte D, Hawkins ED, Akinduro O, Ang H, Filippo KD, Kong IY, et al. Inhibition of Endosteal Vascular Niche Remodeling Rescues Hematopoietic Stem Cell Loss in AML.Cell Stem Cell. 2018;22:64–77.e6. [DOI] [PubMed] [PMC]
Shafat MS, Oellerich T, Mohr S, Robinson SD, Edwards DR, Marlein CR, et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment.Blood. 2017;129:1320–32. [DOI] [PubMed]
Lu W, Weng W, Zhu Q, Zhai Y, Wan Y, Liu H, et al. Small bone marrow adipocytes predict poor prognosis in acute myeloid leukemia.Haematologica. 2018;103:e21–4. [DOI] [PubMed] [PMC]
Lu W, Wan Y, Li Z, Zhu B, Yin C, Liu H, et al. Growth differentiation factor 15 contributes to marrow adipocyte remodeling in response to the growth of leukemic cells.J Exp Clin Cancer Res. 2018;37:66. [DOI] [PubMed] [PMC]
Tabe Y, Yamamoto S, Saitoh K, Sekihara K, Monma N, Ikeo K, et al. Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells.Cancer Res. 2017;77:1453–64. [DOI] [PubMed] [PMC]
Lee EA, Angka L, Rota S, Hanlon T, Mitchell A, Hurren R, et al. Targeting Mitochondria with Avocatin B Induces Selective Leukemia Cell Death.Cancer Res. 2015;75:2478–88. [DOI] [PubMed]
Farge T, Saland E, Toni Fd, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.Cancer Discov. 2017;7:716–35. [DOI] [PubMed] [PMC]
Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche.Cell Stem Cell. 2014;15:365–75. [DOI] [PubMed] [PMC]
Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways.Immunol Rev. 2008;224:166–82. [DOI] [PubMed]
Zhong RK, Loken M, Lane TA, Ball ED. CTLA-4 blockade by a human MAb enhances the capacity of AML-derived DC to induce T-cell responses against AML cells in an autologous culture system.Cytotherapy. 2006;8:3–12. [DOI] [PubMed]
Garcia JS, Flamand Y, Penter L, Keng M, Tomlinson BK, Mendez LM, et al. Ipilimumab plus decitabine for patients with MDS or AML in posttransplant or transplant-naïve settings.Blood. 2023;141:18848. [PubMed] [PMC]
Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion.Nat Med. 1999;5:1365–9. [DOI] [PubMed]
Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies.Clin Cancer Res. 2008;14:3044–51. [DOI] [PubMed]
Daver N, Garcia-Manero G, Basu S, Boddu PC, Alfayez M, Cortes JE, et al. Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study.Cancer Discov. 2019;9:370–83. [DOI] [PubMed] [PMC]
Zeidner JF, Vincent BG, Ivanova A, Moore D, McKinnon KP, Wilkinson AD, et al. Phase II Trial of Pembrolizumab after High-Dose Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia.Blood Cancer Discov. 2021;2:616–29. [DOI] [PubMed] [PMC]
Goswami M, Gui G, Dillon LW, Lindblad KE, Thompson J, Valdez J, et al. Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia.J Immunother Cancer. 2022;10:e003392. [DOI] [PubMed] [PMC]
Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans.Immunol Rev. 2006;212:28–50. [DOI] [PubMed]
Chen W, Jin W, Hardegen N, Lei K, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3.J Exp Med. 2003;198:1875–86. [DOI] [PubMed] [PMC]
Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function.Nature. 2007;450:566–9. [DOI] [PubMed]
Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia.Clin Cancer Res. 2009;15:3325–32. [DOI] [PubMed] [PMC]
Han Y, Dong Y, Yang Q, Xu W, Jiang S, Yu Z, et al. Acute Myeloid Leukemia Cells Express ICOS Ligand to Promote the Expansion of Regulatory T Cells.Front Immunol. 2018;9:2227. [DOI] [PubMed] [PMC]
Jia B, Wang L, Claxton DF, Ehmann WC, Rybka WB, Mineishi S, et al. Bone marrow CD8 T cells express high frequency of PD-1 and exhibit reduced anti-leukemia response in newly diagnosed AML patients.Blood Cancer J. 2018;8:34. [DOI] [PubMed] [PMC]
Dama P, Tang M, Fulton N, Kline J, Liu H. Gal9/Tim-3 expression level is higher in AML patients who fail chemotherapy.J Immunother Cancer. 2019;7:175. [DOI] [PubMed] [PMC]
Mussai F, Santo CD, Abu-Dayyeh I, Booth S, Quek L, McEwen-Smith RM, et al. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment.Blood. 2013;122:749–58. [DOI] [PubMed] [PMC]
Li P, Ji M, Park J, Bunting KD, Ji C, Tse W. Th17 related cytokines in acute myeloid leukemia.Front Biosci (Landmark Ed). 2012;17:2284–94. [DOI] [PubMed]
Han Y, Ye A, Bi L, Wu J, Yu K, Zhang S. Th17 cells and interleukin-17 increase with poor prognosis in patients with acute myeloid leukemia.Cancer Sci. 2014;105:933–42. [DOI] [PubMed] [PMC]
Vacca P, Vitale C, Montaldo E, Conte R, Cantoni C, Fulcheri E, et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells.Proc Natl Acad Sci U S A. 2011;108:2402–7. [DOI] [PubMed] [PMC]
Raneros AB, López-Larrea C, Suárez-Álvarez B. Acute myeloid leukemia and NK cells: two warriors confront each other.Oncoimmunology. 2018;8:e1539617. [DOI] [PubMed] [PMC]
Li Y, You MJ, Yang Y, Hu D, Tian C. The Role of Tumor-Associated Macrophages in Leukemia.Acta Haematol. 2020;143:112–7. [DOI] [PubMed]
Skog J, Würdinger T, Rijn Sv, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.Nat Cell Biol. 2008;10:1470–6. [DOI] [PubMed] [PMC]
Boyiadzis M, Whiteside TL. Information transfer by exosomes: A new frontier in hematologic malignancies.Blood Rev. 2015;29:281–90. [DOI] [PubMed]
Hong C, Muller L, Whiteside TL, Boyiadzis M. Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia.Front Immunol. 2014;5:160. [DOI] [PubMed] [PMC]
Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1.Haematologica. 2011;96:1302–9. [DOI] [PubMed] [PMC]
Hong CS, Muller L, Boyiadzis M, Whiteside TL. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia.PLoS One. 2014;9:e103310. [DOI] [PubMed] [PMC]
Huan J, Hornick NI, Shurtleff MJ, Skinner AM, Goloviznina NA, Jr CTR, et al. RNA trafficking by acute myelogenous leukemia exosomes.Cancer Res. 2013;73:918–29. [DOI] [PubMed]
Mineo M, Garfield SH, Taverna S, Flugy A, Leo GD, Alessandro R, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion.Angiogenesis. 2012;15:33–45. [DOI] [PubMed] [PMC]