CCC, ZYX and WXW contributed to the conception and design of the review. CCC, ZYX, LG, ZSH and ZJH collected the related reports and drafted the manuscript. All authors contributed to manuscript revision, read and approved the submitted version.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This work was sponsored by the National Natural Science Foundation of China (No. 81902442), Natural Science Foundation of Henan for Excellent Young Scholars (No. 202300410309), Key Scientific Research Projects of Henan for College (No. 20A320010) and Start-up Funds of Xinxiang Medical University (No. 505284). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Guo S, Chen J, Chen F, Zeng Q, Liu WL, Zhang G.Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16. Gut. Forthcoming 2021.
Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol.2007;9:1392–400. [DOI] [PubMed]
Dai W, Guo X, Cao Y, Mondo JA, Campanale JP, Montell BJ, et al. Tissue topography steers migrating Drosophila border cells. Science.2020;370:987–90. [DOI] [PubMed] [PMC]
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med.2011;17:1498–503. [DOI] [PubMed] [PMC]
Zhang J, Wang S, Jiang B, Huang L, Ji Z, Li X, et al. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Nat Commun.2017;8:13732. [DOI] [PubMed] [PMC]
Wrenn ED, Yamamoto A, Moore BM, Huang Y, McBirney M, Thomas AJ, et al. Regulation of collective metastasis by nanolumenal signaling. Cell.2020;183:395–410.e19. [DOI] [PubMed] [PMC]
Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med.2021;27:152–64. [DOI] [PubMed] [PMC]
Miao Y, Shen Q, Zhang S, Huang H, Meng X, Zheng X, et al. Calcium-sensing stromal interaction molecule 2 upregulates nuclear factor of activated T cells 1 and transforming growth factor-β signaling to promote breast cancer metastasis. Breast Cancer Res.2019;21:99. [DOI] [PubMed] [PMC]
Hanahan D, Weinberg RA.Hallmarks of cancer: the next generation. Cell.2011;144:646–74. [DOI] [PubMed]
Hosseini H, Obradović MMS, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M, et al. Early dissemination seeds metastasis in breast cancer. Nature.2016;540:552–8. [DOI] [PubMed] [PMC]
Huang HK, Lin YH, Chang HA, Lai YS, Chen YC, Huang SC, et al. Chemoresistant ovarian cancer enhances its migration abilities by increasing store-operated Ca2+ entry-mediated turnover of focal adhesions. J Biomed Sci.2020;27:36. [DOI] [PubMed] [PMC]
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer.2019;18:91. [DOI] [PubMed] [PMC]
Yang S, Zhang JJ, Huang XY.Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell.2009;15:124–34. [DOI] [PubMed]
Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature.2006;441:179–85. [DOI] [PubMed]
Choi S, Cui C, Luo Y, Kim SH, Ko JK, Huo X, et al. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1. FASEB J.2018;32:404–16. [DOI] [PubMed] [PMC]
Alessandro R, Masiero L, Liotta LA, Kohn EC.The role of calcium in the regulation of invasion and angiogenesis. In Vivo.1996;10:153–60. [PubMed]
Cui C, Merritt R, Fu L, Pan Z.Targeting calcium signaling in cancer therapy. Acta Pharmaceutica Sinica B.2017;7:3–17. [DOI] [PubMed] [PMC]
Webb DJ, Parsons JT, Horwitz AF.Adhesion assembly, disassembly and turnover in migrating cells--over and over and over again. Nat Cell Biol.2002;4:E97–100. [DOI] [PubMed]
Fidler IJ, Poste G.The “seed and soil” hypothesis revisited. Lancet Oncol.2008;9:808. [DOI] [PubMed]
Fife CM, McCarroll JA, Kavallaris M.Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol.2014;171:5507–23. [DOI] [PubMed] [PMC]
Li Y, Zhang Z, Zhou X, Li L, Liu Q, Wang Z, et al. The oncoprotein HBXIP enhances migration of breast cancer cells through increasing filopodia formation involving MEKK2/ERK1/2/Capn4 signaling. Cancer Lett.2014;355:288–96. [DOI] [PubMed]
Tang Y, He Y, Zhang P, Wang J, Fan C, Yang L, et al. LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis. Mol Cancer.2018;17:77. [DOI] [PubMed] [PMC]
Harada H, Inoue M, Itasaka S, Hirota K, Morinibu A, Shinomiya K, et al. Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels. Nat Commun.2012;3:783. [DOI] [PubMed] [PMC]
Orgaz JL, Pandya P, Dalmeida R, Karagiannis P, Sanchez-Laorden B, Viros A, et al. Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat Commun.2014;5:4255. [DOI] [PubMed] [PMC]
Friedl P, Wolf K.Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res.2008;68:7247–9. [DOI] [PubMed]
Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell.2014;158:1110–22. [DOI] [PubMed] [PMC]
Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B, et al. Nuclear envelope rupture and repair during cancer cell migration. Science.2016;352:353–8. [DOI] [PubMed] [PMC]
Denny SK, Yang D, Chuang CH, Brady JJ, Lim JS, Grüner BM, et al. Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell.2016;166:328–42. [DOI] [PubMed] [PMC]
Goodarzi H, Nguyen HCB, Zhang S, Dill BD, Molina H, Tavazoie SF.Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell.2016;165:1416–27. [DOI] [PubMed] [PMC]
Ebright RY, Lee S, Wittner BS, Niederhoffer KL, Nicholson BT, Bardia A, et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science.2020;367:1468–73. [DOI] [PubMed] [PMC]
Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature.2016;540:588–92. [DOI] [PubMed] [PMC]
Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell.2012;148:349–61. [DOI] [PubMed] [PMC]
Lin B, Yin T, Wu YI, Inoue T, Levchenko A.Interplay between chemotaxis and contact inhibition of locomotion determines exploratory cell migration. Nat Commun.2015;6:6619. [DOI] [PubMed] [PMC]
Ouzounova M, Lee E, Piranlioglu R, El Andaloussi A, Kolhe R, Demirci MF, et al. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat Commun.2017;8:14979. [DOI] [PubMed] [PMC]
Sugiyama N, Gucciardo E, Tatti O, Varjosalo M, Hyytiainen M, Gstaiger M, et al. EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion. J Cell Biol.2013;201:467–84. [DOI] [PubMed] [PMC]
Tasdogan A, Faubert B, Ramesh V, Ubellacker JM, Shen B, Solmonson A, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature.2020;577:115–20. [DOI] [PubMed] [PMC]
LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol.2014;16:992–1003, 1–15. [DOI] [PubMed] [PMC]
Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature.2019;573:439–44. [DOI] [PubMed] [PMC]
Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature.2015;527:186–91. [DOI] [PubMed] [PMC]
Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD, Nowyhed H, et al. Patrolling monocytes control tumor metastasis to the lung. Science.2015;350:985–90. [DOI] [PubMed] [PMC]
Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS, et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature.2020;585:113–8. [DOI] [PubMed] [PMC]
Zhao Z, Wu MS, Zou C, Tang Q, Lu J, Liu D, et al. Downregulation of MCT1 inhibits tumor growth, metastasis and enhances chemotherapeutic efficacy in osteosarcoma through regulation of the NF-κB pathway. Cancer Lett.2014;342:150–8. [DOI] [PubMed]
Barrow-McGee R, Kishi N, Joffre C, Ménard L, Hervieu A, Bakhouche BA, et al. Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes. Nat Commun.2016;7:11942. [DOI] [PubMed] [PMC]
Wolf MJ, Hoos A, Bauer J, Boettcher S, Knust M, Weber A, et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell.2012;22:91–105. [DOI] [PubMed]
Olmeda D, Cerezo-Wallis D, Riveiro-Falkenbach E, Pennacchi PC, Contreras-Alcalde M, Ibarz N, et al. Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature.2017;546:676–80. [DOI] [PubMed] [PMC]
Png KJ, Halberg N, Yoshida M, Tavazoie SF.A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature.2011;481:190–4. [DOI] [PubMed]
Karnezis T, Shayan R, Caesar C, Roufail S, Harris NC, Ardipradja K, et al. VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell.2012;21:181–95. [DOI] [PubMed]
Lee E, Fertig EJ, Jin K, Sukumar S, Pandey NB, Popel AS.Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun.2014;5:4715. [DOI] [PubMed] [PMC]
Chen XJ, Wei WF, Wang ZC, Wang N, Guo CH, Zhou CF, et al. A novel lymphatic pattern promotes metastasis of cervical cancer in a hypoxic tumour-associated macrophage-dependent manner. Forthcoming 2021.
Labelle M, Begum S, Hynes RO.Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell.2011;20:576–90. [DOI] [PubMed] [PMC]
Papa AL, Jiang A, Korin N, Chen MB, Langan ET, Waterhouse A, et al. Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models. Sci Transl Med.2019;11:eaau5898. [DOI] [PubMed]
Zheng X, Liu J, Li X, Tian R, Shang K, Dong X, et al. Angiogenesis is promoted by exosomal DPP4 derived from 5-fluorouracil-resistant colon cancer cells. Cancer Lett.2021;497:190–201. [DOI] [PubMed]
Schwartz H, Blacher E, Amer M, Livneh N, Abramovitz L, Klein A, et al. Incipient melanoma brain metastases instigate astrogliosis and neuroinflammation. Cancer Res.2016;76:4359–71. [DOI] [PubMed]
Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, Müller UC, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature.2016;536:215–8. [DOI] [PubMed]
Wieland E, Rodriguez-Vita J, Liebler SS, Mogler C, Moll I, Herberich SE, et al. Endothelial Notch1 activity facilitates metastasis. Cancer Cell.2017;31:355–67. [DOI] [PubMed]
Connor Y, Tekleab S, Nandakumar S, Walls C, Tekleab Y, Husain A, et al. Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype. Nat Commun.2015;6:8671. [DOI] [PubMed] [PMC]
Wagenblast E, Soto M, Gutiérrez-Ángel S, Hartl CA, Gable AL, Maceli AR, et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature.2015;520:358–62. [DOI] [PubMed] [PMC]
Lugassy C, Kleinman HK, Vermeulen PB, Barnhill RL.Angiotropism, pericytic mimicry and extravascular migratory metastasis: an embryogenesis-derived program of tumor spread. Angiogenesis.2020;23:27–41. [DOI] [PubMed]
Aguirre-Ghiso JA.Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer.2007;7:834–46. [DOI] [PubMed] [PMC]
Bartosh TJ, Ullah M, Zeitouni S, Beaver J, Prockop DJ.Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs). Proc Natl Acad Sci U S A.2016;113:E6447–56. [DOI] [PubMed] [PMC]
Guldner IH, Wang Q, Yang L, Golomb SM, Zhao Z, Lopez JA, et al. CNS-native myeloid cells drive immune suppression in the brain metastatic niche through cxcl10. Cell.2020;183:1234–48.e25. [DOI] [PubMed] [PMC]
Wu Z, Wei D, Gao W, Xu Y, Hu Z, Ma Z, et al. TPO-induced metabolic reprogramming drives liver metastasis of colorectal cancer CD110+ tumor-initiating cells. Cell Stem Cell.2015;17:47–59. [DOI] [PubMed]
Clever D, Roychoudhuri R, Constantinides MG, Askenase MH, Sukumar M, Klebanoff CA, et al. Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell.2016;166:1117–31.e14. [DOI] [PubMed] [PMC]
Ramel D, Wang X, Laflamme C, Montell DJ, Emery G.Rab11 regulates cell-cell communication during collective cell movements. Nat Cell Biol.2013;15:317–24. [DOI] [PubMed] [PMC]
Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z, et al. Extracellular metabolic energetics can promote cancer progression. Cell.2015;160:393–406. [DOI] [PubMed] [PMC]
Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature.2015;527:100–4. [DOI] [PubMed] [PMC]
Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol.2007;213:374–83. [DOI] [PubMed]
Del Pozo Martin Y, Park D, Ramachandran A, Ombrato L, Calvo F, Chakravarty P, et al. Mesenchymal cancer cell-stroma crosstalk promotes niche aactivation, epithelial reversion, and metastatic colonization. Cell Rep.2015;13:2456–69. [DOI] [PubMed] [PMC]
Jiao S, Subudhi SK, Aparicio A, Ge Z, Guan B, Miura Y, et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell.2019;179:1177–90 e13. [DOI] [PubMed]
Liu Y, Gu Y, Han Y, Zhang Q, Jiang Z, Zhang X, et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell.2016;30:243–56. [DOI] [PubMed]
Barkan D, Green JE, Chambers AF.Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer.2010;46:1181–8. [DOI] [PubMed] [PMC]
Cox TR, Rumney RMH, Schoof EM, Perryman L, Høye AM, Agrawal A, et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature.2015;522:106–10. [DOI] [PubMed] [PMC]
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature.2015;527:329–35. [DOI] [PubMed] [PMC]
Headley MB, Bins A, Nip A, Roberts EW, Looney MR, Gerard A, et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature.2016;531:513–7. [DOI] [PubMed] [PMC]
Cai Z, Li CF, Han F, Liu C, Zhang A, Hsu CC, et al. Phosphorylation of PDHA by AMPK drives TCA cycle to promote cancer metastasis. Mol Cell.2020;80:263–78.e7. [DOI] [PubMed] [PMC]
Bu P, Chen KY, Xiang K, Johnson C, Crown SB, Rakhilin N, et al. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab.2018;27:1249–62.e4. [DOI] [PubMed] [PMC]
Kim J, Kang J, Kang YL, Woo J, Kim Y, Huh J, et al. Ketohexokinase-A acts as a nuclear protein kinase that mediates fructose-induced metastasis in breast cancer. Nat commun.2020;11:5436. [DOI] [PubMed] [PMC]
Cui C, Yang J, Li X, Liu D, Fu L, Wang X.Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer.2020;19:58–73. [DOI] [PubMed] [PMC]
Hao J.The role of acidic microenvironment in the tumor aggressive phenotypes and the treatment. Tradit Med Res.2020;5:4–6. [DOI]
Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science.2020;368:973–80. [DOI] [PubMed] [PMC]
Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell.2017;171:1611–24.e24. [DOI] [PubMed] [PMC]
Astin JW, Batson J, Kadir S, Charlet J, Persad RA, Gillatt D, et al. Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat Cell Biol.2010;12:1194–204. [DOI] [PubMed]
Ershaid N, Sharon Y, Doron H, Raz Y, Shani O, Cohen N, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun.2019;10:4375. [DOI] [PubMed] [PMC]
Wang X, Song X, Cheng G, Zhang J, Dong L, Bai J, et al. The regulatory mechanism and biological significance of mitochondrial calcium uniporter in the migration, invasion, angiogenesis and growth of gastric cancer. Onco Targets Ther.2020;13:11781–94. [DOI] [PubMed] [PMC]
Shang S, Ji X, Zhang L, Chen J, Li C, Shi R, et al. Macrophage ABHD5 suppresses NFκB-dependent matrix metalloproteinase expression and cancer metastasis. Cancer Res.2019;79:5513–26. [DOI] [PubMed]
Srivastava K, Hu J, Korn C, Savant S, Teichert M, Kapel SS, et al. Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell.2014;26:880–95. [DOI] [PubMed]
Fan QM, Jing YY, Yu GF, Kou XR, Ye F, Gao L, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett.2014;352:160–8. [DOI] [PubMed]
Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun.2016;7:11385. [DOI] [PubMed] [PMC]
Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature.2007;449:557–63. [DOI] [PubMed]
Chen YC, Gonzalez ME, Burman B, Zhao X, Anwar T, Tran M, et al. Mesenchymal stem/stromal cell engulfment reveals metastatic advantage in breast cancer. Cell Rep.2019;27:3916–26.e5. [DOI] [PubMed] [PMC]
Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun.2013;4:1795. [DOI] [PubMed] [PMC]
Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT, et al. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv.2018;4:eaat7828. [DOI] [PubMed] [PMC]
Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell.2015;161:1046–57. [DOI] [PubMed] [PMC]
Neelakantan D, Zhou H, Oliphant MUJ, Zhang X, Simon LM, Henke DM, et al. EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat Commun.2017;8:15773. [DOI] [PubMed] [PMC]
Kuriyama S, Theveneau E, Benedetto A, Parsons M, Tanaka M, Charras G, et al. In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity. J Cell Biol.2014;206:113–27. [DOI] [PubMed] [PMC]
Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A.2016;113:E854–63. [DOI] [PubMed] [PMC]
Au SH, Storey BD, Moore JC, Tang Q, Chen YL, Javaid S, et al. Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci U S A.2016;113:4947–52. [DOI] [PubMed] [PMC]
Tuguzbaeva G, Yue E, Chen X, He L, Li X, Ju J, et al. PEP06 polypeptide 30 is a novel cluster-dissociating agent inhibiting αv integrin/FAK/Src signaling in oral squamous cell carcinoma cells. Acta Pharm Sin B.2019;9:1163–73. [DOI] [PubMed] [PMC]
Yu S, Li L, Tian W, Nie D, Mu W, Qiu F, et al. PEP06 polypeptide 30 exerts antitumour effect in colorectal carcinoma via inhibiting epithelial-mesenchymal transition. Br J Pharmacol.2018;175:3111–30. [DOI] [PubMed] [PMC]
Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell.2019;178:330–45.e22. [DOI] [PubMed]
Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E, et al. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res.2006;66:3629–38. [DOI] [PubMed]
Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature.2017;541:41–5. [DOI] [PubMed]
Lee CK, Jeong SH, Jang C, Bae H, Kim YH, Park I, et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science.2019;363:644–9. [DOI] [PubMed]
Bhattacharya B, Mohd Omar MF, Soong R.The Warburg effect and drug resistance. Br J Pharmacol.2016;173:970–9. [DOI] [PubMed] [PMC]
Cordero A, Kanojia D, Miska J, Panek WK, Xiao A, Han Y, et al. FABP7 is a key metabolic regulator in HER2+ breast cancer brain metastasis. Oncogene.2019;38:6445–60. [DOI] [PubMed] [PMC]
Gu L, Larson Casey JL, Andrabi SA, Lee JH, Meza-Perez S, Randall TD, et al. Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis. Redox Biol.2019;26:101307. [DOI] [PubMed] [PMC]
Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature.2018;562:605–9. [DOI] [PubMed] [PMC]
Adiga D, Radhakrishnan R, Chakrabarty S, Kumar P, Kabekkodu SP.The role of calcium signaling in regulation of epithelial-mesenchymal transition. Cells Tissues Organs. Forthcoming 2021.
Leverrier-Penna S, Destaing O, Penna A.Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium.2020;90:102251. [DOI] [PubMed]
Almquist M, Anagnostaki L, Bondeson L, Bondeson AG, Borgquist S, Landberg G, et al. Serum calcium and tumour aggressiveness in breast cancer: a prospective study of 7847 women. Eur J Cancer Prev.2009;18:354–60. [DOI] [PubMed]
Li XC, Dong YY, Cheng Y, Zhou JY, Yang X, Shen BQ, et al. Increased serum calcium level promotes the risk of lymph node metastasis in endometrial cancer. Cancer Manag Res.2020;12:5023–30. [DOI] [PubMed] [PMC]
Huang SY, Chen Y, Tan XR, Gong S, Yang XJ, He QM, et al. Serum calcium levels before antitumour therapy predict clinical outcomes in patients with nasopharyngeal carcinoma. Onco Targets Ther.2020;13:13111–9. [DOI] [PubMed] [PMC]
Tsuji Y, Nakamori S, Ariyoshi H, Sakon M, Aono Y, Ueda A, et al. Cancer cell contact causes oscillatory and polarized rise of cytoplasmic ionized calcium concentration in human umbilical vein endothelial cells. Int J Oncol.2002;21:541–6. [PubMed]
Wu D, Ma X, Lin F.DC electric fields direct breast cancer cell migration, induce EGFR polarization, and increase the intracellular level of calcium ions. Cell Biochem Biophys.2013;67:1115–25. [DOI] [PubMed]
Pon CK, Lane JR, Sloan EK, Halls ML.The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. FASEB J.2016;30:1144–54. [DOI] [PubMed] [PMC]
Hwang YP, Jeong HG.Metformin blocks migration and invasion of tumour cells by inhibition of matrix metalloproteinase-9 activation through a calcium and protein kinase Calpha-dependent pathway: phorbol-12-myristate-13-acetate-induced/extracellular signal-regulated kinase/activator protein-1. Br J Pharmacol.2010;160:1195–211. [DOI] [PubMed] [PMC]
Timar J, Chopra H, Rong X, Hatfield JS, Fligiel SE, Onoda JM, et al. Calcium channel blocker treatment of tumor cells induces alterations in the cytoskeleton, mobility of the integrin alpha IIb beta 3 and tumor-cell-induced platelet aggregation. J Cancer Res Clin Oncol.1992;118:425–34. [DOI] [PubMed]
Wang H, Gao X, Yang JJ, Liu ZR.Interaction between p68 RNA helicase and Ca2+-calmodulin promotes cell migration and metastasis. Nat Commun.2013;4:1354. [DOI] [PubMed] [PMC]
Villalobo A, Berchtold MW.The role of calmodulin in tumor cell migration, invasiveness, and metastasis. Int J Mol Sci.2020;21:765. [DOI]
Liu Z, Han G, Cao Y, Wang Y, Gong H.Calcium/calmodulin-dependent protein kinase II enhances metastasis of human gastric cancer by upregulating nuclear factor-κB and Akt-mediated matrix metalloproteinase-9 production. Mol Med Rep.2014;10:2459–64. [DOI] [PubMed]
Sheng W, Wang G, Tang J, Shi X, Cao R, Sun J, et al. Calreticulin promotes EMT in pancreatic cancer via mediating Ca2+ dependent acute and chronic endoplasmic reticulum stress. J Exp Clin Cancer Res.2020;39:209. [DOI] [PubMed] [PMC]
Grosshans HK, Fischer TT, Steinle JA, Brill AL, Ehrlich BE.Neuronal Calcium Sensor 1 is up-regulated in response to stress to promote cell survival and motility in cancer cells. Mol Oncol.2020;14:1134–51. [DOI] [PubMed] [PMC]
Xie R, Xu J, Xiao Y, Wu J, Wan H, Tang B, et al. Calcium promotes human gastric cancer via a novel coupling of calcium-sensing receptor and TRPV4 channel. Cancer Res.2017;77:6499–512. [DOI] [PubMed]
Chan KT, Bennin DA, Huttenlocher A.Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J Biol Chem.2010;285:11418–26. [DOI] [PubMed] [PMC]
Zheng JC, Chang KJ, Jin YX, Zhao XW, Li B, Yang MH.Arsenic trioxide inhibits the metastasis of small cell lung cancer by blocking calcineurin-nuclear factor of activated T cells (NFAT) signaling. Med Sci Monit.2019;25:2228–37. [DOI] [PubMed] [PMC]
Zhou X, Liu Y, You J, Zhang H, Zhang X, Ye L.Myosin light-chain kinase contributes to the proliferation and migration of breast cancer cells through cross-talk with activated ERK1/2. Cancer Letters.2008;270:312–27. [DOI] [PubMed]
Luu HH, Zhou L, Haydon RC, Deyrup AT, Montag AG, Huo D, et al. Increased expression of S100A6 is associated with decreased metastasis and inhibition of cell migration and anchorage independent growth in human osteosarcoma. Cancer Lett.2005;229:135–48. [DOI] [PubMed]
Li T, Yi L, Hai L, Ma H, Tao Z, Zhang C, et al. The interactome and spatial redistribution feature of Ca2+ receptor protein calmodulin reveals a novel role in invadopodia-mediated invasion. Cell Death Dis.2018;9:292. [DOI] [PubMed] [PMC]
Joeckel E, Haber T, Prawitt D, Junker K, Hampel C, Thüroff JW, et al. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor. Mol Cancer.2014;13:42. [DOI] [PubMed] [PMC]
Apasu JE, Schuette D, LaRanger R, Steinle JA, Nguyen LD, Grosshans HK, et al. Neuronal calcium sensor 1 (NCS1) promotes motility and metastatic spread of breast cancer cells in vitro and in vivo. FASEB J.2019;33:4802–13. [DOI] [PubMed] [PMC]
Moriyama-Kita M, Endo Y, Yonemura Y, Heizmann CW, Miyamori H, Sato H, et al. S100A4 regulates E-cadherin expression in oral squamous cell carcinoma. Cancer Lett.2005;230:211–8. [DOI] [PubMed]
Jiao J, González Á, Stevenson HL, Gagea M, Sugimoto H, Kalluri R, et al. Depletion of S100A4+ stromal cells does not prevent HCC development but reduces the stem cell-like phenotype of the tumors. Exp Mol Med.2018;50:e422. [DOI] [PubMed] [PMC]
Wei R, Zhu WW, Yu GY, Wang X, Gao C, Zhou X, et al. S100 calcium-binding protein A9 from tumor-associated macrophage enhances cancer stem cell-like properties of hepatocellular carcinoma. Int J Cancer.2020;148:1233–44. [DOI] [PubMed]
Duan L, Wu R, Zhang X, Wang D, You Y, Zhang Y, et al. HBx-induced S100A9 in NF-κB dependent manner promotes growth and metastasis of hepatocellular carcinoma cells. Cell Death Dis.2018;9:629. [DOI] [PubMed] [PMC]
Li N, Liu L, Li G, Xia M, Du C, Zheng Z.The role of BKCa in endometrial cancer HEC-1-B cell proliferation and migration. Gene.2018;655:42–7. [DOI] [PubMed]
Hu J, Yuan X, Ko MK, Yin D, Sacapano MR, Wang X, et al. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model. Mol Cancer.2007;6:22. [DOI] [PubMed] [PMC]
Potier M, Chantome A, Joulin V, Girault A, Roger S, Besson P, et al. The SK3/K(Ca)2.3 potassium channel is a new cellular target for edelfosine. Br J Pharmacol.2011;162:464–79. [DOI] [PubMed] [PMC]
Wu L, Lin W, Liao Q, Wang H, Lin C, Tang L, et al. Calcium channel blocker nifedipine suppresses colorectal cancer progression and immune escape by preventing NFAT2 nuclear translocation. Cell Rep.2020;33:108327. [DOI] [PubMed]
Hao J, Bao X, Jin B, Wang X, Mao Z, Li X, et al. Ca2+ channel subunit α 1D promotes proliferation and migration of endometrial cancer cells mediated by 17β-estradiol via the G protein-coupled estrogen receptor. FASEB J.2015;29:2883–93. [DOI] [PubMed]
Jacquemet G, Baghirov H, Georgiadou M, Sihto H, Peuhu E, Cettour-Janet P, et al. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling. Nat Commun.2016;7:13297. [DOI] [PubMed] [PMC]
Jin YM, Ye Y, Bao WQ, Tong Y, Ni SB, Liu JP, et al. CACNA1B facilitates breast cancer cell growth and migration by regulating cyclin D1 and EMT: the implication of CACNA1B in breast cancer. J Recept Signal Transduct. Forthcoming 2021.
Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, et al. Inhibition of T-type Ca2+ channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol.2012;166:1247–60. [DOI] [PubMed] [PMC]
Maiques O, Barceló C, Panosa A, Pijuan J, Orgaz JL, Rodriguez-Hernandez I, et al. T-type calcium channels drive migration/invasion in BRAFV600E melanoma cells through Snail1. Pigment Cell Melanoma Res.2018;31:484–95. [DOI] [PubMed]
Leung CS, Yeung TL, Yip KP, Pradeep S, Balasubramanian L, Liu J, et al. Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat Commun.2014;5:5092. [DOI] [PubMed] [PMC]
Zhu M, Chen L, Zhao P, Zhou H, Zhang C, Yu S, et al. Store-operated Ca2+ entry regulates glioma cell migration and invasion via modulation of Pyk2 phosphorylation. J Exp Clin Cancer Res.2014;33:98. [DOI] [PubMed] [PMC]
Goswamee P, Pounardjian T, Giovannucci DR.Arachidonic acid-induced Ca2+ entry and migration in a neuroendocrine cancer cell line. Cancer Cell Int.2018;18:30. [DOI] [PubMed] [PMC]
Casas-Rua V, Tomas-Martin P, Lopez-Guerrero AM, Alvarez IS, Pozo-Guisado E, Martin-Romero FJ.STIM1 phosphorylation triggered by epidermal growth factor mediates cell migration. Biochim Biophys Acta.2015;1853:233–43. [DOI] [PubMed]
Xia J, Wang H, Huang H, Sun L, Dong S, Huang N, et al. Elevated Orai1 and STIM1 expressions upregulate MACC1 expression to promote tumor cell proliferation, metabolism, migration, and invasion in human gastric cancer. Cancer Lett.2016;381:31–40. [DOI] [PubMed]
Wu S, Chen M, Huang J, Zhang F, Lv Z, Jia Y, et al. ORAI2 promotes gastric cancer tumorigenicity and metastasis through PI3K/Akt signaling and MAPK-dependent focal adhesion disassembly. Cancer Res.2020;81:986–1000. [DOI] [PubMed]
Sun J, Lu F, He H, Shen J, Messina J, Mathew R, et al. STIM1- and Orai1-mediated Ca2+ oscillation orchestrates invadopodium formation and melanoma invasion. J Cell Biol.2014;207:535–48. [DOI] [PubMed] [PMC]
Koslowski M, Türeci O, Huber C, Sahin U.Selective activation of tumor growth-promoting Ca2+ channel MS4A12 in colon cancer by caudal type homeobox transcription factor CDX2. Mol Cancer.2009;8:77. [DOI] [PubMed] [PMC]
Zhang LY, Zhang YQ, Zeng YZ, Zhu JL, Chen H, Wei XL, et al. TRPC1 inhibits the proliferation and migration of estrogen receptor-positive Breast cancer and gives a better prognosis by inhibiting the PI3K/AKT pathway. Breast Cancer Res Treat.2020;182:21–33. [DOI] [PubMed]
Oda K, Umemura M, Nakakaji R, Tanaka R, Sato I, Nagasako A, et al. Transient receptor potential cation 3 channel regulates melanoma proliferation and migration. J Physiol Sci.2017;67:497–505. [DOI] [PubMed]
Wei WC, Huang WC, Lin YP, Becker EBE, Ansorge O, Flockerzi V, et al. Functional expression of calcium-permeable canonical transient receptor potential 4-containing channels promotes migration of medulloblastoma cells. J Physiol.2017;595:5525–44. [DOI] [PubMed] [PMC]
Chen Z, Zhu Y, Dong Y, Zhang P, Han X, Jin J, et al. Overexpression of TrpC5 promotes tumor metastasis via the HIF-1alpha-Twist signaling pathway in colon cancer. Clin Sci (Lond).2017;131:2439–50. [DOI] [PubMed]
Jardin I, Diez-Bello R, Lopez JJ, Redondo PC, Salido GM, Smani T, et al. TRPC6 channels are required for proliferation, migration and invasion of breast cancer cell lines by modulation of orai1 and orai3 surface exposure. Cancers (Basel).2018;10:331. [DOI]
Kim JH, Hwang KH, Eom M, Kim M, Park EY, Jeong Y, et al. WNK1 promotes renal tumor progression by activating TRPC6-NFAT pathway. FASEB J.2019;33:8588–99. [DOI] [PubMed]
Song Y, Liu G, Liu S, Chen R, Wang N, Liu Z, et al. Helicobacter pylori upregulates TRPC6 via Wnt/beta-catenin signaling to promote gastric cancer migration and invasion. Onco Targets Ther.2019;12:5269–79 [DOI] [PubMed] [PMC]
Almasi S, Sterea AM, Fernando W, Clements DR, Marcato P, Hoskin DW, et al. TRPM2 ion channel promotes gastric cancer migration, invasion and tumor growth through the AKT signaling pathway. Sci Rep.2019;9:4182. [DOI] [PubMed] [PMC]
Li W, Yang FQ, Sun CM, Huang JH, Zhang HM, Li X, et al. circPRRC2A promotes angiogenesis and metastasis through epithelial-mesenchymal transition and upregulates TRPM3 in renal cell carcinoma. Theranostics.2020;10:4395–409. [DOI] [PubMed] [PMC]
Gao Y, Liao P.TRPM4 channel and cancer. Cancer Lett.2019;454:66–9. [DOI] [PubMed]
Sagredo AI, Sagredo EA, Pola V, Echeverría C, Andaur R, Michea L, et al. TRPM4 channel is involved in regulating epithelial to mesenchymal transition, migration, and invasion of prostate cancer cell lines. J Cell Physiol.2019;234:2037–50. [DOI] [PubMed]
Maeda T, Suzuki A, Koga K, Miyamoto C, Maehata Y, Ozawa S, et al. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells. Oncotarget.2017;8:78312–26. [DOI] [PubMed] [PMC]
Meng X, Cai C, Wu J, Cai S, Ye C, Chen H, et al. TRPM7 mediates breast cancer cell migration and invasion through the MAPK pathway. Cancer Lett.2013;333:96–102. [DOI] [PubMed]
Chen JP, Wang J, Luan Y, Wang CX, Li WH, Zhang JB, et al. TRPM7 promotes the metastatic process in human nasopharyngeal carcinoma. Cancer Lett.2015;356:483–90. [DOI] [PubMed]
Liu L, Wu N, Wang Y, Zhang X, Xia B, Tang J, et al. TRPM7 promotes the epithelial-mesenchymal transition in ovarian cancer through the calcium-related PI3K/AKT oncogenic signaling. J Exp Clin Cancer Res.2019;38:106. [DOI] [PubMed] [PMC]
Liu JJ, Li LZ, Xu P.Upregulation of TRPM8 can promote the colon cancer liver metastasis through mediating Akt/GSK-3 signal pathway. Biotechnol Appl Biochem. Forthcoming 2021.
Lyu L, Jin X, Li Z, Liu S, Li Y, Su R, et al. TBBPA regulates calcium-mediated lysosomal exocytosis and thereby promotes invasion and migration in hepatocellular carcinoma. Ecotoxicol Environ Saf.2020;192:110255. [DOI] [PubMed]
Wu K, Shen B, Jiang F, Xia L, Fan T, Qin M, et al. TRPP2 enhances metastasis by regulating epithelial-mesenchymal transition in laryngeal squamous cell carcinoma. Cell Physiol Biochem.2016;39:2203–15. [DOI] [PubMed]
Gao N, Yang F, Chen S, Wan H, Zhao X, Dong H.The role of TRPV1 ion channels in the suppression of gastric cancer development. J Exp Clin Cancer Res.2020;39:206. [DOI] [PubMed] [PMC]
Siveen KS, Nizamuddin PB, Uddin S, Al-Thani M, Frenneaux MP, Janahi IA, et al. TRPV2: a cancer biomarker and potential therapeutic target. Dis Markers.2020;2020:8892312. [DOI] [PubMed] [PMC]
Li X, Cheng Y, Wang Z, Zhou J, Jia Y, He X, et al. Calcium and TRPV4 promote metastasis by regulating cytoskeleton through the RhoA/ROCK1 pathway in endometrial cancer. Cell Death Dis.2020;11:1009. [DOI] [PubMed] [PMC]
Lee WH, Choong LY, Jin TH, Mon NN, Chong S, Liew CS, et al. TRPV4 plays a role in breast cancer cell migration via Ca2+-dependent activation of AKT and downregulation of E-cadherin cell cortex protein. Oncogenesis.2017;6:e338. [DOI] [PubMed] [PMC]
Cappelli HC, Kanugula AK, Adapala RK, Amin V, Sharma P, Midha P, et al. Mechanosensitive TRPV4 channels stabilize VE-cadherin junctions to regulate tumor vascular integrity and metastasis. Cancer Lett.2019;442:15–20. [DOI] [PubMed] [PMC]
Chen Y, Liu X, Zhang F, Liao S, He X, Zhuo D, et al. Vitamin D receptor suppresses proliferation and metastasis in renal cell carcinoma cell lines via regulating the expression of the epithelial Ca2+ channel TRPV5. PLoS One.2018;13:e0195844. [DOI] [PubMed] [PMC]
Raphaël M, Lehen’kyi V, Vandenberghe M, Beck B, Khalimonchyk S, Vanden Abeele F, et al. TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc Natl Acad Sci U S A.2014;111:E3870-9. [DOI] [PubMed] [PMC]
Wang T, Li N, Jin L, Qi X, Zhang C, Hua D.The calcium pump PMCA4 prevents epithelial-mesenchymal transition by inhibiting NFATc1-ZEB1 pathway in gastric cancer. Biochim Biophys Acta Mol Cell Res.2020;1867:118833. [DOI] [PubMed]
Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N, et al. Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell.2013;23:63–76. [DOI] [PubMed]
Chung FY, Lin SR, Lu CY, Yeh CS, Chen FM, Hsieh JS, et al. Sarco/endoplasmic reticulum calcium-ATPase 2 expression as a tumor marker in colorectal cancer. Am J Surg Pathol.2006;30:969–74. [DOI] [PubMed]
Gou WF, Niu ZF, Zhao S, Takano Y, Zheng HC.Aberrant SERCA3 expression during the colorectal adenoma-adenocarcinoma sequence. Oncol Rep.2014;31:232–40. [DOI] [PubMed]
Brisson L, Chadet S, Lopez-Charcas O, Jelassi B, Ternant D, Chamouton J, et al. P2X7 receptor promotes mouse mammary cancer cell invasiveness and tumour progression, and is a target for anticancer treatment. Cancers (Basel).2020;12:2342. [DOI]
Zhang WJ, Hu CG, Luo HL, Zhu ZM.Activation of P2X7 receptor promotes the invasion and migration of colon cancer cells via the STAT3 Signaling. Front Cell Dev Biol.2020;8:586555. [DOI] [PubMed] [PMC]
Zhang Y, Cheng H, Li W, Wu H, Yang Y.Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling. Int J Cancer.2019;145:1068–82. [DOI] [PubMed] [PMC]
Chen L, He HY, Li HM, Zheng J, Heng WJ, You JF, et al. ERK1/2 and p38 pathways are required for P2Y receptor-mediated prostate cancer invasion. Cancer Lett.2004;215:239–47. [DOI] [PubMed]
Li WH, Qiu Y, Zhang HQ, Liu Y, You JF, Tian XX, et al. P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br J Cancer.2013;109:1666–75. [DOI] [PubMed] [PMC]
Girard M, Dagenais Bellefeuille S, Eiselt É, Brouillette R, Placet M, Arguin G, et al. The P2Y6 receptor signals through Gαq/Ca2+/PKCα and Gα13/ROCK pathways to drive the formation of membrane protrusions and dictate cell migration. J Cell Physiol.2020;235:9676–90. [DOI] [PubMed]
Kamiyama M, Shirai T, Tamura S, Suzuki-Inoue K, Ehata S, Takahashi K, et al. ASK1 facilitates tumor metastasis through phosphorylation of an ADP receptor P2Y12 in platelets. Cell Death Differ.2017;24:2066–76. [DOI] [PubMed] [PMC]
Chen L, Sun Q, Zhou D, Song W, Yang Q, Ju B, et al. HINT2 triggers mitochondrial Ca2+ influx by regulating the mitochondrial Ca2+ uniporter (MCU) complex and enhances gemcitabine apoptotic effect in pancreatic cancer. Cancer Lett.2017;411:106–16. [DOI] [PubMed]
Ren T, Zhang H, Wang J, Zhu J, Jin M, Wu Y, et al. MCU-dependent mitochondrial Ca2+ inhibits NAD+/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells. Oncogene.2017;36:5897–909. [DOI] [PubMed]
Zheng X, Lu S, He Z, Huang H, Yao Z, Miao Y, et al. MCU-dependent negative sorting of miR-4488 to extracellular vesicles enhances angiogenesis and promotes breast cancer metastatic colonization. Oncogene.2020;39:6975–89. [DOI] [PubMed]
Tosatto A, Sommaggio R, Kummerow C, Bentham RB, Blacker TS, Berecz T, et al. The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1α. EMBO Mol Med.2016;8:569–85. [DOI] [PubMed] [PMC]
Jin M, Wang J, Ji X, Cao H, Zhu J, Chen Y, et al. MCUR1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ROS/Nrf2/Notch pathway in hepatocellular carcinoma. J Exp Clin Cancer Res.2019;38:136. [DOI] [PubMed] [PMC]
D’Amore A, Hanbashi AA, Di Agostino S, Palombi F, Sacconi A, Voruganti A, et al. Loss of two-pore channel 2 (TPC2) expression increases the metastatic traits of melanoma cells by a mechanism involving the hippo signalling pathway and store-operated calcium entry. Cancers (Basel).2020;12:2391. [DOI]
Shibao K, Fiedler MJ, Nagata J, Minagawa N, Hirata K, Nakayama Y, et al. The type III inositol 1,4,5-trisphosphate receptor is associated with aggressiveness of colorectal carcinoma. Cell calcium.2010;48:315–23. [DOI] [PubMed] [PMC]
Xu N, Zhang D, Chen J, He G, Gao L.Low expression of ryanodine receptor 2 is associated with poor prognosis in thyroid carcinoma. Oncol Lett.2019;18:3605–12. [DOI] [PubMed] [PMC]
Cui C, Chang Y, Zhang X, Choi S, Tran H, Penmetsa KV, et al. Targeting Orai1-mediated store-operated calcium entry by RP4010 for anti-tumor activity in esophagus squamous cell carcinoma. Cancer Lett.2018;432:169–79. [DOI] [PubMed] [PMC]
Yu C, Tang W, Wang Y, Shen Q, Wang B, Cai C, et al. Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett.2016;376:268–77. [DOI] [PubMed]
Li J, McKeown L, Ojelabi O, Stacey M, Foster R, O’Regan D, et al. Nanomolar potency and selectivity of a Ca2+ release-activated Ca2+ channel inhibitor against store-operated Ca2+ entry and migration of vascular smooth muscle cells. Br J Pharmacol.2011;164:382–93. [DOI] [PubMed] [PMC]
Hammadi M, Chopin V, Matifat F, Dhennin-Duthille I, Chasseraud M, Sevestre H, et al. Human ether à-gogo K+ channel 1 (hEag1) regulates MDA-MB-231 breast cancer cell migration through Orai1-dependent calcium entry. J Cell Physiol.2012;227:3837–46. [DOI] [PubMed]
Zhang X, Zhang L, Lin B, Chai X, Li R, Liao Y, et al. Phospholipid Phosphatase 4 promotes proliferation and tumorigenesis, and activates Ca2+-permeable Cationic Channel in lung carcinoma cells. Mol Cancer.2017;16:147. [DOI] [PubMed] [PMC]
Gershkovitz M, Caspi Y, Fainsod-Levi T, Katz B, Michaeli J, Khawaled S, et al. TRPM2 mediates neutrophil killing of disseminated tumor cells. Cancer Res.2018;78:2680–90. [DOI] [PubMed]
Kanugula AK, Adapala RK, Midha P, Cappelli HC, Meszaros JG, Paruchuri S, et al. Novel noncanonical regulation of soluble VEGF/VEGFR2 signaling by mechanosensitive ion channel TRPV4. FASEB J.2019;33:195–203. [DOI] [PubMed] [PMC]
Cui C, Yang J, Fu L, Wang M, Wang X.Progress in understanding mitochondrial calcium uniporter complex-mediated calcium signalling: a potential target for cancer treatment. Br J Pharmacol.2019;176:1190–205. [DOI] [PubMed] [PMC]
Gu L, Larson-Casey JL, Carter AB.Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization. FASEB J.2017;31:3072–83. [DOI] [PubMed] [PMC]
Fouque A, Lepvrier E, Debure L, Gouriou Y, Malleter M, Delcroix V, et al. The apoptotic members CD95, BclxL, and Bcl-2 cooperate to promote cell migration by inducing Ca2+ flux from the endoplasmic reticulum to mitochondria. Cell Death Differ.2016;23:1702–16. [DOI] [PubMed] [PMC]
Ndiaye D, Collado-Hilly M, Martin J, Prigent S, Dufour JF, Combettes L, et al. Characterization of the effect of the mitochondrial protein Hint2 on intracellular Ca2+ dynamics. Biophys J.2013;105:1268–75. [DOI] [PubMed] [PMC]
Davis FM, Parsonage MT, Cabot PJ, Parat MO, Thompson EW, Roberts-Thomson SJ, et al. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell Int.2013;13:76. [DOI] [PubMed] [PMC]
Kang S, Hong J, Lee JM, Moon HE, Jeon B, Choi J, et al. Trifluoperazine, a well-known antipsychotic, inhibits glioblastoma invasion by binding to calmodulin and disinhibiting calcium release channel IP3R. Mol Cancer Ther.2017;16:217–27. [DOI] [PubMed]