Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Sun Y, Liu Y, Ma X, Hu H. The Influence of Cell Cycle Regulation on Chemotherapy.Int J Mol Sci. 2021;22:6923. [DOI] [PubMed] [PMC]
Singh R, Malhotra A, Bansal R. Chapter 15 - Synthetic cytotoxic drugs as cancer chemotherapeutic agents. In: Acharya PC, Kurosu M, editors. Medicinal Chemistry of Chemotherapeutic Agents. Academic Press; 2023. pp. 499–537. [DOI]
Cella L, Monti S, Pacelli R, Palma G. Modeling frameworks for radiation induced lymphopenia: A critical review.Radiother Oncol. 2024;190:110041. [DOI] [PubMed]
Dunn SR, Bythell JC, Le Tissier MDA, Burnett WJ, Thomason JC. Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp.J Exp Mar Biol Ecol. 2002;272:29–53. [DOI]
Sobierajska K, Ciszewski WM, Sacewicz-Hofman I, Niewiarowska J. Endothelial Cells in the Tumor Microenvironment.Adv Exp Med Biol. 2020;1234:71–86. [DOI] [PubMed]
Wang B, Han Y, Zhang Y, Zhao Q, Wang H, Wei J, et al. Overcoming acquired resistance to cancer immune checkpoint therapy: potential strategies based on molecular mechanisms.Cell Biosci. 2023;13:120. [DOI] [PubMed] [PMC]
Zhang N, Liu S, Shi S, Chen Y, Xu F, Wei X, et al. Solubilization and delivery of Ursolic-acid for modulating tumor microenvironment and regulatory T cell activities in cancer immunotherapy.J Control Release. 2020;320:168–78. [DOI] [PubMed]
Dagher C, Manning-Geist B, Ellenson LH, Weigelt B, Rios-Doria E, Barry D, et al. Molecular subtyping in endometrial cancer: A promising strategy to guide fertility preservation.Gynecol Oncol. 2023;179:180–7. [DOI] [PubMed] [PMC]
Hossen MM, Ma Y, Yin Z, Xia Y, Du J, Huang JY, et al. Current understanding of CTLA-4: from mechanism to autoimmune diseases.Front Immunol. 2023;14:1198365. [DOI] [PubMed] [PMC]
Wang F, Xia T, Li Z, Gao X, Fang X. Current status of clinical trial research and application of immune checkpoint inhibitors for non-small cell lung cancer.Front Oncol. 2023;13:1213297. [DOI] [PubMed] [PMC]
Ribas A, Wolchok JD. Combining cancer immunotherapy and targeted therapy.Curr Opin Immunol. 2013;25:291–6. [DOI] [PubMed] [PMC]
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects.Mol Cancer. 2020;19:116. [DOI] [PubMed] [PMC]
Shafqat A, Omer MH, Ahmed EN, Mushtaq A, Ijaz E, Ahmed Z, et al. Reprogramming the immunosuppressive tumor microenvironment: exploiting angiogenesis and thrombosis to enhance immunotherapy.Front Immunol. 2023;14:1200941. [DOI] [PubMed] [PMC]
Alatrash G, Jakher H, Stafford PD, Mittendorf EA. Cancer immunotherapies, their safety and toxicity.Expert Opin Drug Saf. 2013;12:631–45. [DOI] [PubMed]
Hegde PS, Chen DS. Top 10 Challenges in Cancer Immunotherapy.Immunity. 2020;52:17–35. [DOI] [PubMed]
Chiriva-Internati M, Bot A. A new era in cancer immunotherapy: discovering novel targets and reprogramming the immune system.Int Rev Immunol. 2015;34:101–3. [DOI] [PubMed]
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current Challenges in Cancer Treatment.Clin Ther. 2016;38:1551–66. [DOI] [PubMed]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy.Nat Rev Drug Discov. 2019;18:175–96. [DOI] [PubMed] [PMC]
Farooq MU, Lawrie CH, Deng NN. Engineering nanoparticles for cancer immunotherapy: Current achievements, key considerations and future perspectives.Chem Eng J. 2024;486:150356. [DOI]
Sadeghi F, Sanjari Moghaddam A, Soleyman-Jahi S. Hurdles in Cancer Immunotherapy. In: Rezaei N, editor. Cancer Immunology. Springer, Cham; 2021. pp. 597–635. [DOI]
Cai X, Jin M, Yao L, He B, Ahmed S, Safdar W, et al. Physicochemical properties, pharmacokinetics, toxicology and application of nanocarriers.J Mater Chem B. 2023;11:716–33. [DOI] [PubMed]
Kumar M, Hilles AR, Almurisi SH, Bhatia A, Mahmood S. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations–A review.JCIS Open. 2023;12:100095. [DOI]
Ding YN, Xue M, Tang QS, Wang LJ, Ding HY, Li H, et al. Immunotherapy-based novel nanoparticles in the treatment of gastrointestinal cancer: Trends and challenges.World J Gastroenterol. 2022;28:5403–19. [DOI] [PubMed] [PMC]
Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment.Cancers (Basel). 2014;6:1670–90. [DOI] [PubMed] [PMC]
Benoit A, Vogin G, Duhem C, Berchem G, Janji B. Lighting Up the Fire in the Microenvironment of Cold Tumors: A Major Challenge to Improve Cancer Immunotherapy.Cells. 2023;12:1787. [DOI] [PubMed] [PMC]
Zhang S, Li Z, Wang Q, Liu Q, Yuan W, Feng W, et al. An NIR-II Photothermally Triggered “Oxygen Bomb” for Hypoxic Tumor Programmed Cascade Therapy.Adv Mater. 2022;34:e2201978. [DOI] [PubMed]
Chen F, Geng Z, Wang L, Zhou Y, Liu J. Biomimetic Nanoparticles Enabled by Cascade Cell Membrane Coating for Direct Cross-Priming of T Cells.Small. 2022;18:e2104402. [DOI] [PubMed]
Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy.Genes Dev. 2016;30:1002–19. [DOI] [PubMed] [PMC]
Deyell M, Garris CS, Laughney AM. Cancer metastasis as a non-healing wound.Br J Cancer. 2021;124:1491–502. [DOI] [PubMed] [PMC]
Nasrullah M, Meenakshi Sundaram DN, Claerhout J, Ha K, Demirkaya E, Uludag H. Nanoparticles and cytokine response.Front Bioeng Biotechnol. 2023;11:1243651. [DOI] [PubMed] [PMC]
Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics.Nat Rev Genet. 2022;23:265–80. [DOI] [PubMed] [PMC]
El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, et al. Exosome-mediated delivery of siRNA in vitro and in vivo.Nat Protoc. 2012;7:2112–26. [DOI] [PubMed]
Xu L, Yeudall WA, Yang H. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery.Acta Biomater. 2017;57:251–61. [DOI] [PubMed] [PMC]
Li Y, Xu X. Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance.J Control Release. 2020;323:483–501. [DOI] [PubMed]
Cao J, Huang D, Peppas NA. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites.Adv Drug Deliv Rev. 2020;167:170–88. [DOI] [PubMed]
Dai L, Zhu W, Si C, Lei J. “Nano-Ginseng” for Enhanced Cytotoxicity AGAINST Cancer Cells.Int J Mol Sci. 2018;19:627. [DOI] [PubMed] [PMC]
Nienhaus K, Nienhaus GU. Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights.Small. 2023;19:e2301663. [DOI] [PubMed]
Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation.Biomater Sci. 2022;10:3029–53. [DOI] [PubMed]
Lu J, Gao X, Wang S, He Y, Ma X, Zhang T, et al. Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials.Exploration (Beijing). 2023;3:20220045. [DOI] [PubMed] [PMC]
Durymanov MO, Rosenkranz AA, Sobolev AS. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.Theranostics. 2015;5:1007–20. [DOI] [PubMed] [PMC]
Huang W, Zhang L, Yang M, Wu X, Wang X, Huang W, et al. Cancer-associated fibroblasts promote the survival of irradiated nasopharyngeal carcinoma cells via the NF-κB pathway.J Exp Clin Cancer Res. 2021;40:87. [DOI] [PubMed] [PMC]
Zalba S, Ten Hagen TLM, Burgui C, Garrido MJ. Stealth nanoparticles in oncology: Facing the PEG dilemma.J Control Release. 2022;351:22–36. [DOI] [PubMed]
Jiang Z, Chu Y, Zhan C. Protein corona: challenges and opportunities for targeted delivery of nanomedicines.Expert Opin Drug Deliv. 2022;19:833–46. [DOI] [PubMed]
Kaur M, Shivgotra R, Bhardwaj N, Saini S, Thakur S, Jain SK. Nascent Nanoformulations as an Insight into the Limitations of the Conventional Systemic Antifungal Therapies.Curr Drug Targets. 2023;24:171–90. [DOI] [PubMed]
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer.Nature. 2019;575:299–309. [DOI] [PubMed] [PMC]
Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity.Adv Drug Deliv Rev. 2015;91:3–6. [DOI] [PubMed]
Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth Coating of Nanoparticles in Drug-Delivery Systems.Nanomaterials (Basel). 2020;10:787. [DOI] [PubMed] [PMC]
Petersen GH, Alzghari SK, Chee W, Sankari SS, La-Beck NM. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin.J Control Release. 2016;232:255–64. [DOI] [PubMed]
Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?J Control Release. 2016;244:108–21. [DOI] [PubMed]
Biffi S, Voltan R, Bortot B, Zauli G, Secchiero P. Actively targeted nanocarriers for drug delivery to cancer cells.Expert Opin Drug Deliv. 2019;16:481–96. [DOI] [PubMed]
Tylawsky DE, Kiguchi H, Vaynshteyn J, Gerwin J, Shah J, Islam T, et al. P-selectin-targeted nanocarriers induce active crossing of the blood-brain barrier via caveolin-1-dependent transcytosis.Nat Mater. 2023;22:391–9. [DOI] [PubMed] [PMC]
Anarjan FS. Active targeting drug delivery nanocarriers: Ligands.Nano Struct Nano Objects. 2019;19:100370. [DOI]
Guo L, Yang J, Wang H, Yi Y. Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy.Molecules. 2023;28:7750. [DOI] [PubMed] [PMC]
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-Drug Conjugates: A Comprehensive Review.Mol Cancer Res. 2020;18:3–19. [DOI] [PubMed]
Dumontet C, Demangel D, Galia P, Karlin L, Roche L, Fauvernier M, et al. Clinical characteristics and outcome of 318 families with familial monoclonal gammopathy: A multicenter Intergroupe Francophone du Myélome study.Am J Hematol. 2023;98:264–71. [DOI] [PubMed] [PMC]
Joubert F, Munson MJ, Sabirsh A, England RM, Hemmerling M, Alexander C, et al. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA.J Control Release. 2023;356:580–94. [DOI] [PubMed]
Samec T, Alatise KL, Boulos J, Gilmore S, Hazelton A, Coffin C, et al. Fusogenic peptide delivery of bioactive siRNAs targeting CSNK2A1 for treatment of ovarian cancer.Mol Ther Nucleic Acids. 2022;30:95–111. [DOI] [PubMed] [PMC]
Zhang L, Zhu D, Dong X, Sun H, Song C, Wang C, et al. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery.Int J Nanomedicine. 2015;10:2101–14. [DOI] [PubMed] [PMC]
Qian Z, LaRochelle JR, Jiang B, Lian W, Hard RL, Selner NG, et al. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery.Biochemistry. 2014;53:4034–46. [DOI] [PubMed] [PMC]
Appelbaum JS, LaRochelle JR, Smith BA, Balkin DM, Holub JM, Schepartz A. Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm.Chem Biol. 2012;19:819–30. [DOI] [PubMed] [PMC]
Rydström A, Deshayes S, Konate K, Crombez L, Padari K, Boukhaddaoui H, et al. Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles.PLoS One. 2011;6:e25924. [DOI] [PubMed] [PMC]
Juliano RL. The delivery of therapeutic oligonucleotides.Nucleic Acids Res. 2016;44:6518–48. [DOI] [PubMed] [PMC]
Singh AV, Bhardwaj P, Laux P, Pradeep P, Busse M, Luch A, et al. AI and ML-based risk assessment of chemicals: predicting carcinogenic risk from chemical-induced genomic instability.Front Toxicol. 2024;6:1461587. [DOI] [PubMed] [PMC]
de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell. 2023;41:374–403. [DOI] [PubMed]
Deng G, Giralt S, Chung DJ, Landau H, Siman J, Li QS, et al. Reduction of Opioid Use by Acupuncture in Patients Undergoing Hematopoietic Stem Cell Transplantation: Secondary Analysis of a Randomized, Sham-Controlled Trial.Pain Med. 2020;21:636–42. [DOI] [PubMed] [PMC]
Vignali DA, Collison LW, Workman CJ. How regulatory T cells work.Nat Rev Immunol. 2008;8:523–32. [DOI] [PubMed] [PMC]
Okeke EB, Uzonna JE. The Pivotal Role of Regulatory T Cells in the Regulation of Innate Immune Cells.Front Immunol. 2019;10:680. [DOI] [PubMed] [PMC]
Saleh R, Elkord E. Treg-mediated acquired resistance to immune checkpoint inhibitors.Cancer Lett. 2019;457:168–79. [DOI] [PubMed]
Darya GH, Zare O, Karbalaei-Heidari HR, Zeinali S, Sheardown H, Rastegari B. Enzyme-responsive mannose-grafted magnetic nanoparticles for breast and liver cancer therapy and tumor-associated macrophage immunomodulation.Expert Opin Drug Deliv. 2024;21:663–77. [DOI] [PubMed]
Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X. STING: a master regulator in the cancer-immunity cycle.Mol Cancer. 2019;18:152. [DOI] [PubMed] [PMC]
Schmitt EG, Haribhai D, Williams JB, Aggarwal P, Jia S, Charbonnier LM, et al. IL-10 produced by induced regulatory T cells (iTregs) controls colitis and pathogenic ex-iTregs during immunotherapy.J Immunol. 2012;189:5638–48. [DOI] [PubMed] [PMC]
Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. Natural Killer cells at the frontline in the fight against cancer.Cell Death Dis. 2024;15:614. [DOI] [PubMed] [PMC]
Ogura K, Sato-Matsushita M, Yamamoto S, Hori T, Sasahara M, Iwakura Y, et al. NK Cells Control Tumor-Promoting Function of Neutrophils in Mice.Cancer Immunol Res. 2018;6:348–57. [DOI] [PubMed]
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications.J Hematol Oncol. 2019;12:76. [DOI] [PubMed] [PMC]
Basu B, Garala KK, Patel R, Dutta A, Ash D, Prajapati B, et al. Advanced Targeted Drug Delivery of Bioactive Nanomaterials in the Management of Cancer.Curr Med Chem. 2025;32:2711–30. [DOI] [PubMed]
Chetty C, Lakka SS, Bhoopathi P, Rao JS. MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells.Int J Cancer. 2010;127:1081–95. [DOI] [PubMed] [PMC]
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, et al. Stromal cells in the tumor microenvironment: accomplices of tumor progression?Cell Death Dis. 2023;14:587. [DOI] [PubMed] [PMC]
Hegde M, Bhat SM, Guruprasad KP, Moka R, Ramachandra L, Satyamoorthy K, et al. Human breast tumor derived endothelial cells exhibit distinct biological properties.Biol Cell. 2022;114:73–85. [DOI] [PubMed]
Hrabák P, Kalousová M, Krechler T, Zima T. Pancreatic stellate cells - rising stars in pancreatic pathologies.Physiol Res. 2021;70:S597–616. [DOI] [PubMed] [PMC]
Doran AC, Yurdagul A Jr, Tabas I. Efferocytosis in health and disease.Nat Rev Immunol. 2020;20:254–67. [DOI] [PubMed] [PMC]
Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis.Nat Rev Mol Cell Biol. 2020;21:398–414. [DOI] [PubMed] [PMC]
DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy.Nat Rev Immunol. 2019;19:369–82. [DOI] [PubMed] [PMC]
Li Q, Liu H, Yin G, Xie Q. Efferocytosis: Current status and future prospects in the treatment of autoimmune diseases.Heliyon. 2024;10:e28399. [DOI] [PubMed] [PMC]
Kienle K, Lämmermann T. Neutrophil swarming: an essential process of the neutrophil tissue response.Immunol Rev. 2016;273:76–93. [DOI] [PubMed]
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN.Cancer Cell. 2009;16:183–94. [DOI] [PubMed] [PMC]
Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer.Nat Rev Clin Oncol. 2019;16:601–20. [DOI] [PubMed]
Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis.Proc Natl Acad Sci U S A. 2007;104:20262–7. [DOI] [PubMed] [PMC]
Zhang J, Qiao X, Shi H, Han X, Liu W, Tian X, et al. Circulating tumor-associated neutrophils (cTAN) contribute to circulating tumor cell survival by suppressing peripheral leukocyte activation.Tumour Biol. 2016;37:5397–404. [DOI] [PubMed]
Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression.Nature. 2019;566:553–7. [DOI] [PubMed]
Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Tumor microbiome - an integral part of the tumor microenvironment.Front Oncol. 2022;12:1063100. [DOI] [PubMed] [PMC]
Rossi T, Vergara D, Fanini F, Maffia M, Bravaccini S, Pirini F. Microbiota-Derived Metabolites in Tumor Progression and Metastasis.Int J Mol Sci. 2020;21:5786. [DOI] [PubMed] [PMC]
Jin S, Leach JC, Ye K. Nanoparticle-mediated gene delivery.Methods Mol Biol. 2009;544:547–57. [DOI] [PubMed]
Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria.Science. 2020;368:973–80. [DOI] [PubMed] [PMC]
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy.Cell. 2017;170:548–63.e16. [DOI] [PubMed] [PMC]
Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma.J Clin Invest. 2019;129:2210–21. [DOI] [PubMed] [PMC]
Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine.Science. 2017;357:1156–60. [DOI] [PubMed] [PMC]
Vande Voorde J, Sabuncuoğlu S, Noppen S, Hofer A, Ranjbarian F, Fieuws S, et al. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine.J Biol Chem. 2014;289:13054–65. [DOI] [PubMed] [PMC]
Huang Z, Callmann CE, Wang S, Vasher MK, Evangelopoulos M, Petrosko SH, et al. Rational Vaccinology: Harnessing Nanoscale Chemical Design for Cancer Immunotherapy.ACS Cent Sci. 2022;8:692–704. [DOI] [PubMed] [PMC]
Wang M, Cao JX, Liu YS, Xu BL, Li D, Zhang XY, et al. Evaluation of tumour vaccine immunotherapy for the treatment of advanced non-small cell lung cancer: a systematic meta-analysis.BMJ Open. 2015;5:e006321. [DOI] [PubMed] [PMC]
Maji M, Mazumder S, Bhattacharya S, Choudhury ST, Sabur A, Shadab M, et al. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8(+) T Cells.Sci Rep. 2016;6:27206. [DOI] [PubMed] [PMC]
Filipić B, Pantelić I, Nikolić I, Majhen D, Stojić-Vukanić Z, Savić S, et al. Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines.Vaccines (Basel). 2023;11:1172. [DOI] [PubMed] [PMC]
Gu D, Ao X, Yang Y, Chen Z, Xu X. Soluble immune checkpoints in cancer: production, function and biological significance.J Immunother Cancer. 2018;6:132. [DOI] [PubMed] [PMC]
Marei HE, Hasan A, Pozzoli G, Cenciarelli C. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired.Cancer Cell Int. 2023;23:64. [DOI] [PubMed] [PMC]
Zhang Y, Lin S, Wang XY, Zhu G. Nanovaccines for cancer immunotherapy.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11:e1559. [DOI] [PubMed] [PMC]
Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines.Acta Biomater. 2020;108:1–21. [DOI] [PubMed] [PMC]
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines.Biomaterials. 2025;314:122856. [DOI] [PubMed]
Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date.Blood. 2016;127:3312–20. [DOI] [PubMed] [PMC]
Zhang ZZ, Wang T, Wang XF, Zhang YQ, Song SX, Ma CQ. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies.Pharmacol Res. 2022;175:106036. [DOI] [PubMed]
Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations.Cell Res. 2020;30:507–19. [DOI] [PubMed] [PMC]
Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far.Nat Rev Clin Oncol. 2023;20:359–71. [DOI] [PubMed] [PMC]
Boccalatte F, Mina R, Aroldi A, Leone S, Suryadevara CM, Placantonakis DG, et al. Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors.Cancers (Basel). 2022;14:5108. [DOI] [PubMed] [PMC]
Roex G, Timmers M, Wouters K, Campillo-Davo D, Flumens D, Schroyens W, et al. Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma.J Hematol Oncol. 2020;13:164. [DOI] [PubMed] [PMC]
Wang Z, Li W, Jiang Y, Tran TB, Cordova LE, Chung J, et al. Sphingomyelin-derived nanovesicles for the delivery of the IDO1 inhibitor epacadostat enhance metastatic and post-surgical melanoma immunotherapy.Nat Commun. 2023;14:7235. [DOI] [PubMed] [PMC]
Metzloff AE, Padilla MS, Gong N, Billingsley MM, Han X, Merolle M, et al. Antigen Presenting Cell Mimetic Lipid Nanoparticles for Rapid mRNA CAR T Cell Cancer Immunotherapy.Adv Mater. 2024;36:e2313226. [DOI] [PubMed] [PMC]
Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances.Mol Cancer. 2023;22:20. [DOI] [PubMed] [PMC]
Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy.Nat Biotechnol. 2020;38:947–53. [DOI] [PubMed] [PMC]
Flores-Villanueva P, Sobhani N, Wang X, Li Y. MR1-Restricted T Cells in Cancer Immunotherapy.Cancers (Basel). 2020;12:2145. [DOI] [PubMed] [PMC]
Boutilier AJ, Elsawa SF. Macrophage Polarization States in the Tumor Microenvironment.Int J Mol Sci. 2021;22:6995. [DOI] [PubMed] [PMC]
Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X. Tumor-Associated Macrophages: Recent Insights and Therapies.Front Oncol. 2020;10:188. [DOI] [PubMed] [PMC]
Tan Y, Wang M, Yang K, Chi T, Liao Z, Wei P. PPAR-α Modulators as Current and Potential Cancer Treatments.Front Oncol. 2021;11:599995. [DOI] [PubMed] [PMC]
Sloas C, Gill S, Klichinsky M. Engineered CAR-Macrophages as Adoptive Immunotherapies for Solid Tumors.Front Immunol. 2021;12:783305. [DOI] [PubMed] [PMC]
Liu M, Liu J, Liang Z, Dai K, Gan J, Wang Q, et al. CAR-Macrophages and CAR-T Cells Synergistically Kill Tumor Cells In Vitro.Cells. 2022;11:3692. [DOI] [PubMed] [PMC]
An M, Liu H. Dissolving Microneedle Arrays for Transdermal Delivery of Amphiphilic Vaccines.Small. 2017;13. [DOI] [PubMed]
Chen Y, Yu Z, Tan X, Jiang H, Xu Z, Fang Y, et al. CAR-macrophage: A new immunotherapy candidate against solid tumors.Biomed Pharmacother. 2021;139:111605. [DOI] [PubMed]
Zheng Y, Jiang B, Guo H, Zhang Z, Chen B, Zhang Z, et al. The combinational nano-immunotherapy of ferumoxytol and poly(I:C) inhibits melanoma via boosting anti-angiogenic immunity.Nanomedicine. 2023;49:102658. [DOI] [PubMed]
Ye Z, Chen J, Zhao X, Li Y, Harmon J, Huang C, et al. In Vitro Engineering Chimeric Antigen Receptor Macrophages and T Cells by Lipid Nanoparticle-Mediated mRNA Delivery.ACS Biomater Sci Eng. 2022;8:722–33. [DOI] [PubMed]
Zhou Y, Bian P, Du H, Wang T, Li M, Hu H, et al. The Comparison of Inflammatory Cytokines (IL-6 and IL-18) and Immune Cells in Japanese Encephalitis Patients With Different Progression.Front Cell Infect Microbiol. 2022;12:826603. [DOI] [PubMed] [PMC]
Kang M, Lee SH, Kwon M, Byun J, Kim D, Kim C, et al. Nanocomplex-Mediated In Vivo Programming to Chimeric Antigen Receptor-M1 Macrophages for Cancer Therapy.Adv Mater. 2021;33:e2103258. [DOI] [PubMed]
Shin MH, Kim J, Lim SA, Kim J, Kim SJ, Lee KM. NK Cell-Based Immunotherapies in Cancer.Immune Netw. 2020;20:e14. [DOI] [PubMed] [PMC]
Glasner A, Ghadially H, Gur C, Stanietsky N, Tsukerman P, Enk J, et al. Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1.J Immunol. 2012;188:2509–15. [DOI] [PubMed]
Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy.Mol Cancer. 2020;19:120. [DOI] [PubMed] [PMC]
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, et al. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity.Front Immunol. 2022;13:896228. [DOI] [PubMed] [PMC]
Smyth MJ, Crowe NY, Godfrey DI. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma.Int Immunol. 2001;13:459–63. [DOI] [PubMed]
Oberoi P, Kamenjarin K, Ossa JFV, Uherek B, Bönig H, Wels WS. Directed Differentiation of Mobilized Hematopoietic Stem and Progenitor Cells into Functional NK cells with Enhanced Antitumor Activity.Cells. 2020;9:811. [DOI] [PubMed] [PMC]
Lu H, Zhao X, Li Z, Hu Y, Wang H. From CAR-T Cells to CAR-NK Cells: A Developing Immunotherapy Method for Hematological Malignancies.Front Oncol. 2021;11:720501. [DOI] [PubMed] [PMC]
Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy.J Hematol Oncol. 2021;14:73. [DOI] [PubMed] [PMC]
Shin S, Lee P, Han J, Kim SN, Lim J, Park DH, et al. Nanoparticle-Based Chimeric Antigen Receptor Therapy for Cancer Immunotherapy.Tissue Eng Regen Med. 2023;20:371–87. [DOI] [PubMed] [PMC]
McKinlay CJ, Vargas JR, Blake TR, Hardy JW, Kanada M, Contag CH, et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals.Proc Natl Acad Sci U S A. 2017;114:E448–56. [DOI] [PubMed] [PMC]
Kim KS, Han JH, Park JH, Kim HK, Choi SH, Kim GR, et al. Multifunctional nanoparticles for genetic engineering and bioimaging of natural killer (NK) cell therapeutics.Biomaterials. 2019;221:119418. [DOI] [PubMed]
Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics.Int J Pharm. 2018;538:263–78. [DOI] [PubMed]
Dilnawaz F, Singh A, Mohanty C, Sahoo SK. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.Biomaterials. 2010;31:3694–706. [DOI] [PubMed]
Dilnawaz F, Singh A, Mewar S, Sharma U, Jagannathan NR, Sahoo SK. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model.Biomaterials. 2012;33:2936–51. [DOI] [PubMed]
Dilnawaz F, Sahoo SK. Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model.Eur J Pharm Biopharm. 2013;85:452–62. [DOI] [PubMed]
Alonso JCC, de Souza BR, Reis IB, de Arruda Camargo GC, de Oliveira G, de Barros Frazão Salmazo MI, et al. OncoTherad® (MRB-CFI-1) Nanoimmunotherapy: A Promising Strategy to Treat Bacillus Calmette-Guérin-Unresponsive Non-Muscle-Invasive Bladder Cancer: Crosstalk among T-Cell CX3CR1, Immune Checkpoints, and the Toll-Like Receptor 4 Signaling Pathway.Int J Mol Sci. 2023;24:17535.
He S, Zhang L, Bai S, Yang H, Cui Z, Zhang X, et al. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery.Eur Polym J. 2021;143:110179. [DOI]
Chen YX, Wei CX, Lyu YQ, Chen HZ, Jiang G, Gao XL. Biomimetic drug-delivery systems for the management of brain diseases.Biomater Sci. 2020;8:1073–88. [DOI] [PubMed]
Chen Z, Hu Q, Gu Z. Leveraging Engineering of Cells for Drug Delivery.Acc Chem Res. 2018;51:668–77. [DOI] [PubMed]
Kokate R. A systematic overview of cancer immunotherapy: an emerging therapy. Pharm.Pharmacol Int J. 2017;5:00112. [DOI]
Wu YH, Chen RJ, Chiu HW, Yang LX, Wang YL, Chen YY, et al. Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: pivotal role of autophagy.Theranostics. 2023;13:40–58. [DOI] [PubMed] [PMC]
Zupančič E, Curato C, Paisana M, Rodrigues C, Porat Z, Viana AS, et al. Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming.J Control Release. 2017;258:182–95. [DOI] [PubMed]
Amulya Jindal, Mainuddin, Anoop Kumar, Ratneshwar Kumar Ratnesh. Nanotechnology Driven Lipid and Metalloid Based Formulations Targeting Blood–Brain Barrier (3B) for Brain Tumor.Indian J Microbiol. 2024. [DOI]
Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment.Bioact Mater. 2020;6:1973–87. [DOI] [PubMed] [PMC]
Singh AV, Gemmati D, Kanase A, Pandey I, Misra V, Kishore V, et al. Nanobiomaterials for vascular biology and wound management: A review.Veins Lymphatics. 2018;7:7196. [DOI]
Soriano Pérez ML, Funes JA, Flores Bracamonte C, Ibarra LE, Forrellad MA, Taboga O, et al. Development and biological evaluation of pNIPAM-based nanogels as vaccine carriers.Int J Pharm. 2023;630:122435. [DOI] [PubMed]
Xiang M, Yang C, Zhang L, Wang S, Ren Y, Gou M. Dissolving microneedles for transdermal drug delivery in cancer immunotherapy.J Mater Chem B. 2024;12:5812–22. [DOI] [PubMed]
Li N, Peng LH, Chen X, Nakagawa S, Gao JQ. Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers.Vaccine. 2011;29:6179–90. [DOI] [PubMed]
He Y, Hong C, Li J, Howard MT, Li Y, Turvey ME, et al. Synthetic Charge-Invertible Polymer for Rapid and Complete Implantation of Layer-by-Layer Microneedle Drug Films for Enhanced Transdermal Vaccination.ACS Nano. 2018;12:10272–80. [DOI] [PubMed] [PMC]
Lee SJ, Lee HS, Hwang YH, Kim JJ, Kang KY, Kim SJ, et al. Enhanced anti-tumor immunotherapy by dissolving microneedle patch loaded ovalbumin.PLoS One. 2019;14:e0220382. [DOI] [PubMed] [PMC]
Zhao JH, Zhang QB, Liu B, Piao XH, Yan YL, Hu XG, et al. Enhanced immunization via dissolving microneedle array-based delivery system incorporating subunit vaccine and saponin adjuvant.Int J Nanomedicine. 2017;12:4763–72. [DOI] [PubMed] [PMC]
Duong HTT, Yin Y, Thambi T, Kim BS, Jeong JH, Lee DS. Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy.J Mater Chem B. 2020;8:1171–81. [DOI] [PubMed]
Wang C, Ye Y, Hochu GM, Sadeghifar H, Gu Z. Enhanced Cancer Immunotherapy by Microneedle Patch-Assisted Delivery of Anti-PD1 Antibody.Nano Lett. 2016;16:2334–40. [DOI] [PubMed]
Ye Y, Wang C, Zhang X, Hu Q, Zhang Y, Liu Q, et al. A melanin-mediated cancer immunotherapy patch.Sci Immunol. 2017;2:eaan5692. [DOI] [PubMed]
Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe-Zanutto F, Mishra D, et al. Microneedle array systems for long-acting drug delivery.Eur J Pharm Biopharm. 2021;159:44–76. [DOI] [PubMed]
Lan X, Zhu W, Huang X, Yu Y, Xiao H, Jin L, et al. Microneedles loaded with anti-PD-1-cisplatin nanoparticles for synergistic cancer immuno-chemotherapy.Nanoscale. 2020;12:18885–98. [DOI] [PubMed]
Chen SX, Ma M, Xue F, Shen S, Chen Q, Kuang Y, et al. Construction of microneedle-assisted co-delivery platform and its combining photodynamic/immunotherapy.J Control Release. 2020;324:218–27. [DOI] [PubMed]
Cole G, Ali AA, McErlean E, Mulholland EJ, Short A, McCrudden CM, et al. DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen.Acta Biomater. 2019;96:480–90. [DOI] [PubMed]
Ali AA, McCrudden CM, McCaffrey J, McBride JW, Cole G, Dunne NJ, et al. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles.Nanomedicine. 2017;13:921–32. [DOI] [PubMed]
Kim NW, Kim SY, Lee JE, Yin Y, Lee JH, Lim SY, et al. Enhanced Cancer Vaccination by In Situ Nanomicelle-Generating Dissolving Microneedles.ACS Nano. 2018;12:9702–13. [DOI] [PubMed]
Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, et al. Recent progress in drug delivery.Acta Pharm Sin B. 2019;9:1145–62. [DOI] [PubMed] [PMC]
Gomes AC, Mohsen M, Bachmann MF. Harnessing Nanoparticles for Immunomodulation and Vaccines.Vaccines (Basel). 2017;5:6. [DOI] [PubMed] [PMC]
Schijns VEJC, O’Hagan DT. Immunopotentiators in modern vaccines. Academic Press; 2016.
Lindblad EB, Duroux L. Mineral adjuvants. In: Schijns VEJC, O’Hagan DT, editors. Immunopotentiators in Modern Vaccines (Second Edition). Academic Press; 2017. pp. 347–75. [DOI]
Wang Y, Yao C, Ding L, Li C, Wang J, Wu M, et al. Enhancement of the Immune Function by Titanium Dioxide Nanorods and Their Application in Cancer Immunotherapy.J Biomed Nanotechnol. 2017;13:367–80. [DOI] [PubMed]
Hem SL, Hogenesch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation.Expert Rev Vaccines. 2007;6:685–98. [DOI] [PubMed]
Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies.Nano Today. 2019;27:73–98. [DOI] [PubMed] [PMC]
Tan K, Li R, Huang X, Liu Q. Outer Membrane Vesicles: Current Status and Future Direction of These Novel Vaccine Adjuvants.Front Microbiol. 2018;9:783. [DOI] [PubMed] [PMC]
Amini Y, Moradi B, Fasihi-Ramandi M. Aluminum hydroxide nanoparticles show strong activity to stimulate Th-1 immune response against tuberculosis.Artif Cells Nanomed Biotechnol. 2017;45:1331–5. [DOI] [PubMed]
Song C, Li F, Wang S, Wang J, Wei W, Ma G. Recent advances in particulate adjuvants for cancer vaccination.Adv Ther. 2020;3:1900115. [DOI]
Alfagih IM, Aldosari B, AlQuadeib B, Almurshedi A, Alfagih MM. Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines.Pharmaceutics. 2020;13:45. [DOI] [PubMed] [PMC]
Horvath D, Basler M. PLGA Particles in Immunotherapy.Pharmaceutics. 2023;15:615. [DOI] [PubMed] [PMC]
Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.Hum Vaccin Immunother. 2016;12:1056–69. [DOI] [PubMed] [PMC]
Huang H, Liu R, Yang J, Dai J, Fan S, Pi J, et al. Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy.Pharmaceutics. 2023;15:1868. [DOI] [PubMed] [PMC]
Heidegger S, Gössl D, Schmidt A, Niedermayer S, Argyo C, Endres S, et al. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery.Nanoscale. 2016;8:938–48. [DOI] [PubMed]
Huang W, Pan H, Hu Z, Wang M, Wu L, Zhang F. A functional bimodal mesoporous silica nanoparticle with redox/cellulase dual-responsive gatekeepers for controlled release of fungicide.Sci Rep. 2023;13:802. [DOI] [PubMed] [PMC]
Nguyen HX. Microneedles: The Future of Drug Delivery. 1st Edition. Boca Raton: CRC Press; 2023. [DOI]
Chandrasekar V, Panicker AJ, Dey AK, Mohammad S, Chakraborty A, Samal SK, et al. Integrated approaches for immunotoxicity risk assessment: challenges and future directions.Dis Toxicol. 2024;1:9. [DOI]
Dai W, Wang X, Song G, Liu T, He B, Zhang H, et al. Combination antitumor therapy with targeted dual-nanomedicines.Adv Drug Deliv Rev. 2017;115:23–45. [DOI] [PubMed]
Lee L, Gupta M, Sahasranaman S. Immune Checkpoint inhibitors: An introduction to the next-generation cancer immunotherapy.J Clin Pharmacol. 2016;56:157–69. [DOI] [PubMed]
Lakshmanan VK, Jindal S, Packirisamy G, Ojha S, Lian S, Kaushik A, et al. Nanomedicine-based cancer immunotherapy: recent trends and future perspectives.Cancer Gene Ther. 2021;28:911–23. [DOI] [PubMed]
Chen R, Li Y, Zhuang Y, Zhang Y, Wu H, Lin T, et al. Immune evaluation of granulocyte-macrophage colony stimulating factor loaded hierarchically 3D nanofiber scaffolds in a humanized mice model.Front Bioeng Biotechnol. 2023;11:1159068. [DOI] [PubMed] [PMC]
Hanafy MS, Hufnagel S, Trementozzi AN, Sakran W, Stachowiak JC, Koleng JJ, et al. PD-1 siRNA-Encapsulated Solid Lipid Nanoparticles Downregulate PD-1 Expression by Macrophages and Inhibit Tumor Growth: PD-1 siRNA-Encapsulated Solid Lipid Nanoparticles.AAPS PharmSciTech. 2021;22:60. [DOI] [PubMed] [PMC]
Koerner J, Horvath D, Herrmann VL, MacKerracher A, Gander B, Yagita H, et al. PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy.Nat Commun. 2021;12:2935. [DOI] [PubMed] [PMC]
Wei Z, Yi Y, Luo Z, Gong X, Jiang Y, Hou D, et al. Selenopeptide Nanomedicine Activates Natural Killer Cells for Enhanced Tumor Chemoimmunotherapy.Adv Mater. 2022;34:e2108167. [DOI] [PubMed]
Liu J, Liu Z, Pang Y, Zhou H. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases.J Nanobiotechnology. 2022;20:127. [DOI] [PubMed] [PMC]
Lee EY, Srinivasan Y, de Anda J, Nicastro LK, Tükel Ç, Wong GCL. Functional Reciprocity of Amyloids and Antimicrobial Peptides: Rethinking the Role of Supramolecular Assembly in Host Defense, Immune Activation, and Inflammation.Front Immunol. 2020;11:1629. [DOI] [PubMed] [PMC]
Yoshida M, Babensee JE. Poly(lactic-co-glycolic acid) enhances maturation of human monocyte-derived dendritic cells.J Biomed Mater Res A. 2004;71:45–54. [DOI] [PubMed]
Lu ZD, Chen YF, Shen S, Xu CF, Wang J. Co-delivery of Phagocytosis Checkpoint Silencer and Stimulator of Interferon Genes Agonist for Synergetic Cancer Immunotherapy.ACS Appl Mater Interfaces. 2021;13:29424–38. [DOI] [PubMed]
Guo Y, Li Y, Zhang M, Ma R, Wang Y, Weng X, et al. Polymeric nanocarrier via metabolism regulation mediates immunogenic cell death with spatiotemporal orchestration for cancer immunotherapy.Nat Commun. 2024;15:8586. [DOI] [PubMed] [PMC]
Cheng L, Zhang P, Liu Y, Liu Z, Tang J, Xu L, et al. Multifunctional hybrid exosomes enhanced cancer chemo-immunotherapy by activating the STING pathway.Biomaterials. 2023;301:122259. [DOI] [PubMed]
Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, et al. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy.Adv Sci (Weinh). 2023;10:e2204365. [DOI] [PubMed] [PMC]
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine.Chem Soc Rev. 2012;41:2740–79. [DOI] [PubMed] [PMC]
Wang X, Li J, Kawazoe N, Chen G. Photothermal Ablation of Cancer Cells by Albumin-Modified Gold Nanorods and Activation of Dendritic Cells.Materials (Basel). 2018;12:31. [DOI] [PubMed] [PMC]
Wu X, Cheng Y, Zheng R, Xu K, Yan J, Song P, et al. Immunomodulation of Tumor Microenvironment by Arginine-Loaded Iron Oxide Nanoparticles for Gaseous Immunotherapy.ACS Appl Mater Interfaces. 2021;13:19825–35. [DOI] [PubMed]
Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment.Exp Hematol Oncol. 2023;12:14. [DOI] [PubMed] [PMC]
de Sousa E, Lérias JR, Beltran A, Paraschoudi G, Condeço C, Kamiki J, et al. Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery.Front Immunol. 2021;12:592031. [DOI] [PubMed] [PMC]
Zhu L, Liu J, Zhou G, Liu TM, Dai Y, Nie G, et al. Remodeling of Tumor Microenvironment by Tumor-Targeting Nanozymes Enhances Immune Activation of CAR T Cells for Combination Therapy.Small. 2021;17:e2102624. [DOI] [PubMed]
Gao Y, Zhou H, Liu G, Wu J, Yuan Y, Shang A. Tumor Microenvironment: Lactic Acid Promotes Tumor Development.J Immunol Res. 2022;2022:3119375. [DOI] [PubMed] [PMC]
Lu Y, Li L, Du J, Chen J, Xu X, Yang X, et al. Immunotherapy for Tumor Metastasis by Artificial Antigen-Presenting Cells via Targeted Microenvironment Regulation and T-Cell Activation.ACS Appl Mater Interfaces. 2021;13:55890–901. [DOI] [PubMed]
Zhang W, Liu X, Zhu Y, Liu X, Gu Y, Dai X, et al. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease.Eur J Immunol. 2021;51:2137–50. [DOI] [PubMed]
Huppert LA, Green MD, Kim L, Chow C, Leyfman Y, Daud AI, et al. Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy.Cell Mol Immunol. 2022;19:33–45. [DOI] [PubMed] [PMC]
Liu C, Chikina M, Deshpande R, Menk AV, Wang T, Tabib T, et al. Treg Cells Promote the SREBP1-Dependent Metabolic Fitness of Tumor-Promoting Macrophages via Repression of CD8+ T Cell-Derived Interferon-γ.Immunity. 2019;51:381–97.e6. [DOI] [PubMed] [PMC]
Li Z, Deng Y, Sun H, Tan C, Li H, Mo F, et al. Redox modulation with a perfluorocarbon nanoparticle to reverse Treg-mediated immunosuppression and enhance anti-tumor immunity.J Control Release. 2023;358:579–90. [DOI] [PubMed]
Ou W, Jiang L, Thapa RK, Soe ZC, Poudel K, Chang JH, et al. Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy.Theranostics. 2018;8:4574–90. [DOI] [PubMed] [PMC]
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, et al. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression.Acta Pharm Sin B. 2024;14:3834–54. [DOI] [PubMed] [PMC]
Chauhan A, Pathak VM, Yadav M, Chauhan R, Babu N, Chowdhary M, et al. Role of ursolic acid in preventing gastrointestinal cancer: recent trends and future perspectives.Front Pharmacol. 2024;15:1405497. [DOI] [PubMed] [PMC]
Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, et al. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression.Int J Pharm. 2021;606:120848. [DOI] [PubMed]
Caverzán MD, Beaugé L, Oliveda PM, Cesca González B, Bühler EM, Ibarra LE. Exploring Monocytes-Macrophages in Immune Microenvironment of Glioblastoma for the Design of Novel Therapeutic Strategies.Brain Sci. 2023;13:542. [DOI] [PubMed] [PMC]
Ibarra LE, Beaugé L, Arias-Ramos N, Rivarola VA, Chesta CA, López-Larrubia P, et al. Trojan horse monocyte-mediated delivery of conjugated polymer nanoparticles for improved photodynamic therapy of glioblastoma.Nanomedicine (Lond). 2020;15:1687–707. [DOI] [PubMed]
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity.Nat Rev Immunol. 2021;21:485–98. [DOI] [PubMed] [PMC]
Xu C, Amna N, Shi Y, Sun R, Weng C, Chen J, et al. Drug-Loaded Mesoporous Silica Nanoparticles Enhance Antitumor Immunotherapy by Regulating MDSCs.Molecules. 2024;29:2436. [DOI] [PubMed] [PMC]
Ghosh S, Johanns TM, Chheda MG, Liu E, Butt O, Abraham C, et al. A pilot phase Ib study to evaluate tadalafil to overcome immunosuppression during chemoradiotherapy for IDH-wild-type glioblastoma.Neurooncol Adv. 2023;5:vdad088. [DOI] [PubMed] [PMC]
Zhang T, Xiong H, Ma X, Gao Y, Xue P, Kang Y, et al. Supramolecular Tadalafil Nanovaccine for Cancer Immunotherapy by Alleviating Myeloid-Derived Suppressor Cells and Heightening Immunogenicity.Small Methods. 2021;5:e2100115. [DOI] [PubMed]
Wang B, Zhao Q, Zhang Y, Liu Z, Zheng Z, Liu S, et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy.J Exp Clin Cancer Res. 2021;40:24. [DOI] [PubMed] [PMC]
Zhou S, Li D, Lee C, Xie J. Nanoparticle Phototherapy in the Era of Cancer Immunotherapy.Trends Chem. 2020;2:1082–95. [DOI] [PubMed] [PMC]
Xia C, Li M, Ran G, Wang X, Lu Z, Li T, et al. Redox-responsive nanoassembly restrained myeloid-derived suppressor cells recruitment through autophagy-involved lactate dehydrogenase A silencing for enhanced cancer immunochemotherapy.J Control Release. 2021;335:557–74. [DOI] [PubMed]
Knipper K, Lyu SI, Quaas A, Bruns CJ, Schmidt T. Cancer-Associated Fibroblast Heterogeneity and Its Influence on the Extracellular Matrix and the Tumor Microenvironment.Int J Mol Sci. 2023;24:13482. [DOI] [PubMed] [PMC]
Ai W, Liu T, Lv C, Feng X, Wang Q. Modulation of cancer-associated fibroblasts by nanodelivery system to enhance efficacy of tumor therapy.Nanomedicine (Lond). 2023;18:1025–39. [DOI] [PubMed]
Fei B, Mo Z, Yang J, Wang Z, Li S. Nanodrugs Reprogram Cancer-Associated Fibroblasts and Normalize Tumor Vasculatures for Sequentially Enhancing Photodynamic Therapy of Hepatocellular Carcinoma.Int J Nanomedicine. 2023;18:6379–91. [DOI] [PubMed] [PMC]
He Y, Hong C, Huang S, Kaskow JA, Covarrubias G, Pires IS, et al. STING Protein-Based In Situ Vaccine Synergizes CD4+ T, CD8+ T, and NK Cells for Tumor Eradication.Adv Healthc Mater. 2023;12:e2300688. [DOI] [PubMed] [PMC]
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, et al. Anticancer nanomedicines harnessing tumor microenvironmental components.Expert Opin Drug Deliv. 2022;19:337–54. [DOI] [PubMed]
Zang S, Huang K, Li J, Ren K, Li T, He X, et al. Metabolic reprogramming by dual-targeting biomimetic nanoparticles for enhanced tumor chemo-immunotherapy.Acta Biomater. 2022;148:181–93. [DOI] [PubMed]
Cano-Mejia J, Shukla A, Ledezma DK, Palmer E, Villagra A, Fernandes R. CpG-coated prussian blue nanoparticles-based photothermal therapy combined with anti-CTLA-4 immune checkpoint blockade triggers a robust abscopal effect against neuroblastoma.Transl Oncol. 2020;13:100823. [DOI] [PubMed] [PMC]
Singh D, Dilnawaz F, Sahoo SK. Challenges of moving theranostic nanomedicine into the clinic.Nanomedicine (Lond). 2020;15:111–4. [DOI] [PubMed]
Reese TA, Bi K, Kambal A, Filali-Mouhim A, Beura LK, Bürger MC, et al. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response.Cell Host Microbe. 2016;19:713–9. [DOI] [PubMed] [PMC]
Brubaker DK, Lauffenburger DA. Translating preclinical models to humans.Science. 2020;367:742–3. [DOI] [PubMed]
Singh AV, Bhardwaj P, Upadhyay AK, Pagani A, Upadhyay J, Bhadra J, et al. Navigating regulatory challenges in molecularly tailored nanomedicine.Explor BioMat-X. 2024;1:124–34. [DOI]
Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges.Mol Cancer. 2023;22:94. [DOI] [PubMed] [PMC]
Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA.Proc Natl Acad Sci U S A. 2014;111:11449–54. [DOI] [PubMed] [PMC]
Ishikawa T, Kageyama S, Miyahara Y, Okayama T, Kokura S, Wang L, et al. Safety and antibody immune response of CHP-NY-ESO-1 vaccine combined with poly-ICLC in advanced or recurrent esophageal cancer patients.Cancer Immunol Immunother. 2021;70:3081–91. [DOI] [PubMed] [PMC]
Pavlick A, Blazquez AB, Meseck M, Lattanzi M, Ott PA, Marron TU, et al. Combined Vaccination with NY-ESO-1 Protein, Poly-ICLC, and Montanide Improves Humoral and Cellular Immune Responses in Patients with High-Risk Melanoma.Cancer Immunol Res. 2020;8:70–80. [DOI] [PubMed] [PMC]
Kageyama S, Wada H, Muro K, Niwa Y, Ueda S, Miyata H, et al. Dose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patients.J Transl Med. 2013;11:246. [DOI] [PubMed] [PMC]
Kitano S, Kageyama S, Nagata Y, Miyahara Y, Hiasa A, Naota H, et al. HER2-specific T-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan.Clin Cancer Res. 2006;12:7397–405. [DOI] [PubMed]
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al.; IMpassion130 Trial Investigators. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer.N Engl J Med. 2018;379:2108–21. [DOI] [PubMed]
Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers.Nat Nanotechnol. 2017;12:813–20. [DOI] [PubMed] [PMC]
Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP, Xie YQ, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery.Nat Biotechnol. 2018;36:707–16. [DOI] [PubMed] [PMC]