Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Friedman GK, Bernstock JD, Chen D, Nan L, Moore BP, Kelly VM, et al. Enhanced Sensitivity of Patient-Derived Pediatric High-Grade Brain Tumor Xenografts to Oncolytic HSV-1 Virotherapy Correlates with Nectin-1 Expression.Sci Rep. 2018;8:13930. [DOI] [PubMed] [PMC]
Seker-Polat F, Pinarbasi Degirmenci N, Solaroglu I, Bagci-Onder T. Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives.Cancers (Basel). 2022;14:443. [DOI] [PubMed] [PMC]
Rončević A, Koruga N, Soldo Koruga A, Rončević R, Rotim T, Šimundić T, et al. Personalized Treatment of Glioblastoma: Current State and Future Perspective.Biomedicines. 2023;11:1579. [DOI] [PubMed] [PMC]
Meredith DM, Pisapia DJ. 2021 World Health Organization Classification of Brain Tumors.Continuum (Minneap Minn). 2023;29:1638–61. [DOI] [PubMed]
Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment.Asian Pac J Cancer Prev. 2017;18:3–9. [DOI] [PubMed] [PMC]
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies.Viruses. 2023;15:547. [DOI] [PubMed] [PMC]
Asija S, Chatterjee A, Goda JS, Yadav S, Chekuri G, Purwar R. Oncolytic immunovirotherapy for high-grade gliomas: A novel and an evolving therapeutic option.Front Immunol. 2023;14:1118246. [DOI] [PubMed] [PMC]
Gujar S, Pol JG, Kroemer G. Heating it up: Oncolytic viruses make tumors ‘hot’ and suitable for checkpoint blockade immunotherapies.Oncoimmunology. 2018;7:e1442169. [DOI] [PubMed] [PMC]
Garofalo M, Pancer KW, Wieczorek M, Staniszewska M, Salmaso S, Caliceti P, et al. From Immunosuppression to Immunomodulation - Turning Cold Tumours into Hot.J Cancer. 2022;13:2884–92. [DOI] [PubMed] [PMC]
Shoaf ML, Desjardins A. Oncolytic Viral Therapy for Malignant Glioma and Their Application in Clinical Practice.Neurotherapeutics. 2022;19:1818–31. [DOI] [PubMed] [PMC]
Liu Z, Han C, Fu YX. Targeting innate sensing in the tumor microenvironment to improve immunotherapy.Cell Mol Immunol. 2020;17:13–26. [DOI] [PubMed] [PMC]
Li Y, Duan HY, Yang KD, Ye JF. Advancements and challenges in oncolytic virus therapy for gastrointestinal tumors.Biomed Pharmacother. 2023;168:115627. [DOI] [PubMed]
DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details.J Neurochem. 2016;139:136–53. [DOI] [PubMed] [PMC]
Andersen RS, Anand A, Harwood DSL, Kristensen BW. Tumor-Associated Microglia and Macrophages in the Glioblastoma Microenvironment and Their Implications for Therapy.Cancers (Basel). 2021;13:4255. [DOI] [PubMed] [PMC]
Lemos de Matos A, Franco LS, McFadden G. Oncolytic Viruses and the Immune System: The Dynamic Duo.Mol Ther Methods Clin Dev. 2020;17:349–58. [DOI] [PubMed] [PMC]
Pearl TM, Markert JM, Cassady KA, Ghonime MG. Oncolytic Virus-Based Cytokine Expression to Improve Immune Activity in Brain and Solid Tumors.Mol Ther Oncolytics. 2019;13:14–21. [DOI] [PubMed] [PMC]
Krapež G, Kouter K, Jovčevska I, Videtič Paska A. Dynamic Intercell Communication between Glioblastoma and Microenvironment through Extracellular Vesicles.Biomedicines. 2022;10:151. [DOI] [PubMed] [PMC]
Ghosh M, Lenkiewicz AM, Kaminska B. The Interplay of Tumor Vessels and Immune Cells Affects Immunotherapy of Glioblastoma.Biomedicines. 2022;10:2292. [DOI] [PubMed] [PMC]
Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, Doolittle ND, et al. Immunologic privilege in the central nervous system and the blood–brain barrier.J Cereb Blood Flow Metab. 2013;33:13–21. [DOI] [PubMed] [PMC]
Himes BT, Geiger PA, Ayasoufi K, Bhargav AG, Brown DA, Parney IF. Immunosuppression in Glioblastoma: Current Understanding and Therapeutic Implications.Front Oncol. 2021;11:770561. [DOI] [PubMed] [PMC]
Sharma P, Aaroe A, Liang J, Puduvalli VK. Tumor microenvironment in glioblastoma: Current and emerging concepts.Neurooncol Adv. 2023;5:vdad009. [DOI] [PubMed] [PMC]
Erices JI, Bizama C, Niechi I, Uribe D, Rosales A, Fabres K, et al. Glioblastoma Microenvironment and Invasiveness: New Insights and Therapeutic Targets.Int J Mol Sci. 2023;24:7047. [DOI] [PubMed] [PMC]
Mohiuddin E, Wakimoto H. Extracellular matrix in glioblastoma: opportunities for emerging therapeutic approaches.Am J Cancer Res. 2021;11:3742–54. [PubMed] [PMC]
Rosińska S, Gavard J. Tumor Vessels Fuel the Fire in Glioblastoma.Int J Mol Sci. 2021;22:6514. [DOI] [PubMed] [PMC]
Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences.Immunity. 2019;51:27–41. [DOI] [PubMed] [PMC]
Galdiero MR, Marone G, Mantovani A. Cancer Inflammation and Cytokines.Cold Spring Harb Perspect Biol. 2018;10:a028662. [DOI] [PubMed] [PMC]
Almiron Bonnin DA, Havrda MC, Israel MA. Glioma Cell Secretion: A Driver of Tumor Progression and a Potential Therapeutic Target.Cancer Res. 2018;78:6031–9. [DOI] [PubMed]
Hasan T, Caragher SP, Shireman JM, Park CH, Atashi F, Baisiwala S, et al. Interleukin-8/CXCR2 signaling regulates therapy-induced plasticity and enhances tumorigenicity in glioblastoma.Cell Death Dis. 2019;10:292. [DOI] [PubMed] [PMC]
Menna G, Mattogno PP, Donzelli CM, Lisi L, Olivi A, Della Pepa GM. Glioma-Associated Microglia Characterization in the Glioblastoma Microenvironment through a ‘Seed-and Soil’ Approach: A Systematic Review.Brain Sci. 2022;12:718. [DOI] [PubMed] [PMC]
Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression.Nat Neurosci. 2016;19:20–7. [DOI] [PubMed] [PMC]
Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells.Blood. 2007;110:4319–30. [DOI] [PubMed]
Chen HY, Lin LT, Wang ML, Lee SH, Tsai ML, Tsai CC, et al. Musashi-1 regulates AKT-derived IL-6 autocrinal/paracrinal malignancy and chemoresistance in glioblastoma.Oncotarget. 2016;7:42485–501. [DOI] [PubMed] [PMC]
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications.Cancers (Basel). 2021;13:4226. [DOI] [PubMed] [PMC]
Wong SC, Kamarudin MNA, Naidu R. Anticancer Mechanism of Curcumin on Human Glioblastoma.Nutrients. 2021;13:950. [DOI] [PubMed] [PMC]
Griffin BD, Moynagh PN. Persistent interleukin-1β signaling causes long term activation of NFκB in a promoter-specific manner in human glial cells.J Biol Chem. 2006;281:10316–26. [DOI] [PubMed]
Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C, et al. TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets.J Clin Invest. 2012;122:3563–78. [DOI] [PubMed] [PMC]
Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis.Neuro Oncol. 2005;7:122–33. [DOI] [PubMed] [PMC]
Zanotto-Filho A, Gonçalves RM, Klafke K, de Souza PO, Dillenburg FC, Carro L, et al. Inflammatory landscape of human brain tumors reveals an NFκB dependent cytokine pathway associated with mesenchymal glioblastoma.Cancer Lett. 2017;390:176–87. [DOI] [PubMed]
Kosmopoulos M, Christofides A, Drekolias D, Zavras PD, Gargalionis AN, Piperi C. Critical Role of IL-8 Targeting in Gliomas.Curr Med Chem. 2018;25:1954–67. [DOI] [PubMed]
Zeiner PS, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller A, et al. Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas.Brain Pathol. 2019;29:513–29. [DOI] [PubMed] [PMC]
Wang Y, Zhang F, Xiong N, Xu H, Chai S, Wang H, et al. Remodelling and Treatment of the Blood-Brain Barrier in Glioma.Cancer Manag Res. 2021;13:4217–32. [DOI] [PubMed] [PMC]
Lee S, Margolin K. Cytokines in cancer immunotherapy.Cancers (Basel). 2011;3:3856–93. [DOI] [PubMed] [PMC]
Boagni DA, Ravirala D, Zhang SX. Current strategies in engaging oncolytic viruses with antitumor immunity.Mol Ther Oncolytics. 2021;22:98–113. [DOI] [PubMed] [PMC]
Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy.Front Immunol. 2022;13:901277. [DOI] [PubMed] [PMC]
Pombo Antunes AR, Scheyltjens I, Duerinck J, Neyns B, Movahedi K, Van Ginderachter JA. Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies.Elife. 2020;9:e52176. [DOI] [PubMed] [PMC]
Zhou S, Huang Y, Chen Y, Liu Y, Xie L, You Y, et al. Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma.Nat Commun. 2023;14:435. [DOI] [PubMed] [PMC]
Patel DM, Foreman PM, Nabors LB, Riley KO, Gillespie GY, Markert JM. Design of a Phase I Clinical Trial to Evaluate M032, a Genetically Engineered HSV-1 Expressing IL-12, in Patients with Recurrent/Progressive Glioblastoma Multiforme, Anaplastic Astrocytoma, or Gliosarcoma.Hum Gene Ther Clin Dev. 2016;27:69–78. [DOI] [PubMed] [PMC]
Qi Z, Long X, Liu J, Cheng P. Glioblastoma microenvironment and its reprogramming by oncolytic virotherapy.Front Cell Neurosci. 2022;16:819363. [DOI] [PubMed] [PMC]
Nassiri F, Patil V, Yefet LS, Singh O, Liu J, Dang RMA, et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial.Nat Med. 2023;29:1370–8. [DOI] [PubMed] [PMC]
Wang H, Zhou H, Xu J, Lu Y, Ji X, Yao Y, et al. Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy.Cancer Lett. 2021;496:134–43. [DOI] [PubMed]
Mauldin IS, Jo J, Wages NA, Yogendran LV, Mahmutovic A, Young SJ, et al. Proliferating CD8+ T Cell Infiltrates Are Associated with Improved Survival in Glioblastoma.Cells. 2021;10:3378. [DOI] [PubMed] [PMC]
Shen Z, Liu X, Fan G, Na J, Liu Q, Lin F, et al. Improving the therapeutic efficacy of oncolytic viruses for cancer: targeting macrophages.J Transl Med. 2023;21:842. [DOI] [PubMed] [PMC]
Poorebrahim M, Melief J, Pico de Coaña Y, L Wickström S, Cid-Arregui A, Kiessling R. Counteracting CAR T cell dysfunction.Oncogene. 2021;40:421–35. [DOI] [PubMed] [PMC]
Capece D, Verzella D, Fischietti M, Zazzeroni F, Alesse E. Targeting costimulatory molecules to improve antitumor immunity.J Biomed Biotechnol. 2012;2012:926321. [DOI] [PubMed] [PMC]
Linch SN, McNamara MJ, Redmond WL. OX40 Agonists and Combination Immunotherapy: Putting the Pedal to the Metal.Front Oncol. 2015;5:34. [DOI] [PubMed] [PMC]
Jiang H, Rivera-Molina Y, Gomez-Manzano C, Clise-Dwyer K, Bover L, et al. Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination.Cancer Res. 2017;77:3894–907. [DOI] [PubMed] [PMC]
Moaven O, Mangieri CW, Stauffer JA, Anastasiadis PZ, Borad MJ. Strategies to Develop Potent Oncolytic Viruses and Enhance Their Therapeutic Efficacy.JCO Precis Oncol. 2021;5:PO.21.00003. [DOI] [PubMed] [PMC]
Bommareddy PK, Wakimoto H, Martuza RL, Kaufman HL, Rabkin SD, Saha D. Oncolytic herpes simplex virus expressing IL-2 controls glioblastoma growth and improves survival.J Immunother Cancer. 2024;12:e008880. [DOI] [PubMed] [PMC]
Nguyen TT, Shin DH, Sohoni S, Singh SK, Rivera-Molina Y, Jiang H, et al. Reshaping the tumor microenvironment with oncolytic viruses, positive regulation of the immune synapse, and blockade of the immunosuppressive oncometabolic circuitry.J Immunother Cancer. 2022;10:e004935. [DOI] [PubMed] [PMC]
Meisen WH, Wohleb ES, Jaime-Ramirez AC, Bolyard C, Yoo JY, Russell L, et al. The Impact of Macrophage- and Microglia-Secreted TNFα on Oncolytic HSV-1 Therapy in the Glioblastoma Tumor Microenvironment.Clin Cancer Res. 2015;21:3274–85. [DOI] [PubMed] [PMC]
Fortin C, Huang X, Yang Y. NK cell response to vaccinia virus is regulated by myeloid-derived suppressor cells.J Immunol. 2012;189:1843–9. [DOI] [PubMed] [PMC]
Xu B, Tian L, Chen J, Wang J, Ma R, Dong W, et al. An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma.Nat Commun. 2021;12:5908. [DOI] [PubMed] [PMC]
Parker JN, Meleth S, Hughes KB, Gillespie GY, Whitley RJ, Markert JM. Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12.Cancer Gene Ther. 2005;12:359–68. [DOI] [PubMed]
Otani Y, Yoo JY, Lewis CT, Chao S, Swanner J, Shimizu T, et al. NOTCH-Induced MDSC Recruitment after oHSV Virotherapy in CNS Cancer Models Modulates Antitumor Immunotherapy.Clin Cancer Res. 2022;28:1460–73. [DOI] [PubMed] [PMC]
Koks CA, Garg AD, Ehrhardt M, Riva M, Vandenberk L, Boon L, et al. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death.Int J Cancer. 2015;136:E313–25. [DOI] [PubMed]
Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, et al. Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma.J Clin Oncol. 2018;36:1419–27. [DOI] [PubMed] [PMC]
Kiyokawa J, Wakimoto H. Preclinical And Clinical Development Of Oncolytic Adenovirus For The Treatment Of Malignant Glioma.Oncolytic Virother. 2019;8:27–37. [DOI] [PubMed] [PMC]
Mahmoud AB, Ajina R, Aref S, Darwish M, Alsayb M, Taher M, et al. Advances in immunotherapy for glioblastoma multiforme.Front Immunol. 2022;13:944452. [DOI] [PubMed] [PMC]
Melcher A, Harrington K, Vile R. Oncolytic virotherapy as immunotherapy.Science. 2021;374:1325–6. [DOI] [PubMed] [PMC]
van Hooren L, Handgraaf SM, Kloosterman DJ, Karimi E, van Mil LWHG, Gassama AA, et al. CD103+ regulatory T cells underlie resistance to radio-immunotherapy and impair CD8+ T cell activation in glioblastoma.Nat Cancer. 2023;4:665–81. [DOI] [PubMed] [PMC]
Humphries W, Wei J, Sampson JH, Heimberger AB. The role of tregs in glioma-mediated immunosuppression: potential target for intervention.Neurosurg Clin N Am. 2010;21:125–37. [DOI] [PubMed] [PMC]
Tomaszewski W, Sanchez-Perez L, Gajewski TF, Sampson JH. Brain Tumor Microenvironment and Host State: Implications for Immunotherapy.Clin Cancer Res. 2019;25:4202–10. [DOI] [PubMed] [PMC]
Chen L, Wang P, Di Gioia C, Yuan M, Zhang Z, Miao J, et al. A novel oncolytic Vaccinia virus armed with IL-12 augments antitumor immune responses leading to durable regression in murine models of lung cancer.Front Immunol. 2025;15:1492464. [DOI] [PubMed] [PMC]
Zhang S, Rabkin SD. The discovery and development of oncolytic viruses: are they the future of cancer immunotherapy?Expert Opin Drug Discov. 2021;16:391–410. [DOI] [PubMed] [PMC]
Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions.Signal Transduct Target Ther. 2023;8:156. [DOI] [PubMed] [PMC]
Zhang B, Wang X, Cheng P. Remodeling of Tumor Immune Microenvironment by Oncolytic Viruses.Front Oncol. 2021;10:561372. [DOI] [PubMed] [PMC]
Zhang Y, Guan XY, Jiang P. Cytokine and Chemokine Signals of T-Cell Exclusion in Tumors.Front Immunol. 2020;11:594609. [DOI] [PubMed] [PMC]
Qiao J, Fu YX. Cytokines that target immune killer cells against tumors.Cell Mol Immunol. 2020;17:722–7. [DOI] [PubMed] [PMC]
Nguyen HM, Guz-Montgomery K, Saha D. Oncolytic Virus Encoding a Master Pro-Inflammatory Cytokine Interleukin 12 in Cancer Immunotherapy.Cells. 2020;9:400. [DOI] [PubMed] [PMC]
Pol J, Kroemer G, Galluzzi L. First oncolytic virus approved for melanoma immunotherapy.Oncoimmunology. 2015;5:e1115641. [DOI] [PubMed] [PMC]
Broman KK, Zager JS. An evaluation of talimogene laherparepvec for the treatment of melanoma.Expert Opin Biol Ther. 2020;20:9–14. [DOI] [PubMed]
Nguyen HM, Saha D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment.Oncolytic Virother. 2021;10:1–27. [DOI] [PubMed] [PMC]
Alessandrini F, Menotti L, Avitabile E, Appolloni I, Ceresa D, Marubbi D, et al. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model.Oncogene. 2019;38:4467–79. [DOI] [PubMed]
Ma R, Lu T, Li Z, Teng KY, Mansour AG, Yu M, et al. An Oncolytic Virus Expressing IL15/IL15Rα Combined with Off-the-Shelf EGFR-CAR NK Cells Targets Glioblastoma.Cancer Res. 2021;81:3635–48. [DOI] [PubMed] [PMC]
Chen L, Zuo M, Zhou Q, Wang Y. Oncolytic virotherapy in cancer treatment: challenges and optimization prospects.Front Immunol. 2023;14:1308890. [DOI] [PubMed] [PMC]
Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity.Front Immunol. 2020;11:583084. [DOI] [PubMed] [PMC]
Boutilier AJ, Elsawa SF. Macrophage Polarization States in the Tumor Microenvironment.Int J Mol Sci. 2021;22:6995. [DOI] [PubMed] [PMC]
Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes.Theranostics. 2021;11:2892–916. [DOI] [PubMed] [PMC]
Zhou Q, Xue C, Man J, Zhang P, Ke X, Zhao J, et al. Correlation of tumor-associated macrophage infiltration in glioblastoma with magnetic resonance imaging characteristics: a retrospective cross-sectional study.Quant Imaging Med Surg. 2023;13:5958–73. [DOI] [PubMed] [PMC]
Wang G, Zhong K, Wang Z, Zhang Z, Tang X, Tong A, et al. Tumor-associated microglia and macrophages in glioblastoma: From basic insights to therapeutic opportunities.Front Immunol. 2022;13:964898. [DOI] [PubMed] [PMC]
Tang F, Wang Y, Zeng Y, Xiao A, Tong A, Xu J. Tumor-associated macrophage-related strategies for glioma immunotherapy.NPJ Precis Oncol. 2023;7:78. [DOI] [PubMed] [PMC]
Dallavalasa S, Beeraka NM, Basavaraju CG, Tulimilli SV, Sadhu SP, Rajesh K, et al. The Role of Tumor Associated Macrophages (TAMs) in Cancer Progression, Chemoresistance, Angiogenesis and Metastasis - Current Status.Curr Med Chem. 2021;28:8203–36. [DOI] [PubMed]
Gao J, Liang Y, Wang L. Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy.Front Immunol. 2022;13:888713. [DOI] [PubMed] [PMC]
Jiang H, Clise-Dwyer K, Ruisaard KE, Fan X, Tian W, Gumin J, et al. Delta-24-RGD oncolytic adenovirus elicits anti-glioma immunity in an immunocompetent mouse model.PLoS One. 2014;9:e97407. [DOI] [PubMed] [PMC]
Nair S, Mazzoccoli L, Jash A, Govero J, Bais SS, Hu T, et al. Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade.JCI Insight. 2021;6:e144619. [DOI] [PubMed] [PMC]
Romero D. HSV-1 G207 is active in paediatric glioma.Nat Rev Clin Oncol. 2021;18:321. [DOI] [PubMed]
Shyr CR, Liu LC, Chien HS, Huang CP. Immunotherapeutic Agents for Intratumoral Immunotherapy.Vaccines (Basel). 2023;11:1717. [DOI] [PubMed] [PMC]
Collins SA, Shah AH, Ostertag D, Kasahara N, Jolly DJ. Clinical development of retroviral replicating vector Toca 511 for gene therapy of cancer.Expert Opin Biol Ther. 2021;21:1199–214. [DOI] [PubMed] [PMC]
Ganipineni LP, Chan Y, Ng SW, Kandalam S, Chereddy KK. Chapter 34 - Cell and gene therapies—Emerging technologies and drug delivery systems for treating brain cancer. In: Dua K, Mehta M, de Jesus Andreoli Pinto T, Pont LG, Williams KA, Rathbone MJ, editors. Advanced Drug Delivery Systems in the Management of Cancer. Academic Press; 2021. pp. 431–46.
Malekshah OM, Chen X, Nomani A, Sarkar S, Hatefi A. Enzyme/Prodrug Systems for Cancer Gene Therapy.Curr Pharmacol Rep. 2016;2:299–308. [DOI] [PubMed] [PMC]
Hogan DJ, Zhu JJ, Diago OR, Gammon D, Haghighi A, Lu G, et al. Molecular Analyses Support the Safety and Activity of Retroviral Replicating Vector Toca 511 in Patients.Clin Cancer Res. 2018;24:4680–93. [DOI] [PubMed]
Cloughesy TF, Landolfi J, Vogelbaum MA, Ostertag D, Elder JB, Bloomfield S, et al. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC.Neuro Oncol. 2018;20:1383–92. [DOI] [PubMed] [PMC]
Falchook GS, Ahnert JR, Venkat S, Donahue A, Horner P, Thomassen A, et al. Immune modulation after Toca 511 and Toca FC treatment of colorectal cancer patients.J Clin Oncol. 2020;38:186. [DOI]
Desjardins A, Gromeier M, Herndon JE 2nd, Beaubier N, Bolognesi DP, Friedman AH, et al. Recurrent Glioblastoma Treated with Recombinant Poliovirus.N Engl J Med. 2018;379:150–61. [DOI] [PubMed] [PMC]
Mitchell LA, Lopez Espinoza F, Mendoza D, Kato Y, Inagaki A, Hiraoka K,et al. Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model.Neuro Oncol. 2017;19:930–9. [DOI] [PubMed] [PMC]
Brown MC, Dobrikova EY, Dobrikov MI, Walton RW, Gemberling SL, Nair SK, et al. Oncolytic polio virotherapy of cancer.Cancer. 2014;120:3277–86. [DOI] [PubMed] [PMC]
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy.Annu Rev Immunol. 2013;31:51–72. [DOI] [PubMed]
Holl EK, Brown MC, Boczkowski D, McNamara MA, George DJ, Bigner DD, et al. Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models.Oncotarget. 2016;7:79828–41. [DOI] [PubMed] [PMC]
Wang C, Zhao Q, Zheng X, Li S, Chen J, Zhao H, et al. Decellularized brain extracellular matrix slice glioblastoma culture model recapitulates the interaction between cells and the extracellular matrix without a nutrient-oxygen gradient interference.Acta Biomater. 2023;158:132–50. [DOI] [PubMed]
de Jong JM, Broekaart DWM, Bongaarts A, Mühlebner A, Mills JD, van Vliet EA, et al. Altered Extracellular Matrix as an Alternative Risk Factor for Epileptogenicity in Brain Tumors.Biomedicines. 2022;10:2475. [DOI] [PubMed] [PMC]
Widodo SS, Dinevska M, Cuzcano L, Papanicolaou M, Cox TR, Stylli SS, et al. Spatial analysis of the metastatic brain tumor immune and extracellular matrix microenvironment.Adv Cancer Biol. 2023;7:100096. [DOI]
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C 2nd, et al. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications.Front Oncol. 2022;12:1005069. [DOI] [PubMed] [PMC]
Henke E, Nandigama R, Ergün S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy.Front Mol Biosci. 2020;6:160. [DOI] [PubMed] [PMC]
Safarians G, Sohrabi A, Solomon I, Xiao W, Bastola S, Rajput BW, et al. Glioblastoma Spheroid Invasion through Soft, Brain-Like Matrices Depends on Hyaluronic Acid–CD44 Interactions.Adv Healthc Mater. 2023;12:e2203143. [DOI] [PubMed] [PMC]
Whatcott CJ, Han H, Posner RG, Hostetter G, Von Hoff DD. Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look.Cancer Discov. 2011;1:291–6. [DOI] [PubMed] [PMC]
Pibuel MA, Poodts D, Díaz M, Hajos SE, Lompardía SL. The scrambled story between hyaluronan and glioblastoma.J Biol Chem. 2021;296:100549. [DOI] [PubMed] [PMC]
Calori IR, Alves SR, Bi H, Tedesco AC. Type-I Collagen/Collagenase Modulates the 3D Structure and Behavior of Glioblastoma Spheroid Models.ACS Appl Bio Mater. 2022;5:723–33. [DOI] [PubMed]
Wang Y, Sakaguchi M, Sabit H, Tamai S, Ichinose T, Tanaka S, et al. COL1A2 inhibition suppresses glioblastoma cell proliferation and invasion.J Neurosurg. 2022;138:639–48. [DOI] [PubMed]
Chintala SK, Sawaya R, Gokaslan ZL, Rao JS. The effect of type III collagen on migration and invasion of human glioblastoma cell lines in vitro.Cancer Lett. 1996;102:57–63. [DOI] [PubMed]
Mammoto T, Jiang A, Jiang E, Panigrahy D, Kieran MW, Mammoto A. Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression.Am J Pathol. 2013;183:1293–305. [DOI] [PubMed] [PMC]
Kozlova N, Grossman JE, Iwanicki MP, Muranen T. The Interplay of the Extracellular Matrix and Stromal Cells as a Drug Target in Stroma-Rich Cancers.Trends Pharmacol Sci. 2020;41:183–98. [DOI] [PubMed] [PMC]
Hsu BE, Shen Y, Siegel PM. Neutrophils: Orchestrators of the Malignant Phenotype.Front Immunol. 2020;11:1778. [DOI] [PubMed] [PMC]
Peng DH, Rodriguez BL, Diao L, Chen L, Wang J, Byers LA, et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion.Nat Commun. 2020;11:4520. [DOI] [PubMed] [PMC]
Hartmann N, Giese NA, Giese T, Poschke I, Offringa R, Werner J, et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer.Clin Cancer Res. 2014;20:3422–33. [DOI] [PubMed]
Gordon-Weeks A, Yuzhalin AE. Cancer Extracellular Matrix Proteins Regulate Tumour Immunity.Cancers (Basel). 2020;12:3331. [DOI] [PubMed] [PMC]
Rømer AMA, Thorseth ML, Madsen DH. Immune Modulatory Properties of Collagen in Cancer.Front Immunol. 2021;12:791453. [DOI] [PubMed] [PMC]
Hu M, Liao X, Tao Y, Chen Y. Advances in oncolytic herpes simplex virus and adenovirus therapy for recurrent glioma.Front Immunol. 2023;14:1285113. [DOI] [PubMed] [PMC]
Kardani K, Sanchez Gil J, Rabkin SD. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells.Front Cell Infect Microbiol. 2023;13:1206111. [DOI] [PubMed] [PMC]
Hong B, Sahu U, Mullarkey MP, Kaur B. Replication and Spread of Oncolytic Herpes Simplex Virus in Solid Tumors.Viruses. 2022;14:118. [DOI] [PubMed] [PMC]
Sette P, Amankulor N, Li A, Marzulli M, Leronni D, Zhang M, et al. GBM-Targeted oHSV Armed with Matrix Metalloproteinase 9 Enhances Anti-tumor Activity and Animal Survival.Mol Ther Oncolytics. 2019;15:214–22. [DOI] [PubMed] [PMC]
Schäfer S, Weibel S, Donat U, Zhang Q, Aguilar RJ, Chen NG, et al. Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors.BMC Cancer. 2012;12:366. [DOI] [PubMed] [PMC]
Song KH, Harvey BK, Borden MA. State-of-the-art of microbubble-assisted blood-brain barrier disruption.Theranostics. 2018;8:4393–408. [DOI] [PubMed] [PMC]
Fares J, Ahmed AU, Ulasov IV, Sonabend AM, Miska J, Lee-Chang C, et al. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial.Lancet Oncol. 2021;22:1103–14. [DOI] [PubMed] [PMC]
Hamad A, Chumakov SP. Engineering a recombinant Herpesvirus saimiri strain by co-culturing transfected and permissive cells.Bull Russ State Med Univ. 2019;6:37–44. [DOI]
Hsu E, Keene D, Ventureyra E, Matzinger MA, Jimenez C, Wang HS, et al. Bone marrow metastasis in astrocytic gliomata.J Neurooncol. 1998;37:285–93. [DOI] [PubMed]
Zadeh G, Lang F, Daras M, Cloughesy T, Colman H, Ong S, et al. Atim-24. Interim Results of a Phase Ii Multicenter Study of the Conditionally Replicative Oncolytic Adenovirus Dnx-2401 with Pembrolizumab (Keytruda) for Recurrent Glioblastoma; Captive Study (Keynote-192).Neuro Oncol. 2018;20:vi6. [DOI]
Lauer UM, Beil J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape.Future Oncol. 2022:2713–32. [DOI] [PubMed]
Keshavarz M, Mohammad Miri S, Behboudi E, Arjeini Y, Dianat-Moghadam H, Ghaemi A. Oncolytic virus delivery modulated immune responses toward cancer therapy: Challenges and perspectives.Int Immunopharmacol. 2022;108:108882. [DOI] [PubMed]
Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G. Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies.Trends Immunol. 2018;39:209–21. [DOI] [PubMed]
Filley AC, Dey M. Immune System, Friend or Foe of Oncolytic Virotherapy?Front Oncol. 2017;7:106. [DOI] [PubMed] [PMC]
Hastie E, Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer.J Gen Virol. 2012;93:2529–45. [DOI] [PubMed] [PMC]
Altomonte J, Wu L, Chen L, Meseck M, Ebert O, García-Sastre A, et al. Exponential enhancement of oncolytic vesicular stomatitis virus potency by vector-mediated suppression of inflammatory responses in vivo.Mol Ther. 2008;16:146–53. [DOI] [PubMed] [PMC]
Chen L, Ma Z, Xu C, Xie Y, Ouyang D, Song S, et al. Progress in oncolytic viruses modified with nanomaterials for intravenous application.Cancer Biol Med. 2023;20:830–55. [DOI] [PubMed] [PMC]
Garofalo M, Villa A, Rizzi N, Kuryk L, Rinner B, Cerullo V, et al. Extracellular vesicles enhance the targeted delivery of immunogenic oncolytic adenovirus and paclitaxel in immunocompetent mice.J Control Release. 2019;294:165–75. [DOI] [PubMed]
Wang L, Chen Y, Liu X, Li Z, Dai X. The Application of CRISPR/Cas9 Technology for Cancer Immunotherapy: Current Status and Problems.Front Oncol. 2022;11:704999. [DOI] [PubMed] [PMC]
Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy.J Hematol Oncol. 2020;13:84. [DOI] [PubMed] [PMC]
Abd-Aziz N, Poh CL. Development of oncolytic viruses for cancer therapy.Transl Res. 2021;237:98–123. [DOI] [PubMed]
Mirbahari SN, Da Silva M, Zúñiga AIM, Kooshki Zamani N, St-Laurent G, Totonchi M, et al. Recent progress in combination therapy of oncolytic vaccinia virus.Front Immunol. 2024;15:1272351. [DOI] [PubMed] [PMC]
Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions.J Exp Clin Cancer Res. 2022;41:142. [DOI] [PubMed] [PMC]
Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes.Viruses. 2021;13:1271. [DOI] [PubMed] [PMC]
Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy.Expert Rev Anticancer Ther. 2008;8:1581–8. [DOI] [PubMed] [PMC]
Liu X, Zhang J, Feng K, Wang S, Chen L, Niu S, et al. Efficacy and safety of oncolytic virus combined with chemotherapy or immune checkpoint inhibitors in solid tumor patients: A meta-analysis.Front Pharmacol. 2022;13:1023533. [DOI] [PubMed] [PMC]
Zhang B, Cheng P. Improving antitumor efficacy via combinatorial regimens of oncolytic virotherapy.Mol Cancer. 2020;19:158. [DOI] [PubMed] [PMC]
Saha D, Rabkin SD, Martuza RL. Temozolomide antagonizes oncolytic immunovirotherapy in glioblastoma.J Immunother Cancer. 2020;8:e000345. [DOI] [PubMed] [PMC]
Shi T, Song X, Wang Y, Liu F, Wei J. Combining Oncolytic Viruses With Cancer Immunotherapy: Establishing a New Generation of Cancer Treatment.Front Immunol. 2020;11:683. [DOI] [PubMed] [PMC]
Moaven O, W Mangieri C, A Stauffer J, Anastasiadis PZ, Borad MJ. Evolving Role of Oncolytic Virotherapy: Challenges and Prospects in Clinical Practice.JCO Precis Oncol. 2021;5:PO.20.00395. [DOI] [PubMed] [PMC]
Wang L, Geng H, Liu Y, Liu L, Chen Y, Wu F, et al. Hot and cold tumors: Immunological features and the therapeutic strategies.MedComm (2020). 2023;4:e343. [DOI] [PubMed] [PMC]
Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy.Nat Rev Immunol. 2018;18:498–513. [DOI] [PubMed]
Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold Tumors: A Therapeutic Challenge for Immunotherapy.Front Immunol. 2019;10:168. [DOI] [PubMed] [PMC]
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice.Nat Rev Immunol. 2020;20:651–68. [DOI] [PubMed] [PMC]
Babamohamadi M, Mohammadi N, Faryadi E, Haddadi M, Merati A, Ghobadinezhad F, et al. Anti-CTLA-4 nanobody as a promising approach in cancer immunotherapy.Cell Death Dis. 2024;15:17. [DOI] [PubMed] [PMC]
Duong SL, Barbiero FJ, Nowak RJ, Baehring JM. Neurotoxicities associated with immune checkpoint inhibitor therapy.J Neurooncol. 2021;152:265–77. [DOI] [PubMed]
Ebrahimi S, Habibzadeh A, Khojasteh-Kaffash S, Valizadeh P, Samieefar N, Rezaei N. Immune checkpoint inhibitors therapy as the game-changing approach for pediatric lymphoma: A brief landscape.Crit Rev Oncol Hematol. 2024;193:104225. [DOI] [PubMed]
Oh CM, Chon HJ, Kim C. Combination Immunotherapy Using Oncolytic Virus for the Treatment of Advanced Solid Tumors.Int J Mol Sci. 2020;21:7743. [DOI] [PubMed] [PMC]
Xie R, Huang H, Chen T, Huang X, Chen C. Effectiveness and safety of pelareorep plus chemotherapy versus chemotherapy alone for advanced solid tumors: a meta-analysis.Front Pharmacol. 2023;14:1228225. [DOI] [PubMed] [PMC]
Chiu M, Armstrong EJL, Jennings V, Foo S, Crespo-Rodriguez E, Bozhanova G, et al. Combination therapy with oncolytic viruses and immune checkpoint inhibitors.Expert Opin Biol Ther. 2020;20:635–52. [DOI] [PubMed]
Lovatt C, Parker AL. Oncolytic Viruses and Immune Checkpoint Inhibitors: The “Hot” New Power Couple.Cancers (Basel). 2023;15:4178. [DOI] [PubMed] [PMC]
Wang Y, Jin J, Li Y, Zhou Q, Yao R, Wu Z, et al. NK cell tumor therapy modulated by UV-inactivated oncolytic herpes simplex virus type 2 and checkpoint inhibitors.Transl Res. 2022;240:64–86. [DOI] [PubMed]
Nakao S, Arai Y, Tasaki M, Yamashita M, Murakami R, Kawase T, et al. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade.Sci Transl Med. 2020;12:eaax7992. [DOI] [PubMed]
LaRocca CJ, Warner SG. Oncolytic viruses and checkpoint inhibitors: combination therapy in clinical trials.Clin Transl Med. 2018;7:35. [DOI] [PubMed] [PMC]
Aspirin AP, de Los Reyes V AA, Kim Y. Polytherapeutic strategies with oncolytic virus–bortezomib and adjuvant NK cells in cancer treatment.J R Soc Interface. 2021;18:20200669. [DOI] [PubMed] [PMC]
Zhang C, Hu Y, Shi C. Targeting Natural Killer Cells for Tumor Immunotherapy.Front Immunol. 2020;11:60. [DOI] [PubMed] [PMC]
Kim Y, Yoo JY, Lee TJ, Liu J, Yu J, Caligiuri MA, et al. Complex role of NK cells in regulation of oncolytic virus–bortezomib therapy.Proc Natl Acad Sci U S A. 2018;115:4927–32. [DOI] [PubMed] [PMC]
Hayes C. Cellular immunotherapies for cancer.Ir J Med Sci. 2021;190:41–57. [DOI] [PubMed] [PMC]
Moon EK, Wang LS, Bekdache K, Lynn RC, Lo A, Thorne SH, et al. Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines.Oncoimmunology. 2018;7:e1395997. [DOI] [PubMed] [PMC]
Tanoue K, Rosewell Shaw A, Watanabe N, Porter C, Rana B, Gottschalk S, et al. Armed Oncolytic Adenovirus–Expressing PD-L1 Mini-Body Enhances Antitumor Effects of Chimeric Antigen Receptor T Cells in Solid Tumors.Cancer Res. 2017;77:2040–51. [DOI] [PubMed] [PMC]
Liu H, Qiu W, Sun T, Wang L, Du C, Hu Y, et al. Therapeutic strategies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds.Acta Pharm Sin B. 2022;12:1781–804. [DOI] [PubMed] [PMC]
Datsi A, Sorg RV. Dendritic Cell Vaccination of Glioblastoma: Road to Success or Dead End.Front Immunol. 2021;12:770390. [DOI] [PubMed] [PMC]
Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma.J Transl Med. 2018;16:142. [DOI] [PubMed] [PMC]