Anuradha Sharma and Apurva Sood are thankful to Lovely Professional University for providing the environment in which we conducted this review. During the preparation of this work, author(s) used the Biorender.com for preparation of Figures 2, 3, and 4. After using the tool/service, author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.
Author contributions
A Sood: Conceptualization, Writing—original draft, Visualization. VJ: Writing—original draft. A Singh: Writing—review & editing. A Sharma: Conceptualization, Writing—review & editing, Supervision.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.Cancer Res. 2014;74:2913–21. [DOI] [PubMed]
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin. 2024;74:229–63. [DOI] [PubMed]
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J Clin. 2021;71:209–49. [DOI] [PubMed]
Dy GW, Gore JL, Forouzanfar MH, Naghavi M, Fitzmaurice C. Global Burden of Urologic Cancers, 1990-2013.Eur Urol. 2017;71:437–46. [DOI] [PubMed]
Charafeddine MA, Olson SH, Mukherji D, Temraz SN, Abou-Alfa GK, Shamseddine AI. Proportion of cancer in a Middle eastern country attributable to established risk factors.BMC Cancer. 2017;17:337. [DOI] [PubMed] [PMC]
Gopal S, Sharpless NE. Cancer as a Global Health Priority.JAMA. 2021;326:809–10. [DOI] [PubMed]
Hamad A, Elazzazy S, Bujassoum S, Rasul K, Gaziev J, Cherif H, et al. Applying value-based strategies to accelerate access to novel cancer medications: guidance from the Oncology Health Economics Expert Panel in Qatar (Q-OHEP).BMC Health Serv Res. 2023;23:15. [DOI] [PubMed] [PMC]
Tian Q, Price ND, Hood L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine.J Intern Med. 2012;271:111–21. [DOI] [PubMed] [PMC]
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives.Signal Transduct Target Ther. 2021;6:201. [DOI] [PubMed] [PMC]
Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments.Eur Rev Med Pharmacol Sci. 2018;22:3855–64. [DOI] [PubMed]
Butow P, Price MA, Shaw JM, Turner J, Clayton JM, Grimison P, et al. Clinical pathway for the screening, assessment and management of anxiety and depression in adult cancer patients: Australian guidelines.Psychooncology. 2015;24:987–1001. [DOI] [PubMed]
Montgomery GH, Schnur JB, Erblich J, Diefenbach MA, Bovbjerg DH. Presurgery psychological factors predict pain, nausea, and fatigue one week after breast cancer surgery.J Pain Symptom Manage. 2010;39:1043–52. [DOI] [PubMed] [PMC]
Santucci G, Mack JW. Common gastrointestinal symptoms in pediatric palliative care: nausea, vomiting, constipation, anorexia, cachexia.Pediatr Clin North Am. 2007;54:673–89. [DOI] [PubMed]
Amjad MT, Chidharla A, Kasi A. Cancer Chemotherapy. Treasure Island (FL): StatPearls Publishing; 2024. [PubMed]
Heidary N, Naik H, Burgin S. Chemotherapeutic agents and the skin: An update.J Am Acad Dermatol. 2008;58:545–70. [DOI] [PubMed]
Peart O. Metastatic Breast Cancer.Radiol Technol. 2017;88:519M–39M. [PubMed]
Crowder CD, Grabowski C, Inampudi S, Sielaff T, Sherman CA, Batts KP. Selective internal radiation therapy-induced extrahepatic injury: an emerging cause of iatrogenic organ damage.Am J Surg Pathol. 2009;33:963–75. [DOI] [PubMed]
Yang L, Yu H, Dong S, Zhong Y, Hu S. Recognizing and managing on toxicities in cancer immunotherapy.Tumour Biol. 2017;39:1010428317694542. [DOI] [PubMed]
Jackson C, Finikarides L, Freeman ALJ. The adverse effects of trastuzumab-containing regimes as a therapy in breast cancer: A piggy-back systematic review and meta-analysis.PLoS One. 2022;17:e0275321. [DOI] [PubMed] [PMC]
Razonable RR. Human herpesviruses 6, 7 and 8 in solid organ transplant recipients.Am J Transplant. 2013;13:67–78. [DOI] [PubMed]
Dougan M, Luoma AM, Dougan SK, Wucherpfennig KW. Understanding and treating the inflammatory adverse events of cancer immunotherapy.Cell. 2021;184:1575–88. [DOI] [PubMed] [PMC]
Sasikumar PG, Ramachandra M. Peptide and peptide-inspired checkpoint inhibitors: protein fragments to cancer immunotherapy.Med Drug Dis. 2020;8:100073. [DOI]
Afessa B, Tefferi A, Litzow MR, Krowka MJ, Wylam ME, Peters SG. Diffuse alveolar hemorrhage in hematopoietic stem cell transplant recipients.Am J Respir Crit Care Med. 2002;166:641–5. [DOI] [PubMed]
Lin BL, Chen JF, Qiu WH, Wang KW, Xie DY, Chen XY, et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: A randomized controlled trial.Hepatology. 2017;66:209–19. [DOI] [PubMed]
Warren EH, Deeg HJ. Dissecting graft-versus-leukemia from graft-versus-host-disease using novel strategies.Tissue Antigens. 2013;81:183–93. [DOI] [PubMed] [PMC]
El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales.Br J Pharmacol. 2013;170:712–29. [DOI] [PubMed] [PMC]
Abbas A, Mirza MM, Ganti AK, Tendulkar K. Renal Toxicities of Targeted Therapies.Target Oncol. 2015;10:487–99. [DOI] [PubMed]
Cignarella A, Fadini GP, Bolego C, Trevisi L, Boscaro C, Sanga V, et al. Clinical efficacy and safety of angiogenesis inhibitors: sex differences and current challenges.Cardiovasc Res. 2022;118:988–1003. [DOI] [PubMed]
Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N. CAR T cell therapy: A new era for cancer treatment (Review).Oncol Rep. 2019;42:2183–95. [DOI] [PubMed]
Almåsbak H, Aarvak T, Vemuri MC. CAR T Cell Therapy: A Game Changer in Cancer Treatment.J Immunol Res. 2016;2016:5474602. [DOI] [PubMed] [PMC]
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies.Blood Cancer J. 2021;11:69. [DOI] [PubMed] [PMC]
Stoiber S, Cadilha BL, Benmebarek MR, Lesch S, Endres S, Kobold S. Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy.Cells. 2019;8:472. [DOI] [PubMed] [PMC]
Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs.Biotechnol Genet Eng Rev. 2023;39:45–84. [DOI] [PubMed]
Qu B, Yuan J, Liu X, Zhang S, Ma X, Lu L. Anticancer activities of natural antimicrobial peptides from animals.Front Microbiol. 2024;14:1321386. [DOI] [PubMed] [PMC]
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment.Adv Healthc Mater. 2024:e2400512. [DOI] [PubMed]
Skjånes K, Aesoy R, Herfindal L, Skomedal H. Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity.Physiol Plant. 2021;173:612–23. [DOI] [PubMed]
van Marion DM, Domanska UM, Timmer-Bosscha H, Walenkamp AM. Studying cancer metastasis: Existing models, challenges and future perspectives.Crit Rev Oncol Hematol. 2016;97:107–17. [DOI] [PubMed]
Mani K, Deng D, Lin C, Wang M, Hsu ML, Zaorsky NG. Causes of death among people living with metastatic cancer.Nat Commun. 2024;15:1519. [DOI] [PubMed] [PMC]
Zardavas D, Irrthum A, Swanton C, Piccart M. Clinical management of breast cancer heterogeneity.Nat Rev Clin Oncol. 2015;12:381–94. [DOI] [PubMed]
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, et al. Breast cancer heterogeneity and its implication in personalized precision therapy.Exp Hematol Oncol. 2023;12:3. [DOI] [PubMed] [PMC]
Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS. Breast cancer intra-tumor heterogeneity.Breast Cancer Res. 2014;16:210. [DOI] [PubMed] [PMC]
Masciale V, Banchelli F, Grisendi G, D’Amico R, Maiorana A, Stefani A, et al. The Influence of Cancer Stem Cells on the Risk of Relapse in Adenocarcinoma and Squamous Cell Carcinoma of the Lung: A Prospective Cohort Study.Stem Cells Transl Med. 2022;11:239–47. [DOI] [PubMed] [PMC]
Kriegmair MC, Bertolo R, Karakiewicz PI, Leibovich BC, Ljungberg B, Mir MC, et al.; Young Academic Urologists Kidney Cancer working group of the European Association of Urology. Systematic Review of the Management of Local Kidney Cancer Relapse.Eur Urol Oncol. 2018;1:512–23. [DOI] [PubMed]
Marzagalli M, Fontana F, Raimondi M, Limonta P. Cancer Stem Cells-Key Players in Tumor Relapse.Cancers (Basel). 2021;13:376. [DOI] [PubMed] [PMC]
Li Y, Rogoff HA, Keates S, Gao Y, Murikipudi S, Mikule K, et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness.Proc Natl Acad Sci U S A. 2015;112:1839–44. [DOI] [PubMed] [PMC]
Rådestad E, Klynning C, Stikvoort A, Mogensen O, Nava S, Magalhaes I, et al. Immune profiling and identification of prognostic immune-related risk factors in human ovarian cancer.Oncoimmunology. 2018;8:e1535730. [DOI] [PubMed] [PMC]
Li H, Er Saw P, Song E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics.Cell Mol Immunol. 2020;17:451–61. [DOI] [PubMed] [PMC]
Wu Z, Zhang H, Wu M, Peng G, He Y, Wan N, et al. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia.Biomed Pharmacother. 2021;137:111299. [DOI] [PubMed]
Fehniger TA, Cooper MA, Caligiuri MA. Interleukin-2 and interleukin-15: immunotherapy for cancer.Cytokine Growth Factor Rev. 2002;13:169–83. [DOI] [PubMed]
Zamai L, Ponti C, Mirandola P, Gobbi G, Papa S, Galeotti L, et al. NK cells and cancer.J Immunol. 2007;178:4011–6. [DOI] [PubMed]
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression.Genes Dev. 2018;32:1267–84. [DOI] [PubMed] [PMC]
McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M, Kok M, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types.Ann Oncol. 2021;32:661–72. [DOI] [PubMed] [PMC]
Piersma SJ. Immunosuppressive tumor microenvironment in cervical cancer patients.Cancer Microenviron. 2011;4:361–75. [DOI] [PubMed] [PMC]
Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy.Biochem Pharmacol. 2013;85:1219–26. [DOI] [PubMed]
Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, Soria JC. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies.Cancer Discov. 2021;11:874–99. [DOI] [PubMed]
Yang Y, Sun M, Wang L, Jiao B. HIFs, angiogenesis, and cancer.J Cell Biochem. 2013;114:967–74. [DOI] [PubMed]
Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection--possibilities for cancer treatment.Anticancer Drugs. 2016;27:269–77. [DOI] [PubMed] [PMC]
Vermaelen K. Vaccine Strategies to Improve Anti-cancer Cellular Immune Responses.Front Immunol. 2019;10:8. [DOI] [PubMed] [PMC]
Conlon JM, Mechkarska M, Lukic ML, Flatt PR. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents.Peptides. 2014;57:67–77. [DOI] [PubMed]
Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy.Nat Commun. 2016;7:13193. [DOI] [PubMed] [PMC]
Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification.Open Biol. 2020;10:200004. [DOI] [PubMed] [PMC]
Guzmán-Rodríguez JJ, Ochoa-Zarzosa A, López-Gómez R, López-Meza JE. Plant antimicrobial peptides as potential anticancer agents.Biomed Res Int. 2015;2015:735087. [DOI] [PubMed] [PMC]
Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside.Front Oncol. 2022;12:819563. [DOI] [PubMed] [PMC]
Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential.Front Pharmacol. 2017;8:828. [DOI] [PubMed] [PMC]
Ibrahim OO. Classification of antimicrobial peptides bacteriocins, and the nature of some bacteriocins with potential applications in food safety and bio-pharmaceuticals.EC Microbiol. 2019;15:591–608.
Dutta P, Das S. Mammalian Antimicrobial Peptides: Promising Therapeutic Targets Against Infection and Chronic Inflammation.Curr Top Med Chem. 2016;16:99–129. [DOI] [PubMed]
Gaspar D, Veiga AS, Castanho MA. From antimicrobial to anticancer peptides. A review.Front Microbiol. 2013;4:294. [DOI] [PubMed] [PMC]
Gabernet G, Müller AT, Hiss JA, Schneider G. Membranolytic anticancer peptides.MedChemComm. 2016;7:2232–45. [DOI]
Norouzi Z, Salimi A, Halabian R, Fahimi H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines.Microb Pathog. 2018;123:183–9. [DOI] [PubMed]
Mehta L, Dhankhar R, Gulati P, Kapoor RK, Mohanty A, Kumar S. Natural and grafted cyclotides in cancer therapy: An insight.J Pept Sci. 2020;26:e3246. [DOI] [PubMed]
Ramachander Turaga VN. Peptaibols: antimicrobial peptides from fungi. In: Singh J, Meshram V, Gupta M, editors. Bioactive Natural products in Drug Discovery. Springer, Singapore; 2020. pp. 713–30. [DOI]
Kuroda K, Okumura K, Isogai H, Isogai E. The Human Cathelicidin Antimicrobial Peptide LL-37 and Mimics are Potential Anticancer Drugs.Front Oncol. 2015;5:144. [DOI] [PubMed] [PMC]
Lee MR, Raman N, Gellman SH, Lynn DM, Palecek SP. Incorporation of β-Amino Acids Enhances the Antifungal Activity and Selectivity of the Helical Antimicrobial Peptide Aurein 1.2.ACS Chem Biol. 2017;12:2975–80. [DOI] [PubMed] [PMC]
Andersen JH, Jenssen H, Gutteberg TJ. Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir.Antiviral Res. 2003;58:209–15. [DOI] [PubMed]
Vad BS, Bertelsen K, Johansen CH, Pedersen JM, Skrydstrup T, Nielsen NC, et al. Pardaxin permeabilizes vesicles more efficiently by pore formation than by disruption.Biophys J. 2010;98:576–85. [DOI] [PubMed] [PMC]
Śliwińska-Wilczewska S. Cyanobacteria and cyanometabolites used in the pharmaceutical and medical industry.Ann Univ Paedagogicae Cracoviensis Studia Naturae. 2019;4:180–90. [DOI]
Xu P, Lv D, Wang X, Wang Y, Hou C, Gao K, et al. Inhibitory effects of Bombyx mori antimicrobial peptide cecropins on esophageal cancer cells.Eur J Pharmacol. 2020;887:173434. [DOI] [PubMed]
Kudryashova E, Seveau SM, Kudryashov DS. Targeting and inactivation of bacterial toxins by human defensins.Biol Chem. 2017;398:1069–85. [DOI] [PubMed] [PMC]
Thundimadathil J. Cancer treatment using peptides: current therapies and future prospects.J Amino Acids. 2012;2012:967347. [DOI] [PubMed] [PMC]
Fialho AM, Bernardes N, Chakrabarty AM. Exploring the anticancer potential of the bacterial protein azurin.AIMS Microbiol. 2016;2:292–303. [DOI]
Karpiński TM, Adamczak A. Anticancer Activity of Bacterial Proteins and Peptides.Pharmaceutics. 2018;10:54. [DOI] [PubMed] [PMC]
Yaghoubi A, Khazaei M, Avan A, Hasanian SM, Cho WC, Soleimanpour S. p28 Bacterial Peptide, as an Anticancer Agent.Front Oncol. 2020;10:1303. [DOI] [PubMed] [PMC]
Hu J, Jiang W, Zuo J, Shi D, Chen X, Yang X, et al. Structural basis of bacterial effector protein azurin targeting tumor suppressor p53 and inhibiting its ubiquitination.Commun Biol. 2023;6:59. [DOI] [PubMed] [PMC]
Gao M, Zhou J, Su Z, Huang Y. Bacterial cupredoxin azurin hijacks cellular signaling networks: Protein-protein interactions and cancer therapy.Protein Sci. 2017;26:2334–41. [DOI] [PubMed] [PMC]
Garizo AR, Coelho LF, Pinto S, Dias TP, Fernandes F, Bernardes N, et al. The Azurin-Derived Peptide CT-p19LC Exhibits Membrane-Active Properties and Induces Cancer Cell Death.Biomedicines. 2021;9:1194. [DOI] [PubMed] [PMC]
Sereena MC, Sebastian D. Evaluation of anticancer and anti-hemolytic activity of azurin, a novel bacterial protein from pseudomonas aeruginosa SSj.Int J Pept Res Ther. 2020;26:459–66. [DOI]
Zhang Y, Zhang Y, Xia L, Zhang X, Ding X, Yan F, et al. Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein.Appl Environ Microbiol. 2012;78:7603–10. [DOI] [PubMed] [PMC]
Cho JH, Lee MH, Cho YJ, Park BS, Kim S, Kim GC. The bacterial protein azurin enhances sensitivity of oral squamous carcinoma cells to anticancer drugs.Yonsei Med J. 2011;52:773–8. [DOI] [PubMed] [PMC]
Al-Hazmi NE, Naguib DM. Microbial Azurin Immobilized on Nano-Chitosan as Anticancer and Antibacterial Agent Against Gastrointestinal Cancers and Related Bacteria.J Gastrointest Cancer. 2022;53:537–42. [DOI] [PubMed]
Hong CS, Yamada T, Hashimoto W, Fialho AM, Das Gupta TK, Chakrabarty AM. Disrupting the entry barrier and attacking brain tumors: the role of the Neisseria H.8 epitope and the Laz protein.Cell Cycle. 2006;5:1633–41. [DOI] [PubMed]
Semenov DV, Fomin AS, Kuligina EV, Koval OA, Matveeva VA, Babkina IN, et al. Recombinant analogs of a novel milk pro-apoptotic peptide, lactaptin, and their effect on cultured human cells.Protein J. 2010;29:174–80. [DOI] [PubMed]
Tkachenko AV, Troitskaya OS, Semenov DV, Dmitrienko EV, Kuligina EV, Richter VA, et al. Immunogenicity of recombinant analog of antitumor protein lactaptin.Mol Biol (Mosk). 2017;51:787–96. Russian. [DOI] [PubMed]
Chinak O, Golubitskaya E, Pyshnaya I, Stepanov G, Zhuravlev E, Richter V, et al. Nucleic Acids Delivery Into the Cells Using Pro-Apoptotic Protein Lactaptin.Front Pharmacol. 2019;10:1043. [DOI] [PubMed] [PMC]
Troitskaya O, Varlamov M, Nushtaeva A, Richter V, Koval O. Recombinant Lactaptin Induces Immunogenic Cell Death and Creates an Antitumor Vaccination Effect in Vivo with Enhancement by an IDO Inhibitor.Molecules. 2020;25:2804. [DOI] [PubMed] [PMC]
Troitskaya OS, Novak DD, Richter VA, Koval OA. Immunogenic Cell Death in Cancer Therapy.Acta Naturae. 2022;14:40–53. [DOI] [PubMed] [PMC]
Nekipelaya VV, Semenov DV, Potapenko MO, Kuligina EV, Kit Yu, Romanova IV, et al. Lactaptin is a human milk protein inducing apoptosis of MCF-7 adenocarcinoma cells.Dokl Biochem Biophys. 2008;419:58–61. [DOI] [PubMed]
Koval OA, Tkachenko AV, Fomin AS, Semenov DV, Nushtaeva AA, Kuligina EV, et al. Lactaptin induces p53-independent cell death associated with features of apoptosis and autophagy and delays growth of breast cancer cells in mouse xenografts.PLoS One. 2014;9:e93921. [DOI] [PubMed] [PMC]
Bagamanshina AV, Troitskaya OS, Nushtaeva AA, Yunusova AY, Starykovych MO, Kuligina EV, et al. Cytotoxic and Antitumor Activity of Lactaptin in Combination with Autophagy Inducers and Inhibitors.Biomed Res Int. 2019;2019:4087160. [DOI] [PubMed] [PMC]
Troitskaya OS, Tkachenko AV, Semenov DV, Kuligina EV, Richter VA, Koval OA. Immunogenicity of recombinant analog of antitumor protein lactaptin. In: Systems Biology of DNA Repair Processes and Programmed Cell Death (SbPCD-2018). ICG SB RAS; 2018. p. 52. [DOI]
Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain.FEBS Lett. 1995;374:1–5. [DOI] [PubMed]
Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis.Proc Natl Acad Sci U S A. 1995;92:195–9. [DOI] [PubMed] [PMC]
Rivas-Santiago B, Hernandez-Pando R, Carranza C, Juarez E, Contreras JL, Aguilar-Leon D, et al. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells.Infect Immun. 2008;76:935–41. [DOI] [PubMed] [PMC]
Jiang W, Sunkara LT, Zeng X, Deng Z, Myers SM, Zhang G. Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs.Peptides. 2013;50:129–38. [DOI] [PubMed]
Hase K, Murakami M, Iimura M, Cole SP, Horibe Y, Ohtake T, et al. Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori.Gastroenterology. 2003;125:1613–25. [DOI] [PubMed]
Chernov AN, Filatenkova TA, Glushakov RI, Buntovskaya AS, Alaverdian DA, Tsapieva AN, et al. Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells.Molecules. 2022;27:4988. [DOI] [PubMed] [PMC]
Okumura K, Itoh A, Isogai E, Hirose K, Hosokawa Y, Abiko Y, et al. C-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells.Cancer Lett. 2004;212:185–94. [DOI] [PubMed]
Kuroda K, Fukuda T, Yoneyama H, Katayama M, Isogai H, Okumura K, et al. Anti-proliferative effect of an analogue of the LL-37 peptide in the colon cancer derived cell line HCT116 p53+/+ and p53-/-.Oncol Rep. 2012;28:829–34. [DOI] [PubMed]
Yang D, Zou R, Zhu Y, Liu B, Yao D, Jiang J, et al. Magainin II modified polydiacetylene micelles for cancer therapy.Nanoscale. 2014;6:14772–83. [DOI] [PubMed]
Chen PM, Yen ML, Liu KJ, Sytwu HK, Yen BL. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells.J Biomed Sci. 2011;18:49. [DOI] [PubMed] [PMC]
Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL, et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells.Proc Natl Acad Sci U S A. 2009;106:3806–11. [DOI] [PubMed] [PMC]
Weber G, Chamorro CI, Granath F, Liljegren A, Zreika S, Saidak Z, et al. Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer.Breast Cancer Res. 2009;11:R6. [DOI] [PubMed] [PMC]
von Haussen J, Koczulla R, Shaykhiev R, Herr C, Pinkenburg O, Reimer D, et al. The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells.Lung Cancer. 2008;59:12–23. [DOI] [PubMed]
Peel E, Cheng Y, Djordjevic JT, Fox S, Sorrell TC, Belov K. Cathelicidins in the Tasmanian devil (Sarcophilus harrisii).Sci Rep. 2016;6:35019. [DOI] [PubMed] [PMC]
Petrohilos C, Patchett A, Hogg CJ, Belov K, Peel E. Tasmanian devil cathelicidins exhibit anticancer activity against Devil Facial Tumour Disease (DFTD) cells.Sci Rep. 2023;13:12698. [DOI] [PubMed] [PMC]
Gao W, Xing L, Qu P, Tan T, Yang N, Li D, et al. Identification of a novel cathelicidin antimicrobial peptide from ducks and determination of its functional activity and antibacterial mechanism.Sci Rep. 2015;5:17260. [DOI] [PubMed] [PMC]
Mahmoud MM, Alenezi M, Al-Hejin AM, Abujamel TS, Aljoud F, Noorwali A, et al. Anticancer activity of chicken cathelicidin peptides against different types of cancer.Mol Biol Rep. 2022;49:4321–39. [DOI] [PubMed]
Chen X, Zou X, Qi G, Tang Y, Guo Y, Si J, et al. Roles and Mechanisms of Human Cathelicidin LL-37 in Cancer.Cell Physiol Biochem. 2018;47:1060–73. [DOI] [PubMed]
Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides.Biochim Biophys Acta. 1998;1376:391–400. [DOI] [PubMed]
Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria.Expert Rev Anti Infect Ther. 2007;5:951–9. [DOI] [PubMed]
Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, et al. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines.Eur Urol. 2006;50:141–7. [DOI] [PubMed]
Ohsaki Y, Gazdar AF, Chen HC, Johnson BE. Antitumor activity of magainin analogues against human lung cancer cell lines.Cancer Res. 1992;52:3534–8. [PubMed]
Jacob L, Zasloff M. Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. In: Marsh J, Goode JA, editors. Ciba Foundation Symposium 186‐Antimicrobial Peptides: Antimicrobial Peptides: Ciba Foundation Symposium 186. Chichester, UK: John Wiley & Sons, Ltd; 2007. pp. 197–223. [DOI]
Liu S, Yang H, Wan L, Cai HW, Li SF, Li YP, et al. Enhancement of cytotoxicity of antimicrobial peptide magainin II in tumor cells by bombesin-targeted delivery.Acta Pharmacol Sin. 2011;32:79–88. [DOI] [PubMed] [PMC]
Anghel R, Jitaru D, Bădescu L, Bădescu M, Ciocoiu M. The cytotoxic effect of magainin II on the MDA-MB-231 and M14K tumour cell lines.Biomed Res Int. 2013;2013:831709. [DOI] [PubMed] [PMC]
Miyazaki Y, Aoki M, Yano Y, Matsuzaki K. Interaction of antimicrobial peptide magainin 2 with gangliosides as a target for human cell binding.Biochemistry. 2012;51:10229–35. [DOI] [PubMed]
Hultmark D, Steiner H, Rasmuson T, Boman HG. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia.Eur J Biochem. 1980;106:7–16. [DOI] [PubMed]
Xia L, Wu Y, Ma JI, Yang J, Zhang F. The antibacterial peptide from Bombyx mori cecropinXJ induced growth arrest and apoptosis in human hepatocellular carcinoma cells.Oncol Lett. 2016;12:57–62. [DOI] [PubMed] [PMC]
Ghandehari F, Fatemi M. Study of anticancer activity of cecropin B on 7, 12-dimethylbenz (a) anthracene-induced breast cancer.J Shahrekord Univ Med Sci. 2020;22:106–12. [DOI]
Chen HM, Wang W, Smith D, Chan SC. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells.Biochim Biophys Acta. 1997;1336:171–9. [DOI] [PubMed]
Ramos-Martín F, Herrera-León C, D’Amelio N. Molecular basis of the anticancer, apoptotic and antibacterial activities of Bombyx mori Cecropin A.Arch Biochem Biophys. 2022;715:109095. [DOI] [PubMed]
Ziaja M, Dziedzic A, Szafraniec K, Piastowska-Ciesielska A. Cecropins in cancer therapies-where we have been?Eur J Pharmacol. 2020;882:173317. [DOI] [PubMed]
Pascariu M, Nevoie A, Jitaru D, Carasevici E, Luchian T. The evaluation of biological effect of cytotoxic peptides on tumor cell lines.Dig J Nanomater Bio. 2011;7:79–84.
Wu YL, Xia LJ, Li JY, Zhang FC. CecropinXJ inhibits the proliferation of human gastric cancer BGC823 cells and induces cell death in vitro and in vivo.Int J Oncol. 2015;46:2181–93. [DOI] [PubMed]
Zhang Y, Liu C, Wu C, Song L. Natural peptides for immunological regulation in cancer therapy: Mechanism, facts and perspectives.Biomed Pharmacother. 2023;159:114257. [DOI] [PubMed]
Ourth DD. Antitumor cell activity in vitro by myristoylated-peptide.Biomed Pharmacother. 2011;65:271–4. [DOI] [PubMed]
Dey M, Patra S, Su LY, Segall AM. Tumor cell death mediated by peptides that recognize branched intermediates of DNA replication and repair.PLoS One. 2013;8:e78751. [DOI] [PubMed] [PMC]
Hilchie AL, Vale R, Zemlak TS, Hoskin DW. Generation of a hematologic malignancy-selective membranolytic peptide from the antimicrobial core (RRWQWR) of bovine lactoferricin.Exp Mol Pathol. 2013;95:192–8. [DOI] [PubMed]
Wolf JS, Li G, Varadhachary A, Petrak K, Schneyer M, Li D, et al. Oral lactoferrin results in T cell-dependent tumor inhibition of head and neck squamous cell carcinoma in vivo.Clin Cancer Res. 2007;13:1601–10. [DOI] [PubMed] [PMC]
Chinnadurai RK, Khan N, Meghwanshi GK, Ponne S, Althobiti M, Kumar R. Current research status of anti-cancer peptides: Mechanism of action, production, and clinical applications.Biomed Pharmacother. 2023;164:114996. [DOI] [PubMed]
Faraji N, Arab SS, Doustmohammadi A, Daly NL, Khosroushahi AY. ApInAPDB: a database of apoptosis-inducing anticancer peptides.Sci Rep. 2022;12:21341. [DOI] [PubMed] [PMC]
Wei Y, Long S, Zhao M, Zhao J, Zhang Y, He W, et al. Regulation of Cellular Signaling with an Aptamer Inhibitor to Impede Cancer Metastasis.J Am Chem Soc. 2024;146:319–29. [DOI] [PubMed]
Karami Fath M, Babakhaniyan K, Zokaei M, Yaghoubian A, Akbari S, Khorsandi M, et al. Anti-cancer peptide-based therapeutic strategies in solid tumors.Cell Mol Biol Lett. 2022;27:33. [DOI] [PubMed] [PMC]
Lei J, Sun L, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications.Am J Transl Res. 2019;11:3919–31. [PubMed] [PMC]
Arpornsuwan T, Sriwai W, Jaresitthikunchai J, Phaonakrop N, Sritanaudomchai H, Roytrakul S. Anticancer activities of antimicrobial BmKn2 peptides against oral and colon cancer cells.Int J Pept Res Ther. 2014;20:501–9. [DOI]
Solanki SS, Singh P, Kashyap P, Sansi MS, Ali SA. Promising role of defensins peptides as therapeutics to combat against viral infection.Microb Pathog. 2021;155:104930. [DOI] [PubMed] [PMC]
Mechkarska M, Attoub S, Sulaiman S, Pantic J, Lukic ML, Conlon JM. Anti-cancer, immunoregulatory, and antimicrobial activities of the frog skin host-defense peptides pseudhymenochirin-1Pb and pseudhymenochirin-2Pa.Regul Pept. 2014;194-195:69–76. [DOI] [PubMed]
Jordan KR, McMahan RH, Kemmler CB, Kappler JW, Slansky JE. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens.Proc Natl Acad Sci U S A. 2010;107:4652–7. [DOI] [PubMed] [PMC]
Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, et al. Nanoparticles and targeted drug delivery in cancer therapy.Immunol Lett. 2017;190:64–83. [DOI] [PubMed]
Guan T, Li J, Chen C, Liu Y. Self-Assembling Peptide-Based Hydrogels for Wound Tissue Repair.Adv Sci (Weinh). 2022;9:e2104165. [DOI] [PubMed] [PMC]
Mezzasoma L, Peirce MJ, Minelli A, Bellezza I. Natriuretic Peptides: The Case of Prostate Cancer.Molecules. 2017;22:1680. [DOI] [PubMed] [PMC]
Chen K, Gong W, Huang J, Yoshimura T, Wang JM. The potentials of short fragments of human anti-microbial peptide LL-37 as a novel therapeutic modality for diseases.Front Biosci (Landmark Ed). 2021;26:1362–72. [DOI] [PubMed]
Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review).Int J Oncol. 2020;57:678–96. [DOI] [PubMed] [PMC]
Roudi R, Syn NL, Roudbary M. Antimicrobial Peptides As Biologic and Immunotherapeutic Agents against Cancer: A Comprehensive Overview.Front Immunol. 2017;8:1320. [DOI] [PubMed] [PMC]
Daly RJ, Scott AM, Klein O, Ernst M. Enhancing therapeutic anti-cancer responses by combining immune checkpoint and tyrosine kinase inhibition.Mol Cancer. 2022;21:189. [DOI] [PubMed] [PMC]
Hwang JS, Kim SG, Shin TH, Jang YE, Kwon DH, Lee G. Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics.Pharmaceutics. 2022;14:997. [DOI] [PubMed] [PMC]
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment.J Biomed Sci. 2017;24:21. [DOI] [PubMed] [PMC]
Vadevoo SMP, Gurung S, Lee HS, Gunassekaran GR, Lee SM, Yoon JW, et al. Peptides as multifunctional players in cancer therapy.Exp Mol Med. 2023;55:1099–109. [DOI] [PubMed] [PMC]
Ramanayake Mudiyanselage TMR, Michigami M, Ye Z, Uyeda A, Inoue N, Sugiura K, et al. An Immune-Stimulatory Helix-Loop-Helix Peptide: Selective Inhibition of CTLA-4-B7 Interaction.ACS Chem Biol. 2020;15:360–8. [DOI] [PubMed]
Ghaly G, Tallima H, Dabbish E, Badr ElDin N, Abd El-Rahman MK, Ibrahim MAA, et al. Anti-Cancer Peptides: Status and Future Prospects.Molecules. 2023;28:1148. [DOI] [PubMed] [PMC]