Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024.CA Cancer J Clin. 2024;74:12–49. [DOI] [PubMed]
Hernández-Blanquisett A, Quintero-Carreño V, Martínez-Ávila MC, Porto M, Manzur-Barbur MC, Buendía E. Metastatic Pancreatic Cancer: Where Are We?Oncol Rev. 2024;17:11364. [DOI] [PubMed] [PMC]
Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial.J Clin Oncol. 1997;15:2403–13. [DOI] [PubMed]
Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al.; National Cancer Institute of Canada Clinical Trials Group. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group.J Clin Oncol. 2007;25:1960–6. [DOI] [PubMed]
Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al.; Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer.N Engl J Med. 2011;364:1817–25. [DOI] [PubMed]
Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine.N Engl J Med. 2013;369:1691–703. [DOI] [PubMed] [PMC]
Cunningham D, Chau I, Stocken DD, Valle JW, Smith D, Steward W, et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer.J Clin Oncol. 2009;27:5513–8. [DOI] [PubMed]
Wainberg ZA, Melisi D, Macarulla T, Pazo Cid R, Chandana SR, De La Fouchardière C, et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): a randomised, open-label, phase 3 trial.Lancet. 2023;402:1272–81. [DOI] [PubMed] [PMC]
Nichetti F, Rota S, Ambrosini P, Pircher C, Gusmaroli E, Droz Dit Busset M, et al. NALIRIFOX, FOLFIRINOX, and Gemcitabine With Nab-Paclitaxel as First-Line Chemotherapy for Metastatic Pancreatic Cancer: A Systematic Review and Meta-Analysis.JAMA Netw Open. 2024;7:e2350756. [DOI] [PubMed] [PMC]
Pelzer U, Stieler J, Roll L, Hilbig A, Dörken B, Riess H, et al. Second-line therapy in refractory pancreatic cancer. results of a phase II study.Onkologie. 2009;32:99–102. [DOI] [PubMed]
Gill S, Ko YJ, Cripps C, Beaudoin A, Dhesy-Thind S, Zulfiqar M, et al. PANCREOX: A Randomized Phase III Study of Fluorouracil/Leucovorin With or Without Oxaliplatin for Second-Line Advanced Pancreatic Cancer in Patients Who Have Received Gemcitabine-Based Chemotherapy.J Clin Oncol. 2016;34:3914–20. [DOI] [PubMed]
Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, et al.; NAPOLI-1 Study Group. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial.Lancet. 2016;387:545–57. [DOI] [PubMed]
Carrato A, Pazo-Cid R, Macarulla T, Gallego J, Jiménez-Fonseca P, Rivera F, et al. Nab-Paclitaxel plus Gemcitabine and FOLFOX in Metastatic Pancreatic Cancer.NEJM Evid. 2024;3:EVIDoa2300144. [DOI] [PubMed]
Westphalen B, Gaska T, Reichert M, Quante M, Quante M, Waldschmidt DT, et al. FOOTPATH: A randomized, open-label phase-2 study of liposomal irinotecan + 5-FU and folinic acid (NAPOLI) versus sequential NAPOLI and mFOLFOX6 versus gemcitabine/nab-paclitaxel in treatment-naïve metastatic pancreatic cancer (mPDAC).J Clin Oncol. 2023;41:4021. [DOI]
Dahan L, Williet N, Le Malicot K, Phelip JM, Desrame J, Bouché O, et al.; PRODIGE 35 Investigators/Collaborators. Randomized Phase II Trial Evaluating Two Sequential Treatments in First Line of Metastatic Pancreatic Cancer: Results of the PANOPTIMOX-PRODIGE 35 Trial.J Clin Oncol. 2021;39:3242–50. [DOI] [PubMed]
Kindler HL, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Overall Survival Results From the POLO Trial: A Phase III Study of Active Maintenance Olaparib Versus Placebo for Germline BRCA-Mutated Metastatic Pancreatic Cancer.J Clin Oncol. 2022;40:3929–39. [DOI] [PubMed] [PMC]
Reiss KA, Mick R, O’Hara MH, Teitelbaum U, Karasic TB, Schneider C, et al. Phase II Study of Maintenance Rucaparib in Patients With Platinum-Sensitive Advanced Pancreatic Cancer and a Pathogenic Germline or Somatic Variant in BRCA1, BRCA2, or PALB2.J Clin Oncol. 2021;39:2497–505. [DOI] [PubMed]
Olaoba OT, Adelusi TI, Yang M, Maidens T, Kimchi ET, Staveley-O’Carroll KF, et al. Driver Mutations in Pancreatic Cancer and Opportunities for Targeted Therapy.Cancers (Basel). 2024;16:1808. [DOI] [PubMed] [PMC]
Park W, Chen J, Chou JF, Varghese AM, Yu KH, Wong W, et al. Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and Optimize Treatment Selection.Clin Cancer Res. 2020;26:3239–47. [DOI] [PubMed] [PMC]
Cleary JM, Wolpin BM, Dougan SK, Raghavan S, Singh H, Huffman B, et al. Opportunities for Utilization of DNA Repair Inhibitors in Homologous Recombination Repair-Deficient and Proficient Pancreatic Adenocarcinoma.Clin Cancer Res. 2021;27:6622–37. [DOI] [PubMed] [PMC]
Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma.Nat Genet. 2015;47:1168–78. [DOI] [PubMed] [PMC]
Rashid NU, Peng XL, Jin C, Moffitt RA, Volmar KE, Belt BA, et al. Purity Independent Subtyping of Tumors (PurIST), A Clinically Robust, Single-sample Classifier for Tumor Subtyping in Pancreatic Cancer.Clin Cancer Res. 2020;26:82–92. [DOI] [PubMed] [PMC]
Aung KL, Fischer SE, Denroche RE, Jang GH, Dodd A, Creighton S, et al. Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial.Clin Cancer Res. 2018;24:1344–54. [DOI] [PubMed] [PMC]
Qian ZR, Rubinson DA, Nowak JA, Morales-Oyarvide V, Dunne RF, Kozak MM, et al. Association of Alterations in Main Driver Genes With Outcomes of Patients With Resected Pancreatic Ductal Adenocarcinoma.JAMA Oncol. 2018;4:e173420. [DOI] [PubMed] [PMC]
Nagasaka M, Li Y, Sukari A, Ou SI, Al-Hallak MN, Azmi AS. KRAS G12C Game of Thrones, which direct KRAS inhibitor will claim the iron throne?Cancer Treat Rev. 2020;84:101974. [DOI] [PubMed] [PMC]
Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer.Signal Transduct Target Ther. 2021;6:386. [DOI] [PubMed] [PMC]
Punekar SR, Velcheti V, Neel BG, Wong KK. The current state of the art and future trends in RAS-targeted cancer therapies.Nat Rev Clin Oncol. 2022;19:637–55. [DOI] [PubMed] [PMC]
Yang X, Wu H. RAS signaling in carcinogenesis, cancer therapy and resistance mechanisms.J Hematol Oncol. 2024;17:108. [DOI] [PubMed] [PMC]
Strickler JH, Satake H, George TJ, Yaeger R, Hollebecque A, Garrido-Laguna I, et al. Sotorasib in KRAS p.G12C-Mutated Advanced Pancreatic Cancer.N Engl J Med. 2023;388:33–43. [DOI] [PubMed] [PMC]
Pant S, Yaeger R, Spira AI, Pelster M, Sabari JK, Hafez N, et al. KRYSTAL-1: Activity and safety of adagrasib (MRTX849) in patients with advanced solid tumors harboring a KRASG12C mutation.J Clin Oncol. 2023;41:4250. [DOI]
Sacher A, LoRusso P, Patel MR, Miller WH Jr, Garralda E, Forster MD, et al.; GO42144 Investigator and Study Group. Single-Agent Divarasib (GDC-6036) in Solid Tumors with a KRAS G12C Mutation.N Engl J Med. 2023;389:710–21. [DOI] [PubMed]
Li J, Shen L, Gu Y, Calles A, Wu L, Ba Y, et al. Preliminary activity and safety results of KRAS G12C inhibitor glecirasib (JAB-21822) in patients with pancreatic cancer and other solid tumors.J Clin Oncol. 2024;42:604. [DOI]
Hollebecque A, Kuboki Y, murciano-Goroff YR, Yaeger R, Cassier PA, Heist RS, et al. Efficacy and safety of LY3537982, a potent and highly selective KRAS G12C-mutant GI cancers: results from a phase I study.J Clin Oncol. 2024;42:94. [DOI]
Wang X, Allen S, Blake JF, Bowcut V, Briere DM, Calinisan A, et al. Identification of MRTX1133, a Noncovalent, Potent, and Selective KRASG12D Inhibitor.J Med Chem. 2022;65:3123–33. [DOI] [PubMed]
Arbour KC, Puneka S, Garrido-Laguna I, Hong DS, Wolpin B, Pelster MS, et al. 6520 preliminary clinical of RMC-6236, a first-in class, RAS-selective, tri-complex RAS MULTI(ON) inhibitor in patients with KRAS mutant pancreatic ductal adenocarcinoma (PDAC) and non-small lung cancer (NSCLC).Ann Oncol. 2023;34:S458. [DOI]
Kessler D, Bergner A, Böttcher J, Fischer G, Döbel S, Hinkel M, et al. Drugging all RAS isoforms with one pocket.Future Med Chem. 2020;12:1911–23. [DOI] [PubMed]
Golan T, Kindler HL, Park JO, Reni M, Macarulla T, Hammel P, et al. Geographic and Ethnic Heterogeneity of Germline BRCA1 or BRCA2 Mutation Prevalence Among Patients With Metastatic Pancreatic Cancer Screened for Entry Into the POLO Trial.J Clin Oncol. 2020;38:1442–54. [DOI] [PubMed]
Murai J, Pommier Y. BRCAness, Homologous Recombination Deficiencies, and Synthetic Lethality.Cancer Res. 2023;83:1173–4. [DOI] [PubMed]
Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.J Clin Oncol. 2015;33:244–50. [DOI] [PubMed] [PMC]
Wattenberg MM, Asch D, Yu S, O’Dwyer PJ, Domchek SM, Nathanson KL, et al. Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation.Br J Cancer. 2020;122:333–9. [DOI] [PubMed] [PMC]
O’Reilly EM, Lee JW, Zalupski M, Capanu M, Park J, Golan T, et al. Randomized, Multicenter, Phase II Trial of Gemcitabine and Cisplatin With or Without Veliparib in Patients With Pancreas Adenocarcinoma and a Germline BRCA/PALB2 Mutation.J Clin Oncol. 2020;38:1378–88. [DOI] [PubMed] [PMC]
Espona-Fiedler M, Patthey C, Lindblad S, Sarró I, Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions.Biochem Pharmacol. 2024;229:116492. [DOI] [PubMed]
Brown TJ, Reiss KA. PARP Inhibitors in Pancreatic Cancer.Cancer J. 2021;27:465–75. [DOI] [PubMed] [PMC]
Martino C, Pandya D, Lee R, Levy G, Lo T, Lobo S, et al. ATM-Mutated Pancreatic Cancer: Clinical and Molecular Response to Gemcitabine/Nab-Paclitaxel After Genome-Based Therapy Resistance.Pancreas. 2020;49:143–7. [DOI] [PubMed] [PMC]
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies.Cancer Treat Rev. 2024;129:102808. [DOI] [PubMed]
Yap TA, Tan DSP, Terbuch A, Caldwell R, Guo C, Goh BC, et al. First-in-Human Trial of the Oral Ataxia Telangiectasia and RAD3-Related (ATR) Inhibitor BAY 1895344 in Patients with Advanced Solid Tumors.Cancer Discov. 2021;11:80–91. [DOI] [PubMed] [PMC]
Dunlop CR, Wallez Y, Johnson TI, Bernaldo de Quirós Fernández S, Durant ST, Cadogan EB, et al. Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models.Br J Cancer. 2020;123:1424–36. [DOI] [PubMed] [PMC]
Gupta N, Huang TT, Horibata S, Lee JM. Cell cycle checkpoints and beyond: Exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer.Pharmacol Res. 2022;178:106162. [DOI] [PubMed] [PMC]
Gorecki L, Andrs M, Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer.Cancers (Basel). 2021;13:795. [DOI] [PubMed] [PMC]
Höfer S, Frasch L, Braijkovic S, Putzker K, Lewis J, Schürmann H, et al. Gemcitabine and ATR inhibitors synergize to kill PDAC cells by blocking DNA damage response.Mol Syst Biol. 2025;[Epub ahead of print]. [DOI]
Jones R, Plummer R, Moreno V, Carter L, Roda D, Garralda E, et al. A Phase I/II Trial of Oral SRA737 (a Chk1 Inhibitor) Given in Combination with Low-Dose Gemcitabine in Patients with Advanced Cancer.Clin Cancer Res. 2023;29:331–40. [DOI] [PubMed] [PMC]
Kausar T, Schreiber JS, Karnak D, Parsels LA, Parsels JD, Davis MA, et al. Sensitization of Pancreatic Cancers to Gemcitabine Chemoradiation by WEE1 Kinase Inhibition Depends on Homologous Recombination Repair.Neoplasia. 2015;17:757–66. [DOI] [PubMed] [PMC]
Cuneo KC, Morgan MA, Sahai V, Schipper MJ, Parsels LA, Parsels JD, et al. Dose Escalation Trial of the Wee1 Inhibitor Adavosertib (AZD1775) in Combination With Gemcitabine and Radiation for Patients With Locally Advanced Pancreatic Cancer.J Clin Oncol. 2019;37:2643–50. [DOI] [PubMed] [PMC]
Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach.Ann Oncol. 2019;30:1232–43. [DOI] [PubMed]
Vera R, Ibarrola-de-Andrés C, Adeva J, Pérez-Rojas J, García-Alfonso P, Rodríguez-Gil Y, et al. Expert consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology on the determination of biomarkers in pancreatic and biliary tract cancer.Clin Transl Oncol. 2022;24:2107–19. [DOI] [PubMed] [PMC]
Tran LC, Özdemir BC, Berger MD. The Role of Immune Checkpoint Inhibitors in Metastatic Pancreatic Cancer: Current State and Outlook.Pharmaceuticals (Basel). 2023;16:1411. [DOI] [PubMed] [PMC]
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.Science. 2017;357:409–13. [DOI] [PubMed] [PMC]
Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study.J Clin Oncol. 2020;38:1–10. [DOI] [PubMed] [PMC]
Jung J, Heo YJ, Park S. High tumor mutational burden predicts favorable response to anti-PD-(L)1 therapy in patients with solid tumor: a real-world pan-tumor analysis.J Immunother Cancer. 2023;11:e006454. [DOI] [PubMed] [PMC]
Lawlor RT, Mattiolo P, Mafficini A, Hong SM, Piredda ML, Taormina SV, et al. Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Pancreatic Cancer: Systematic Review and Still-Open Questions.Cancers (Basel). 2021;13:3119. [DOI] [PubMed] [PMC]
Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy.Mol Cancer. 2020;19:79. [DOI] [PubMed] [PMC]
Roalsø MTT, Hald ØH, Alexeeva M, Søreide K. Emerging Role of Epigenetic Alterations as Biomarkers and Novel Targets for Treatments in Pancreatic Ductal Adenocarcinoma.Cancers (Basel). 2022;14:546. [DOI] [PubMed] [PMC]
Cacciola NA, Cuciniello R, Petillo GD, Piccioni M, Filosa S, Crispi S. An Overview of the Enhanced Effects of Curcumin and Chemotherapeutic Agents in Combined Cancer Treatments.Int J Mol Sci. 2023;24:12587. [DOI] [PubMed] [PMC]
Knoche SM, Brumfield GL, Goetz BT, Sliker BH, Larson AC, Olson MT, et al. The histone deacetylase inhibitor M344 as a multifaceted therapy for pancreatic cancer.PLoS One. 2022;17:e0273518. [DOI] [PubMed] [PMC]
Carr RM, Fernandez-Zapico ME. Pancreatic cancer microenvironment, to target or not to target?EMBO Mol Med. 2016;8:80–2. [DOI] [PubMed] [PMC]
Dauer P, Nomura A, Saluja A, Banerjee S. Microenvironment in determining chemo-resistance in pancreatic cancer: Neighborhood matters.Pancreatology. 2017;17:7–12. [DOI] [PubMed] [PMC]
Ercan G, Karlitepe A, Ozpolat B. Pancreatic Cancer Stem Cells and Therapeutic Approaches.Anticancer Res. 2017;37:2761–75. [DOI] [PubMed]
Lomberk G, Blum Y, Nicolle R, Nair A, Gaonkar KS, Marisa L, et al. Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes.Nat Commun. 2018;9:1978. [DOI] [PubMed] [PMC]
Erkan M, Kurtoglu M, Kleeff J. The role of hypoxia in pancreatic cancer: a potential therapeutic target?Expert Rev Gastroenterol Hepatol. 2016;10:301–16. [DOI] [PubMed]
Torphy RJ, Zhu Y, Schulick RD. Immunotherapy for pancreatic cancer: Barriers and breakthroughs.Ann Gastroenterol Surg. 2018;2:274–81. [DOI] [PubMed] [PMC]
Neesse A, Algül H, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: a changing paradigm.Gut. 2015;64:1476–84. [DOI] [PubMed]
Park H, Lee Y, Lee H, Kim JW, Hwang JH, Kim J, et al. The prognostic significance of cancer-associated fibroblasts in pancreatic ductal adenocarcinoma.Tumour Biol. 2017;39:1010428317718403. [DOI] [PubMed]
Jiang GM, Xu W, Du J, Zhang KS, Zhang QG, Wang XW, et al. The application of the fibroblast activation protein α-targeted immunotherapy strategy.Oncotarget. 2016;7:33472–82. [DOI] [PubMed] [PMC]
Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J, Sima C, et al. Desmoplasia in Primary Tumors and Metastatic Lesions of Pancreatic Cancer.Clin Cancer Res. 2015;21:3561–8. [DOI] [PubMed] [PMC]
Takahashi K, Ehata S, Koinuma D, Morishita Y, Soda M, Mano H, et al. Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells.Oncogene. 2018;37:2757–72. [DOI] [PubMed] [PMC]
Pereira BA, Vennin C, Papanicolaou M, Chambers CR, Herrmann D, Morton JP, et al. CAF Subpopulations: A New Reservoir of Stromal Targets in Pancreatic Cancer.Trends Cancer. 2019;5:724–41. [DOI] [PubMed]
Young K, Hughes DJ, Cunningham D, Starling N. Immunotherapy and pancreatic cancer: unique challenges and potential opportunities.Ther Adv Med Oncol. 2018;10:1758835918816281. [DOI] [PubMed] [PMC]
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point.Nature. 2017;541:321–30. [DOI] [PubMed]
Foley K, Kim V, Jaffee E, Zheng L. Current progress in immunotherapy for pancreatic cancer.Cancer Lett. 2016;381:244–51. [DOI] [PubMed] [PMC]
El-Jawhari JJ, El-Sherbiny YM, Scott GB, Morgan RS, Prestwich R, Bowles PA, et al. Blocking oncogenic RAS enhances tumour cell surface MHC class I expression but does not alter susceptibility to cytotoxic lymphocytes.Mol Immunol. 2014;58:160–8. [DOI] [PubMed]
Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I.Nature. 2020;581:100-5. [DOI] [PubMed] [PMC]
Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN,et al. MYC regulates the antitumor immune response through CD47 and PD-L1.Science. 2016;352:227–31. [DOI] [PubMed] [PMC]
Coelho MA, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina-Arcas M, et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA.Immunity. 2017;47:1083–99.e6. [DOI] [PubMed] [PMC]
Dias Carvalho P, Guimarães CF, Cardoso AP, Mendonça S, Costa ÂM, Oliveira MJ, et al. KRAS Oncogenic Signaling Extends beyond Cancer Cells to Orchestrate the Microenvironment.Cancer Res. 2018;78:7–14. [DOI] [PubMed]
Li J, Byrne KT, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy.Immunity. 2018;49:178–93.e7. [DOI] [PubMed] [PMC]
O’Reilly EM, Oh DY, Dhani N, Renouf DJ, Lee MA, Sun W, et al. Durvalumab With or Without Tremelimumab for Patients With Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized Clinical Trial.JAMA Oncol. 2019;5:1431–8. [DOI] [PubMed] [PMC]
Sokol ES, Pavlick D, Khiabanian H, Frampton GM, Ross JS, Gregg JP, et al. Pan-Cancer Analysis of BRCA1 and BRCA2 Genomic Alterations and Their Association With Genomic Instability as Measured by Genome-Wide Loss of Heterozygosity.JCO Precis Oncol. 2020;4:442–65. [DOI] [PubMed] [PMC]
Terrero G, Datta J, Dennison J, Sussman DA, Lohse I, Merchant NB, et al. Ipilimumab/Nivolumab Therapy in Patients With Metastatic Pancreatic or Biliary Cancer With Homologous Recombination Deficiency Pathogenic Germline Variants.JAMA Oncol. 2022;8:1–3. [DOI] [PubMed] [PMC]
Callahan M, Amin A, Kaye FJ, Morse MA, Taylor MH, Peltola KJ, et al. Nivolumab monotherapy or combination with ipilimumab with or without cobimetinib in previously treated patients with pancreatic adenocarcinoma (CheckMate 032).J Immunother Cancer. 2024;12:e007883. [DOI] [PubMed] [PMC]
Zhang L, Zhou C, Zhang S, Chen X, Liu J, Xu F, et al. Chemotherapy reinforces anti-tumor immune response and enhances clinical efficacy of immune checkpoint inhibitors.Front Oncol. 2022;12:939249. [DOI] [PubMed] [PMC]
Weiss GJ, Blaydorn L, Beck J, Bornemann-Kolatzki K, Urnovitz H, Schütz E, et al. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma.Invest New Drugs. 2018;36:96–102. [DOI] [PubMed]
Wainberg ZA, Hochster HS, Kim EJ, George B, Kaylan A, Chiorean EG, et al. Open-label, Phase I Study of Nivolumab Combined with nab-Paclitaxel Plus Gemcitabine in Advanced Pancreatic Cancer.Clin Cancer Res. 2020;26:4814–22. [DOI] [PubMed]
Renouf DJ, Loree JM, Knox JJ, Topham JT, Kavan P, Jonker D, et al. The CCTG PA.7 phase II trial of gemcitabine and nab-paclitaxel with or without durvalumab and tremelimumab as initial therapy in metastatic pancreatic ductal adenocarcinoma.Nat Commun. 2022;13:5020. [DOI] [PubMed] [PMC]
Morizane C, Ueno M, Ikeda M, Sudo K, Hirashima Y, Kuroda M, et al. A Phase 2 study of nivolumab in combination with modified FOLFIRINOX for metastatic pancreatic cancer.BJC Rep. 2024;2:3. [DOI] [PubMed] [PMC]
Reiss KA, Mick R, Teitelbaum U, O’Hara M, Schneider C, Massa R, et al. Niraparib plus nivolumab or niraparib plus ipilimumab in patients with platinum-sensitive advanced pancreatic cancer: a randomised, phase 1b/2 trial.Lancet Oncol. 2022;23:1009–20. [DOI] [PubMed] [PMC]
Park W, O’Connor C, Chou JF, Schwartz C, Varghese AM, Larsen M, et al. Phase 2 trial of pembrolizumab and olaparib (POLAR) maintenance for patients (pts) with metastatic pancreatic cancer (mPDAC): Two cohorts B non-core homologous recombination deficiency (HRD) and C exceptional response to platinum-therapy.J Clin Oncol. 2023;41:4140. [DOI]
Rombouts SJ, Vogel JA, van Santvoort HC, van Lienden KP, van Hillegersberg R, Busch OR, et al. Systematic review of innovative ablative therapies for the treatment of locally advanced pancreatic cancer.Br J Surg. 2015;102:182–93. [DOI] [PubMed]
Paiella S, De Pastena M, D’Onofrio M, Crinò SF, Pan TL, De Robertis R, et al. Palliative therapy in pancreatic cancer-interventional treatment with radiofrequency ablation/irreversible electroporation.Transl Gastroenterol Hepatol. 2018;3:80. [DOI] [PubMed] [PMC]
Garnier J, Turrini O, Chretien AS, Olive D. Local Ablative Therapy Associated with Immunotherapy in Locally Advanced Pancreatic Cancer: A Solution to Overcome the Double Trouble?-A Comprehensive Review.J Clin Med. 2022;11:1948. [DOI] [PubMed] [PMC]
Zhao J, Wen X, Tian L, Li T, Xu C, Wen X, et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer.Nat Commun. 2019;10:899. [DOI] [PubMed] [PMC]
Brock RM, Beitel-White N, Davalos RV, Allen IC. Starting a Fire Without Flame: The Induction of Cell Death and Inflammation in Electroporation-Based Tumor Ablation Strategies.Front Oncol. 2020;10:1235. [DOI] [PubMed] [PMC]
Lippert TP, Greenberg RA. The abscopal effect: a sense of DNA damage is in the air.J Clin Invest. 2021;131:e148274. [DOI] [PubMed] [PMC]
Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect.Curr Probl Cancer. 2016;40:25–37. [DOI] [PubMed]
Storozynsky Q, Hitt MM. The Impact of Radiation-Induced DNA Damage on cGAS-STING-Mediated Immune Responses to Cancer.Int J Mol Sci. 2020;21:8877. [DOI] [PubMed] [PMC]
Wang X, Wang Y, Zhang Y, Shi H, Liu K, Wang F, et al. Immune modulatory roles of radioimmunotherapy: biological principles and clinical prospects.Front Immunol. 2024;15:1357101. [DOI] [PubMed] [PMC]
Yu S, Wang Y, He P, Shao B, Liu F, Xiang Z, et al. Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment.Front Oncol. 2022;12:809304. [DOI] [PubMed] [PMC]
De Martino M, Daviaud C, Vanpouille-Box C. Radiotherapy: An immune response modifier for immuno-oncology.Semin Immunol. 2021;52:101474. [DOI] [PubMed]
Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect.Nat Rev Cancer. 2018;18:313–22. [DOI] [PubMed] [PMC]
Rodriguez-Ruiz ME, Rodriguez I, Garasa S, Barbes B, Solorzano JL, Perez-Gracia JL, et al. Abscopal Effects of Radiotherapy Are Enhanced by Combined Immunostimulatory mAbs and Are Dependent on CD8 T Cells and Crosspriming.Cancer Res. 2016;76:5994–6005. [DOI] [PubMed]
Buchwald ZS, Nasti TH, Lee J, Eberhardt CS, Wieland A, Im SJ, et al. Tumor-draining lymph node is important for a robust abscopal effect stimulated by radiotherapy.J Immunother Cancer. 2020;8:e000867. [DOI] [PubMed] [PMC]
Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer.Nature. 2015;520:373–7. [DOI] [PubMed] [PMC]
Welsh JW, Tang C, de Groot P, Naing A, Hess KR, Heymach JV, et al. Phase II Trial of Ipilimumab with Stereotactic Radiation Therapy for Metastatic Disease: Outcomes, Toxicities, and Low-Dose Radiation-Related Abscopal Responses.Cancer Immunol Res. 2019;7:1903–9. [DOI] [PubMed] [PMC]
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al.; PACIFIC Investigators. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer.N Engl J Med. 2017;377:1919–29. [DOI] [PubMed]
Ji H, Zhou Z. A ‘Hybrid’ Radiotherapy Regimen Designed for Immunomodulation: Combining High-Dose Radiotherapy with Low-Dose Radiotherapy.Cancers (Basel). 2022;14:3505. [DOI] [PubMed] [PMC]
Herrera FG, Ronet C, Ochoa de Olza M, Barras D, Crespo I, Andreatta M, et al. Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy.Cancer Discov. 2022;12:108–33. [DOI] [PubMed] [PMC]
Gajiwala S, Torgeson A, Garrido-Laguna I, Kinsey C, Lloyd S. Combination immunotherapy and radiation therapy strategies for pancreatic cancer-targeting multiple steps in the cancer immunity cycle.J Gastrointest Oncol. 2018;9:1014–26. [DOI] [PubMed] [PMC]
Lee YH, Yu CF, Yang YC, Hong JH, Chiang CS. Ablative Radiotherapy Reprograms the Tumor Microenvironment of a Pancreatic Tumor in Favoring the Immune Checkpoint Blockade Therapy.Int J Mol Sci. 2021;22:2091. [DOI] [PubMed] [PMC]
Zhu X, Cao Y, Liu W, Ju X, Zhao X, Jiang L, et al. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: an open-label, randomised, controlled, phase 2 trial.Lancet Oncol. 2022;23:e105–15. [DOI] [PubMed]
Chen IM, Johansen JS, Theile S, Hjaltelin JX, Novitski SI, Brunak S, et al. Randomized Phase II Study of Nivolumab With or Without Ipilimumab Combined With Stereotactic Body Radiotherapy for Refractory Metastatic Pancreatic Cancer (CheckPAC).J Clin Oncol. 2022;40:3180–9. [DOI] [PubMed]
Danbala IA, Sheng W, Tang H, Dai C, Shaibu Z, Wang X. Systematic review and meta-analysis on safety and efficacy of immune checkpoint inhibitors and radiotherapy for advanced pancreatic cancer.WJARR. 2023;20:638–48. [DOI]
Rochigneux P, Nault JC, Mallet F, Chretien AS, Barget N, Del Pozo L, et al. Dynamic of Systemic Immunity and Its Impact on Tumor Recurrence after Radiofrequency Ablation of Hepatocellular Carcinoma.Oncoimmunology. 2019;8:1615818. [DOI] [PubMed] [PMC]
Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma.J Hepatol. 2017;66:545–51. [DOI] [PubMed] [PMC]
Geboers B, Ruarus AH, Nieuwenhuizen S, Puijk RS, Scheffer HJ, de Gruijl TD, et al. Needle-guided ablation of locally advanced pancreatic cancer: cytoreduction or immunomodulation by in vivo vaccination?Chin Clin Oncol. 2019;8:61. [DOI] [PubMed]
Giardino A, Innamorati G, Ugel S, Perbellini O, Girelli R, Frigerio I, et al. Immunomodulation after radiofrequency ablation of locally advanced pancreatic cancer by monitoring the immune response in 10 patients.Pancreatology. 2017;17:962–6. [DOI] [PubMed]
Pandit H, Hong YK, Li Y, Rostas J, Pulliam Z, Li SP, et al. Evaluating the Regulatory Immunomodulation Effect of Irreversible Electroporation (IRE) in Pancreatic Adenocarcinoma.Ann Surg Oncol. 2019;26:800–6. [DOI] [PubMed]
Bulvik BE, Rozenblum N, Gourevich S, Ahmed M, Andriyanov AV, Galun E, et al. Irreversible Electroporation versus Radiofrequency Ablation: A Comparison of Local and Systemic Effects in a Small-Animal Model.Radiology. 2016;280:413–24. [DOI] [PubMed]
Martin RC 2nd, Kwon D, Chalikonda S, Sellers M, Kotz E, Scoggins C, et al. Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy.Ann Surg. 2015;262:486–94. [DOI] [PubMed]
Justesen TF, Orhan A, Raskov H, Nolsoe C, Gögenur I. Electroporation and Immunotherapy-Unleashing the Abscopal Effect.Cancers (Basel). 2022;14:2876. [DOI] [PubMed] [PMC]
Rai ZL, Feakins R, Pallett LJ, Manas D, Davidson BR. Irreversible Electroporation (IRE) in Locally Advanced Pancreatic Cancer: A Review of Current Clinical Outcomes, Mechanism of Action and Opportunities for Synergistic Therapy.J Clin Med. 2021;10:1609. [DOI] [PubMed] [PMC]
Narayanan G, Jivani GG, Mahendra AM, Gentile N. A narrative review of interventional oncology approaches to treating pancreatic cancer.DMR. 2023;7:12.
Leen E, Picard J, Stebbing J, Abel M, Dhillon T, Wasan H. Percutaneous irreversible electroporation with systemic treatment for locally advanced pancreatic cancer adenocarcinoma.J Gastrointest Oncol. 2018;9:275–81. [DOI]
Shen J, Pan P, Hu X, Zhao J, Wu H. Safety and Efficacy of Irreversible Electroporation in Locally Advanced Pancreatic Cancer: An Evaluation from a Surgeon’s Perspective.Cancers (Basel). 2022;14:5677. [DOI] [PubMed] [PMC]
He C, Wang J, Zhang Y, Cai Z, Lin X, Li S. Comparison of combination therapies in the management of locally advanced pancreatic cancer: Induction chemotherapy followed by irreversible electroporation vs radiofrequency ablation.Cancer Med. 2020;9:4699–710. [DOI] [PubMed] [PMC]
Ruarus AH, Vroomen LGPH, Geboers B, van Veldhuisen E, Puijk RS, Nieuwenhuizen S, et al. Percutaneous Irreversible Electroporation in Locally Advanced and Recurrent Pancreatic Cancer (PANFIRE-2): A Multicenter, Prospective, Single-Arm, Phase II Study.Radiology. 2020;294:212–20. [DOI] [PubMed]
Liu S, Qin Z, Xu J, Zeng J, Chen J, Niu L, et al. Irreversible electroporation combined with chemotherapy for unresectable pancreatic carcinoma: a prospective cohort study.Onco Targets Ther. 2019;12:1341–50. [DOI] [PubMed] [PMC]
Timmer FEF, Geboers B, Ruarus AH, Vroomen LGPH, Schouten EAC, van der Lei S, et al. MRI-guided stereotactic ablative body radiotherapy versus CT-guided percutaneous irreversible electroporation for locally advanced pancreatic cancer (CROSSFIRE): a single-centre, open-label, randomised phase 2 trial.Lancet Gastroenterol Hepatol. 2024;9:448–59. [DOI] [PubMed]
Martin RCG 2nd, White RR, Bilimoria MM, Kluger MD, Iannitti DA, Polanco PM, et al. Effectiveness and Safety of Irreversible Electroporation When Used for the Ablation of Stage 3 Pancreatic Adenocarcinoma: Initial Results from the DIRECT Registry Study.Cancers (Basel). 2024;16:3894. [DOI] [PubMed] [PMC]
Li J, Zhang XB, Wang JJ, Jin LJ, Shan HS, Zhang X, et al. Comparison between high-frequency irreversible electroporation and irreversible electroporation ablation of small swine liver: follow-up of DCE-MRI and pathological observations.Chin Med J (Engl). 2021;134:2081–90. [DOI] [PubMed] [PMC]
O’Neill C, Hayat T, Hamm J, Healey M, Zheng Q, Li Y, et al. A phase 1b trial of concurrent immunotherapy and irreversible electroporation in the treatment of locally advanced pancreatic adenocarcinoma.Surgery. 2020;168:610–6. [DOI] [PubMed]
He C, Sun S, Zhang Y, Li S. Irreversible Electroporation Plus Anti-PD-1 Antibody versus Irreversible Electroporation Alone for Patients with Locally Advanced Pancreatic Cancer.J Inflamm Res. 2021;14:4795–807. [DOI] [PubMed] [PMC]
Greene MK, Johnston MC, Scott CJ. Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance.Cancers (Basel). 2021;13:6175. [DOI] [PubMed] [PMC]
Puri S, Mazza M, Roy G, England RM, Zhou L, Nourian S, et al. Evolution of nanomedicine formulations for targeted delivery and controlled release.Adv Drug Deliv Rev. 2023;200:114962. [DOI] [PubMed]
Buckley C, Murphy EJ, Montgomery TR, Major I. Hyaluronic Acid: A Review of the Drug Delivery Capabilities of This Naturally Occurring Polysaccharide.Polymers (Basel). 2022;14:3442. [DOI] [PubMed] [PMC]
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems.Carbohydr Polym. 2024;337:122145. [DOI] [PubMed]
Pashkina E, Bykova M, Berishvili M, Lazarev Y, Kozlov V. Hyaluronic Acid-Based Drug Delivery Systems for Cancer Therapy.Cells. 2025;14:61. [DOI] [PubMed] [PMC]
Kim HM, Park JH, Choi YJ, Oh JM, Park J. Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs.RSC Adv. 2023;13:5529–37. [DOI] [PubMed] [PMC]
Lee S, Lee SA, Shinn J, Lee Y. Hyaluronic Acid-Bilirubin Nanoparticles as a Tumor Microenvironment Reactive Oxygen Species-Responsive Nanomedicine for Targeted Cancer Therapy.Int J Nanomedicine. 2024;19:4893–906. [DOI] [PubMed] [PMC]
Zhang J, Deng M, Xu C, Li D, Yan X, Gu Y, et al. Dual-Prodrug-Based Hyaluronic Acid Nanoplatform Provides Cascade-Boosted Drug Delivery for Oxidative Stress-Enhanced Chemotherapy.ACS Appl Mater Interfaces. 2024;16:50459–73. [DOI] [PubMed]
Hu D, Mezghrani O, Zhang L, Chen Y, Ke X, Ci T. GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy.Int J Nanomedicine. 2016;11:5125–47. [DOI] [PubMed] [PMC]
Woodman JL, Suh MS, Zhang J, Kondaveeti Y, Burgess DJ, White BA, et al. Carboxymethyl Hyaluronan-Stabilized Nanoparticles for Anticancer Drug Delivery.Int J Cell Biol. 2015;2015:249573. [DOI] [PubMed] [PMC]
Ebrahimnejad P, Sodagar Taleghani A, Asare-Addo K, Nokhodchi A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer.Drug Discov Today. 2022;27:471–89. [DOI] [PubMed]
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis.Chem Sci. 2024;15:1966–2006. [DOI] [PubMed] [PMC]
Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application.J Pers Med. 2021;11:771. [DOI] [PubMed] [PMC]
Waheed I, Ali A, Tabassum H, Khatoon N, Lai WF, Zhou X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy.Front Oncol. 2024;14:1296091. [DOI] [PubMed] [PMC]
Frampton JE. Liposomal Irinotecan: A Review in Metastatic Pancreatic Adenocarcinoma.Drugs. 2020;80:1007–18. [DOI] [PubMed] [PMC]
Kalra AV, Kim J, Klinz SG, Paz N, Cain J, Drummond DC, et al. Preclinical activity of nanoliposomal irinotecan is governed by tumor deposition and intratumor prodrug conversion.Cancer Res. 2014;74:7003–13. [DOI] [PubMed]
Li Z, Mo F, Guo K, Ren S, Wang Y, Chen Y, et al. Nanodrug-bacteria conjugates-mediated oncogenic collagen depletion enhances immune checkpoint blockade therapy against pancreatic cancer.Med. 2024;5:348–67.e7. [DOI] [PubMed]
Song L, Ren S, Yue Y, Tian Y, Wang Z. A Gold Nanocage Probe Targeting Survivin for the Diagnosis of Pancreatic Cancer.Pharmaceutics. 2023;15:1547. [DOI] [PubMed] [PMC]
Ren S, Song L, Tian Y, Zhu L, Guo K, Zhang H, et al. Emodin-Conjugated PEGylation of Fe3O4 Nanoparticles for FI/MRI Dual-Modal Imaging and Therapy in Pancreatic Cancer.Int J Nanomedicine. 2021;16:7463–78. [DOI] [PubMed] [PMC]
Guo K, Ren S, Zhang H, Cao Y, Zhao Y, Wang Y, et al. Biomimetic Gold Nanorods Modified with Erythrocyte Membranes for Imaging-Guided Photothermal/Gene Synergistic Therapy.ACS Appl Mater Interfaces. 2023;15:25285–99. [DOI] [PubMed]
Springfeld C, Neoptolemos JP. CEND-1: a game changer for pancreatic cancer chemotherapy?Lancet Gastroenterol Hepatol. 2022;7:900–2. [DOI] [PubMed]
Dean A, Gill S, McGregor M, Broadbridge V, Järveläinen HA, Price T. Dual αV-integrin and neuropilin-1 targeting peptide CEND-1 plus nab-paclitaxel and gemcitabine for the treatment of metastatic pancreatic ductal adenocarcinoma: a first-in-human, open-label, multicentre, phase 1 study.Lancet Gastroenterol Hepatol. 2022;7:943–51. [DOI] [PubMed]
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies.Blood Cancer J. 2021;11:69. [DOI] [PubMed] [PMC]
DeSelm CJ, Tano ZE, Varghese AM, Adusumilli PS. CAR T-cell therapy for pancreatic cancer.J Surg Oncol. 2017;116:63–74. [DOI] [PubMed] [PMC]
Czaplicka A, Lachota M, Pączek L, Zagożdżon R, Kaleta B. Chimeric Antigen Receptor T Cell Therapy for Pancreatic Cancer: A Review of Current Evidence.Cells. 2024;13:101. [DOI] [PubMed] [PMC]
Beatty GL, O’Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, et al. Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial.Gastroenterology. 2018;155:29–32. [DOI] [PubMed] [PMC]
Liu Y, Guo Y, Wu Z, Feng K, Tong C, Wang Y, et al. Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: A phase I clinical trial.Cytotherapy. 2020;22:573–80. [DOI] [PubMed]
Feng K, Liu Y, Guo Y, Qiu J, Wu Z, Dai H, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers.Protein Cell. 2018;9:838–47. [DOI] [PubMed] [PMC]
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results.Nat Med. 2022;28:1189–98. [DOI] [PubMed] [PMC]
Haas AR, Tanyi JL, O’Hara MH, Gladney WL, Lacey SF, Torigian DA, et al. Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers.Mol Ther. 2019;27:1919–29. [DOI] [PubMed] [PMC]
Botta GP, Becerra CR, Jin Z, Kim DW, Zhao D, Lenz HJ, et al. Multicenter phase Ib trial in the US of salvage CT041 CLDN18.2-specific chimeric antigen receptor T-cell therapy for patients with advanced gastric and pancreatic adenocarcinoma.J Clin Oncol. 2022;40:2538. [DOI]
Wang Y, Chen M, Wu Z, Tong C, Dai H, Guo Y, et al. CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial.Oncoimmunology. 2018;7:e1440169. [DOI] [PubMed] [PMC]
Chen T, Wang M, Chen Y, Liu Y. Current challenges and therapeutic advances of CAR-T cell therapy for solid tumors.Cancer Cell Int. 2024;24:133. [DOI] [PubMed] [PMC]
Zhao Y, Dong Y, Yang S, Tu Y, Wang C, Li J, et al. Bioorthogonal Equipping CAR-T Cells with Hyaluronidase and Checkpoint Blocking Antibody for Enhanced Solid Tumor Immunotherapy.ACS Cent Sci. 2022;8:603–14. [DOI] [PubMed] [PMC]
Liu G, Rui W, Zheng H, Huang D, Yu F, Zhang Y, et al. CXCR2-modified CAR-T cells have enhanced trafficking ability that improves treatment of hepatocellular carcinoma.Eur J Immunol. 2020;50:712–24. [DOI] [PubMed]
Ko AH, Jordan AC, Tooker E, Lacey SF, Chang RB, Li Y, et al. Dual Targeting of Mesothelin and CD19 with Chimeric Antigen Receptor-Modified T Cells in Patients with Metastatic Pancreatic Cancer.Mol Ther. 2020;28:2367–78. [DOI] [PubMed] [PMC]
Uslu U, Castelli S, June CH. CAR T cell combination therapies to treat cancer.Cancer Cell. 2024;42:1319–25. [DOI] [PubMed]
Funk MA, Heller G, Waidhofer-Söllner P, Leitner J, Steinberger P. Inhibitory CARs fail to protect from immediate T cell cytotoxicity.Mol Ther. 2024;32:982–99. [DOI] [PubMed] [PMC]
Metselaar JM, Lammers T. Challenges in nanomedicine clinical translation.Drug Deliv Transl Res. 2020;10:721–5. [DOI] [PubMed] [PMC]
Iyengar D, Tatiparti K, Gavande NS, Sau S, Iyer AK. Nanomedicine for overcoming therapeutic and diagnostic challenges associated with pancreatic cancer.Drug Discov Today. 2022;27:1554–9. [DOI] [PubMed]
Zhao J, Wang H, Hsiao CH, Chow DS, Koay EJ, Kang Y, et al. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy.Biomaterials. 2018;159:215–28. [DOI] [PubMed] [PMC]
Peng H, Shen J, Long X, Zhou X, Zhang J, Xu X, et al. Local Release of TGF-β Inhibitor Modulates Tumor-Associated Neutrophils and Enhances Pancreatic Cancer Response to Combined Irreversible Electroporation and Immunotherapy.Adv Sci (Weinh). 2022;9:e2105240. [DOI] [PubMed] [PMC]
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment.Cancers (Basel). 2023;15:724. [DOI] [PubMed] [PMC]
Papageorgis P, Polydorou C, Mpekris F, Voutouri C, Agathokleous E, Kapnissi-Christodoulou CP, et al. Tranilast-induced stress alleviation in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-independent manner.Sci Rep. 2017;7:46140. [DOI] [PubMed] [PMC]
Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys.Adv Drug Deliv Rev. 2022;181:114083. [DOI] [PubMed]
Dominguez AA, Perz MT, Xu Y, Cedillo LG, Huang OD, McIntyre CA,et al. Unveiling the Promise: Navigating Clinical Trials 1978-2024 for PDAC.Cancers (Basel). 2024;16:3564. [DOI] [PubMed] [PMC]
Isermann T, Sers C, Der CJ, Papke B. KRAS inhibitors: resistance drivers and combinatorial strategies.Trends Cancer. 2025;11:91–116. [DOI] [PubMed]