Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin. 2024;74:229–63. [DOI] [PubMed]
Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R. Cancer of the cervix uteri: 2021 update.Int J Gynaecol Obstet. 2021;155:28–44. [DOI] [PubMed] [PMC]
Friedlander M, Grogan M; U.S. Preventative Services Task Force. Guidelines for the treatment of recurrent and metastatic cervical cancer.Oncologist. 2002;7:342–7. [PubMed]
Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis.Cancer Res Treat. 2005;37:319–24. [DOI] [PubMed] [PMC]
Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition.Am J Clin Oncol. 2016;39:98–106. [DOI] [PubMed] [PMC]
Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation.Nat Immunol. 2001;2:261–8. [DOI] [PubMed]
Ai L, Xu A, Xu J. Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond.Adv Exp Med Biol. 2020;1248:33–59. [DOI] [PubMed]
Ghosh C, Luong G, Sun Y. A snapshot of the PD-1/PD-L1 pathway.J Cancer. 2021;12:2735–46. [DOI] [PubMed] [PMC]
Weigmann K. Releasing the brakes to fight cancer: The recent discovery of checkpoints has boosted the field of cancer immunotherapy.EMBO Rep. 2016;17:1257–60. [DOI] [PubMed] [PMC]
Njau MN, Kim JH, Chappell CP, Ravindran R, Thomas L, Pulendran B, et al. CD28–B7 Interaction Modulates Short- and Long-Lived Plasma Cell Function.J Immunol. 2012;189:2758–67. [DOI]
Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti-tumor immunity.Immunol Rev. 2009;229:126–44. [DOI]
Chen FP, Chen K, Huang X, Huang L, Wu HY, Ouyang Y, et al. Neoadjuvant chemo-immunotherapy following concurrent immuno-chemoradiotherapy and immune-maintenance therapy as primary treatment for locally advanced cervical cancer: A prospective, single-arm, phase 2 trial.J Clin Oncol. 2024;42:5533. [DOI]
Li K, Chen J, Hu Y, Wang YZ, Shen Y, Chen G, et al. Neoadjuvant chemotherapy plus camrelizumab for locally advanced cervical cancer (NACI study): a multicentre, single-arm, phase 2 trial.Lancet Oncol. 2024;25:76–85. [DOI]
Zhu M, Yang M, Zhang J, Yin Y, Fan X, Zhang Y, et al. Immunogenic Cell Death Induction by Ionizing Radiation.Front Immunol. 2021;12:705361. [DOI]
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy.Nat Rev Cancer. 2012;12:860–75. [DOI] [PubMed]
Luo H, Ma W, Chen Q, Yang Z, Dai Y. Radiotherapy-activated tumor immune microenvironment: Realizing radiotherapy-immunity combination therapy strategies.Nano Today. 2023;53:102042. [DOI]
Wan S, Pestka S, Jubin RG, Lyu YL, Tsai YC, Liu LF. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells.PLoS One. 2012;7:e32542. [DOI] [PubMed] [PMC]
Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells.Immunology. 2013;138:105–15. [DOI] [PubMed] [PMC]
Kordbacheh T, Honeychurch J, Blackhall F, Faivre-Finn C, Illidge T. Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms.Ann Oncol. 2018;29:301–10. [DOI]
Voronova V, Vislobokova A, Mutig K, Samsonov M, Peskov K, Sekacheva M, et al. Combination of immune checkpoint inhibitors with radiation therapy in cancer: A hammer breaking the wall of resistance.Front Oncol. 2022;12:1035884. [DOI] [PubMed] [PMC]
Cytlak UM, Dyer DP, Honeychurch J, Williams KJ, Travis MA, Illidge TM. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity.Nat Rev Immunol. 2022;22:124–38. [DOI] [PubMed]
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy.Biomark Res. 2024;12:98. [DOI] [PubMed] [PMC]
El-Sayes N, Vito A, Mossman K. Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy.Cancers (Basel). 2021;13:806. [DOI] [PubMed] [PMC]
Zhou L, Liu Y, Wu Y, Yang X, Spring Kong FM, Lu Y, et al. Low-dose radiation therapy mobilizes antitumor immunity: New findings and future perspectives.Int J Cancer. 2024;154:1143–57. [DOI] [PubMed]
Jiang L, Li X, Zhang J, Li W, Dong F, Chen C, et al. Combined High-Dose LATTICE Radiation Therapy and Immune Checkpoint Blockade for Advanced Bulky Tumors: The Concept and a Case Report.Front Oncol. 2021;10. [DOI]
Lorusso D, Xiang Y, Hasegawa K, Scambia G, Leiva M, Ramos-Elias P, et al.; ENGOT-cx11/GOG-3047/KEYNOTE-A18 investigators. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): a randomised, double-blind, phase 3 clinical trial.Lancet. 2024;403:1341–50. [DOI] [PubMed]
Monk BJ, Toita T, Wu X, Vázquez Limón JC, Tarnawski R, Mandai M, et al. Durvalumab versus placebo with chemoradiotherapy for locally advanced cervical cancer (CALLA): a randomised, double-blind, phase 3 trial.Lancet Oncol. 2023;24:1334–48. [DOI] [PubMed]
Rodrigues M, Loap P, Dubot C, Durdux C, Bazire L, Minsat M, et al. Combination of nivolumab with chemoradiotherapy for locally advanced cervical cancer: NiCOL phase I trial.J Clin Oncol. 2024;40:5534. [DOI]
Mayadev JS, Enserro D, Lin YG, Da Silva DM, Lankes HA, Aghajanian C, et al. Sequential Ipilimumab After Chemoradiotherapy in Curative-Intent Treatment of Patients With Node-Positive Cervical Cancer.JAMA Oncol. 2020;6:92–9. [DOI] [PubMed] [PMC]
Duska LR, Scalici JM, Temkin SM, Schwarz JK, Crane EK, Moxley KM, et al. Results of an early safety analysis of a study of the combination of pembrolizumab and pelvic chemoradiation in locally advanced cervical cancer.Cancer. 2020;126:4948–56. [DOI] [PubMed]
Chen J, Shi J, Cao Y, Li C, Li J, Yuan Z. A new treatment approach of toripalimab in combination with concurrent platinum-based chemoradiotherapy for locally advanced cervical cancer: A phase II clinical trial.Int J Cancer. 2025;156:817–25. [DOI] [PubMed] [PMC]
Frenel JS, Le Tourneau C, O’Neil B, Ott PA, Piha-Paul SA, Gomez-Roca C, et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028 Trial.J Clin Oncol. 2017;35:4035–41. [DOI] [PubMed]
Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study.J Clin Oncol. 2019;37:1470–8. [DOI] [PubMed]
Tewari KS, Monk BJ, Vergote I, Miller A, de Melo AC, Kim HS, et al. EMPOWER-Cervical 1/GOG-3016/ENGOT-cx9: Interim analysis of phase III trial of cemiplimab vs. investigator’s choice (IC) chemotherapy (chemo) in recurrent/metastatic (R/M) cervical carcinoma.Ann Oncol. 2021;32:940–1. [DOI]
Oaknin A, Monk BJ, Vergote I, Cristina de Melo A, Kim YM, Lisyanskaya AS, et al. EMPOWER CERVICAL-1: Effects of cemiplimab versus chemotherapy on patient-reported quality of life, functioning and symptoms among women with recurrent cervical cancer.Eur J Cancer. 2022;174:299–309. [DOI] [PubMed]
Tewari KS, Monk BJ, Vergote I, Miller A, de Melo AC, Kim HS, et al.; Investigators for GOG Protocol 3016 and ENGOT Protocol En-Cx9. Survival with Cemiplimab in Recurrent Cervical Cancer.N Engl J Med. 2022;386:544–55. [DOI] [PubMed]
Naumann RW, Hollebecque A, Meyer T, Devlin MJ, Oaknin A, Kerger J, et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase I/II CheckMate 358 Trial.J Clin Oncol. 2019;37:2825–34. [DOI] [PubMed] [PMC]
Colombo N, Dubot C, Lorusso D, Caceres MV, Hasegawa K, Shapira-Frommer R, et al.; KEYNOTE-826 Investigators. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer.N Engl J Med. 2021;385:1856–67. [DOI] [PubMed]
Oaknin A, Gladieff L, Martínez-García J, Villacampa G, Takekuma M, De Giorgi U, et al.; ENGOT-Cx10–GEICO 68-C–JGOG1084–GOG-3030 Investigators. Atezolizumab plus bevacizumab and chemotherapy for metastatic, persistent, or recurrent cervical cancer (BEATcc): a randomised, open-label, phase 3 trial.Lancet. 2024;403:31–43. [DOI] [PubMed]
Huh WK, Brady WE, Fracasso PM, Dizon DS, Powell MA, Monk BJ, et al. Phase II study of axalimogene filolisbac (ADXS-HPV) for platinum-refractory cervical carcinoma: An NRG oncology/gynecologic oncology group study.Gynecol Oncol. 2020;158:562–9. [DOI] [PubMed] [PMC]
Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer.Lancet. 1996;347:1523–7. [DOI] [PubMed]
Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer.Clin Cancer Res. 2002;8:3676–85.
Baldwin PJ, van der Burg SH, Boswell CM, Offringa R, Hickling JK, Dobson J, et al. Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia.Clin Cancer Res. 2003;9:5205–13.
Choi YJ, Hur SY, Kim TJ, Hong SR, Lee JK, Cho CH, et al. A Phase II, Prospective, Randomized, Multicenter, Open-Label Study of GX-188E, an HPV DNA Vaccine, in Patients with Cervical Intraepithelial Neoplasia 3.Clin Cancer Res. 2020;26:1616–23.
Kim TJ, Jin HT, Hur SY, Yang HG, Seo YB, Hong SR, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients.Nat Commun. 2014;5:5317. [DOI] [PubMed] [PMC]
Ma B, Maraj B, Tran NP, Knoff J, Chen A, Alvarez RD, et al. Emerging human papillomavirus vaccines.Expert Opin Emerg Drugs. 2012;17:469–92. [DOI] [PubMed] [PMC]
Lin K, Roosinovich E, Ma B, Hung CF, Wu TC. Therapeutic HPV DNA vaccines.Immunol Res. 2010;47:86–112. [DOI] [PubMed] [PMC]
Hasan Y, Furtado LV, Tergas AI, Lee NK, Brooks RA, McCall AR, et al. A Phase I trial assessing the safety and tolerability of a therapeutic DNA vaccination against HPV16 and HPV18 E6/E7 oncogenes after chemoradiation for cervical cancer.Int J Radiat Oncol Biol Phys. 2020. [DOI]
Sharma RK, Elpek KG, Yolcu ES, Schabowsky RH, Zhao H, Bandura-Morgan L, et al. Costimulation as a platform for the development of vaccines: a peptide-based vaccine containing a novel form of 4-1BB ligand eradicates established tumors.Cancer Res. 2009;69:4319–26. [DOI]
van der Burg SH, Bijker MS, Welters MJP, Offringa R, Melief CJM. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy.Adv Drug Deliv Rev. 2006;58:916–30. [DOI]
Yan W, Chen WC, Liu Z, Huang L. Bryostatin-I: a dendritic cell stimulator for chemokines induction and a promising adjuvant for a peptide based cancer vaccine.Cytokine. 2010;52:238–44. [DOI] [PubMed]
Einstein MH, Kadish AS, Burk RD, Kim MY, Wadler S, Streicher H, et al. Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III.Gynecol Oncol. 2007;106:453–60. [DOI]
de Jong A, O’Neill T, Khan AY, Kwappenberg KM, Chisholm SE, Whittle NR, et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine.Vaccine. 2002;20:3456–64. [DOI] [PubMed]
Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL, et al. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia.Br J Cancer. 2010;102:1129–36. [DOI] [PubMed] [PMC]
Santin AD, Bellone S, Palmieri M, Zanolini A, Ravaggi A, Siegel ER, et al. Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: a phase I escalating-dose trial.J Virol. 2008;82:1968–79. [DOI]
Zhu Y, Zheng Y, Mei L, Liu M, Li S, Xiao H, et al. Enhanced immunotherapeutic effect of modified HPV16 E7-pulsed dendritic cell vaccine by an adeno-shRNA-SOCS1 virus.Int J Oncol. 2013;43:1151–9. [DOI]
Stevanović S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells.J Clin Oncol. 2015;33:1543–50. [DOI] [PubMed] [PMC]
Hossain NM, Chapuis AG, Walter RB. T-Cell Receptor-Engineered Cells for the Treatment of Hematologic Malignancies.Curr Hematol Malig Rep. 2016;11:311–7. [DOI] [PubMed]
Kelderman S, Heemskerk B, Fanchi L, Philips D, Toebes M, Kvistborg P, et al. Antigen-specific TIL therapy for melanoma: A flexible platform for personalized cancer immunotherapy.Eur J Immunol. 2016;46:1351–60. [DOI]
Zsiros E, Tsuji T, Odunsi K. Adoptive T-cell therapy is a promising salvage approach for advanced or recurrent metastatic cervical cancer.J Clin Oncol. 2015;33:1521–2. [DOI] [PubMed]
Sukari A, Abdallah N, Nagasaka M. Unleash the power of the mighty T cells-basis of adoptive cellular therapy.Crit Rev Oncol Hematol. 2019;136:1–12. [DOI] [PubMed]
Li N, Tian YW, Xu Y, Meng DD, Gao L, Shen W, et al. Combined Treatment with Autologous CIK Cells, Radiotherapy and Chemotherapy in Advanced Cervical Cancer.Pathol Oncol Res. 2019;25:691–6. [DOI]
Draper LM, Kwong ML, Gros A, Stevanović S, Tran E, Kerkar S, et al. Targeting of HPV-16+ Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6.Clin Cancer Res. 2015;21:4431–9. [DOI] [PubMed] [PMC]
Doran SL, Stevanovic S, Adhikary S, Gartner JJ, Jia L, Kwong MLM, et al. Genetically engineered T-cell therapy for HPV-associated epithelial cancers: A first in human, phase I/II clinical trial.J Clin Oncol. 2018;36:3019. [DOI]
Yang A, Farmer E, Lin J, Wu TC, Hung CF. The current state of therapeutic and T cell-based vaccines against human papillomaviruses.Virus Res. 2017;231:148–65. [DOI] [PubMed] [PMC]
Dai H, Wang Y, Lu X, Han W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy.J Natl Cancer Inst. 2016;108:djv439. [DOI] [PubMed] [PMC]
Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, et al. CAR-T design: Elements and their synergistic function.EBioMedicine. 2020;58:102931. [DOI] [PubMed] [PMC]
Zhang H, Ye ZL, Yuan ZG, Luo ZQ, Jin HJ, Qian QJ. New Strategies for the Treatment of Solid Tumors with CAR-T Cells.Int J Biol Sci. 2016;12:718–29. [DOI] [PubMed] [PMC]
Pasricha S, Durga G, Koyyala VPB, Jajodia A, Gupta G, Mehta A. PD-L1 Testing and Assessment: Practical Considerations for Oncologist and Pathologist.Indian J Med Paediatr Oncol. 2024;45:157–62. [DOI]
Bou Akl I, Berro J, Tfayli A, Shamseddine A, Mukherji D, Temraz S, et al. Current Status and Future Perspectives of Immunotherapy in Middle-Income Countries: A Single-Center Early Experience.World J Oncol. 2020;11:150–7. [DOI] [PubMed] [PMC]
Patel A, Goldstein DA, Tannock IF. Improving access to immunotherapy in low- and middle-income countries.Ann Oncol. 2022;33:360–1. [DOI] [PubMed]
Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy.Signal Transduct Target Ther. 2022;7:93. [DOI] [PubMed] [PMC]
Breij EC, de Goeij BE, Verploegen S, Schuurhuis DH, Amirkhosravi A, Francis J, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors.Cancer Res. 2014;74:1214–26. [DOI] [PubMed]
de Bono JS, Concin N, Hong DS, Thistlethwaite FC, Machiels JP, Arkenau HT, et al. Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): a first-in-human, multicentre, phase 1-2 trial.Lancet Oncol. 2019;20:383–93. [DOI] [PubMed]
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy.Nat Med. 2018;24:541–50. [DOI] [PubMed] [PMC]
Li B, Cui Y, Nambiar DK, Sunwoo JB, Li R. The Immune Subtypes and Landscape of Squamous Cell Carcinoma.Clin Cancer Res. 2019;25:3528–37. [DOI] [PubMed] [PMC]