This table shows the various molecules generated to target co-stimulatory molecules (CD80/86) interaction with CD28. Inhibiting this interaction leads to T cell anergy and an inhibited immune response. -: no data. Fab: fragment Ag-binding; GVHD: graft-versus-host disease; TAB08: theralizumab
Moorman CD, Sohn SJ, Phee H. Emerging therapeutics for immune tolerance: tolerogenic vaccines, T cell therapy, and IL-2 therapy.Front Immunol. 2021;12:657768. [DOI] [PubMed] [PMC]
Yu C, Gershwin ME, Chang C. Diagnostic criteria for systemic lupus erythematosus: a critical review.J Autoimmun. 2014;48-9:10–3. [DOI] [PubMed]
Kim SY, Solomon DH. Tumor necrosis factor blockade and the risk of viral infection.Nat Rev Rheumatol. 2010;6:165–74. [DOI] [PubMed] [PMC]
Murdaca G, Spanò F, Contatore M, Guastalla A, Penza E, Magnani O, et al. Infection risk associated with anti-TNF-α agents: a review.Expert Opin Drug Saf. 2015;14:571–82. [DOI]
Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials.JAMA. 2006;295:2275–85.Erratum in: JAMA. 2006;295:2482. [DOI] [PubMed]
Kemanetzoglou E, Andreadou E. CNS demyelination with TNF-α blockers.Curr Neurol Neurosci Rep. 2017;17:36. [DOI] [PMC]
Finckh A, Simard JF, Gabay C, Guerne PA; SCQM physicians. Evidence for differential acquired drug resistance to anti-tumour necrosis factor agents in rheumatoid arthritis.Ann Rheum Dis. 2006;65:746–52. [DOI] [PubMed] [PMC]
Lopez-Santalla M, Fernandez-Perez R, Garin MI. Mesenchymal stem/stromal cells for rheumatoid arthritis treatment: an update on clinical applications.Cells. 2020;9:1852. [DOI] [PubMed] [PMC]
Chaplin DD. Overview of the immune response.J Allergy Clin Immunol. 2010;125:S3–23. [DOI] [PubMed] [PMC]
Juarranz Y. Molecular and cellular basis of autoimmune diseases.Cells. 2021;10:474. [DOI] [PubMed] [PMC]
Rahman P, Inman RD, El-Gabalawy H, Krause DO. Pathophysiology and pathogenesis of immune-mediated inflammatory diseases: commonalities and differences.J Rheumatol Suppl. 2010;85:11–26. [DOI] [PubMed]
Fucikova J, Palova-Jelinkova L, Bartunkova J, Spisek R. Induction of tolerance and immunity by dendritic cells: mechanisms and clinical applications.Front Immunol. 2019;10:2393. [DOI] [PubMed] [PMC]
Steinbrink K, Jonuleit H, Müller G, Schuler G, Knop J, Enk AH. Interleukin-10–treated human dendritic cells induce a melanoma-antigen–specific anergy in CD8+ T cells resulting in a failure to lyse tumor cells.Blood. 1999;93:1634–42. [DOI]
Thurner B, Röder C, Dieckmann D, Heuer M, Kruse M, Glaser A, et al. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application.J Immunol Methods. 1999;223:1–15.Erratum in: J Immunol Methods. 1999;224:211. [DOI] [PubMed]
Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells.J Immunol. 1999;162:3256–62. [PubMed]
Domogalla MP, Rostan PV, Raker VK, Steinbrink K. Tolerance through education: How tolerogenic dendritic cells shape immunity.Front Immunol. 2017;8:1764. [DOI] [PubMed] [PMC]
Yogev N, Frommer F, Lukas D, Kautz-Neu K, Karram K, Ielo D, et al. Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor+ regulatory T cells.Immunity. 2012;37:264–75. [DOI] [PubMed]
Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation.Annu Rev Immunol. 1996;14:233–58. [DOI] [PubMed]
Jonuleit H, Kühn U, Müller G, Steinbrink K, Paragnik L, Schmitt E, et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions.Eur J Immunol. 1997;27:3135–42. [DOI] [PubMed]
Linsley PS, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation.J Exp Med. 1991;173:721–30. [DOI] [PubMed] [PMC]
Tuettenberg A, Huter E, Hubo M, Horn J, Knop J, Grimbacher B, et al. The role of ICOS in directing T cell responses: ICOS-dependent induction of T cell anergy by tolerogenic dendritic cells.J Immunol. 2009;182:3349–56. [DOI] [PubMed]
van Kooten C, Banchereau J. CD40-CD40 ligand.J Leukoc Biol. 2000;67:2–17. [DOI] [PubMed]
Schönbeck U, Libby P. The CD40/CD154 receptor/ligand dyad.Cell Mol Life Sci. 2001;58:4–43. [PubMed]
Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ. CD40/CD154 interactions at the interface of tolerance and immunity.Annu Rev Immunol. 2004;22:307–28. [DOI] [PubMed]
Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity.Annu Rev Immunol. 1998;16:111–35. [DOI] [PubMed]
Hernandez MG, Shen L, Rock KL. CD40-CD40 ligand interaction between dendritic cells and CD8+ T cells is needed to stimulate maximal T cell responses in the absence of CD4+ T cell help.J Immunol. 2007;178:2844–52. [DOI] [PubMed]
Lapteva N, Seethammagari MR, Hanks BA, Jiang J, Levitt JM, Slawin KM, et al. Enhanced activation of human dendritic cells by inducible CD40 and Toll-like receptor-4 ligation.Cancer Res. 2007;67:10528–37. [DOI] [PubMed]
Haenssle H, Buhl T, Knudsen S, Krueger U, Rosenberger A, Reich K, et al. CD40 ligation during dendritic cell maturation reduces cell death and prevents interleukin-10-induced regression to macrophage-like monocytes.Exp Dermatol. 2008;17:177–87. [DOI] [PubMed]
Danese S, Sans M, Fiocchi C. The CD40/CD40L costimulatory pathway in inflammatory bowel disease.Gut. 2004;53:1035–43. [DOI] [PubMed] [PMC]
DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM.Nature. 1993;361:541–3. [DOI] [PubMed]
Imura A, Hori T, Imada K, Ishikawa T, Tanaka Y, Maeda M, et al. The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells.J Exp Med. 1996;183:2185–95. [DOI] [PubMed] [PMC]
Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G. Expression and function of OX40 ligand on human dendritic cells.J Immunol. 1997;159:3838–48. [PubMed]
Burgess JK, Carlin S, Pack RA, Arndt GM, Au WW, Johnson PR, et al. Detection and characterization of OX40 ligand expression in human airway smooth muscle cells: a possible role in asthma?J Allergy Clin Immunol. 2004;113:683–9. [DOI] [PubMed]
Webb GJ, Hirschfield GM, Lane PJ. OX40, OX40L and autoimmunity: a comprehensive review.Clin Rev Allergy Immunol. 2016;50:312–32. [DOI] [PubMed]
Krause P, Bruckner M, Uermösi C, Singer E, Groettrup M, Legler DF. Prostaglandin E2 enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4-1BBL on dendritic cells.Blood. 2009;113:2451–60. [DOI] [PubMed]
Pattarini L, Trichot C, Bogiatzi S, Grandclaudon M, Meller S, Keuylian Z, et al. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand.J Exp Med. 2017;214:1529–46. [DOI] [PubMed] [PMC]
Maxwell JR, Yadav R, Rossi RJ, Ruby CE, Weinberg AD, Aguila HL, et al. IL-18 bridges innate and adaptive immunity through IFN-γ and the CD134 pathway.J Immunol. 2006;177:234–45. [DOI] [PubMed]
Cui D, Lv Y, Yuan X, Ruan G, Zhang Y, Yan C, et al. Increased expressions of OX40 and OX40 ligand in patients with primary immune thrombocytopenia.J Immunol Res. 2019;2019:6804806. [DOI] [PubMed] [PMC]
Flynn S, Toellner KM, Raykundalia C, Goodall M, Lane P. CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1.J Exp Med. 1998;188:297–304. [DOI] [PubMed] [PMC]
Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand.J Exp Med. 2005;202:1213–23. [DOI] [PubMed] [PMC]
De Smedt T, Smith J, Baum P, Fanslow W, Butz E, Maliszewski C. Ox40 costimulation enhances the development of T cell responses induced by dendritic cells in vivo.J Immunol. 2002;168:661–70. [DOI] [PubMed]
Ito T, Wang YH, Duramad O, Hanabuchi S, Perng OA, Gilliet M, et al. OX40 ligand shuts down IL-10-producing regulatory T cells.Proc Natl Acad Sci U S A. 2006;103:13138–43. [DOI] [PubMed] [PMC]
Vu MD, Xiao X, Gao W, Degauque N, Chen M, Kroemer A, et al. OX40 costimulation turns off Foxp3+ Tregs.Blood. 2007;110:2501–10. [DOI] [PubMed] [PMC]
Croft M. The role of TNF superfamily members in T-cell function and diseases.Nat Rev Immunol. 2009;9:271–85. [DOI] [PubMed] [PMC]
Kaur D, Brightling C. OX40/OX40 ligand interactions in T-cell regulation and asthma.Chest. 2012;141:494–9. [DOI] [PubMed] [PMC]
Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28.Nature. 1999;397:263–6. [DOI] [PubMed]
Wu Y, Anasetti C, Yu X-Z. Chapter 11 - T-Cell costimulation and coinhibition in graft-versus-host disease and graft-versus-leukemia effect. In: Socié G, Zeiser, R, Blazar, BR., editor. Immune Biology of Allogeneic Hematopoietic Stem Cell Transplantation (Second Edition). Academic Press; 2019. pp. 167–94.
Kopf M, Coyle AJ, Schmitz N, Barner M, Oxenius A, Gallimore A, et al. Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection.J Exp Med. 2000;192:53–61. [DOI] [PubMed] [PMC]
Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, et al. The CD28-related molecule ICOS is required for effective T cell–dependent immune responses.Immunity. 2000;13:95–105. [DOI] [PubMed]
Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, et al. ICOS co-stimulatory receptor is essential for T-cell activation and function.Nature. 2001;409:97–101. [DOI] [PubMed]
Witsch EJ, Peiser M, Hutloff A, Büchner K, Dorner BG, Jonuleit H, et al. ICOS and CD28 reversely regulate IL-10 on re-activation of human effector T cells with mature dendritic cells.Eur J Immunol. 2002;32:2680–6. [DOI] [PubMed]
Villegas-Mendez A, Shaw TN, Inkson CA, Strangward P, de Souza JB, Couper KN. Parasite-specific CD4+ IFN-γ+ IL-10+ T cells distribute within both lymphoid and nonlymphoid compartments and are controlled systemically by interleukin-27 and ICOS during blood-stage malaria infection.Infect Immun. 2015;84:34–46. [DOI] [PubMed] [PMC]
Okamoto N, Tezuka K, Kato M, Abe R, Tsuji T. PI3-kinase and MAP-kinase signaling cascades in AILIM/ICOS- and CD28-costimulated T-cells have distinct functions between cell proliferation and IL-10 production.Biochem Biophys Res Commun. 2003;310:691–702. [DOI] [PubMed]
Smigiel KS, Richards E, Srivastava S, Thomas KR, Dudda JC, Klonowski KD, et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets.J Exp Med. 2014;211:121–36.Erratum in: J Exp Med. 2019;216:1965. [DOI]
Raynor J, Karns R, Almanan M, Li KP, Divanovic S, Chougnet CA, et al. IL-6 and ICOS antagonize bim and promote regulatory T cell accrual with age.J Immunol. 2015;195:944–52. [DOI]
Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10–producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells.J Exp Med. 2000;192:1213–22. [DOI] [PubMed] [PMC]
Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, et al. Expression of programmed death 1 ligands by murine T cells and APC.J Immunol. 2002;169:5538–45. [DOI] [PubMed]
Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice.Science. 2001;291:319–22. [DOI]
Krupnick AS, Gelman AE, Barchet W, Richardson S, Kreisel FH, Turka LA, et al. Murine vascular endothelium activates and induces the generation of allogeneic CD4+25+Foxp3+ regulatory T cells.J Immunol. 2005;175:6265–70. [DOI] [PubMed]
Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation.J Immunol. 2004;173:945–54. [DOI] [PubMed]
Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies.J Hematol Oncol. 2013;6:74. [DOI] [PubMed] [PMC]
Brusa D, Serra S, Coscia M, Rossi D, D’Arena G, Laurenti L, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia.Haematologica. 2013;98:953–63. [DOI] [PubMed] [PMC]
Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies.Clin Cancer Res. 2013;19:3462–73. [DOI] [PubMed] [PMC]
Prokunina L, Castillejo-López C, Oberg F, Gunnarsson I, Berg L, Magnusson V, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans.Nat Genet. 2002;32:666–9. [DOI] [PubMed]
Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, Carracedo A, Carreira P, Gonzalez-Escribano F, et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus: evidence of population-specific effects.Arthritis Rheum. 2004;50:2590–7. [DOI] [PubMed]
Garni-Wagner BA, Lee ZH, Kim YJ, Wilde C, Kang CY, Kwon BS. 4-1BB is expressed on CD45RAhiROhi transitional T cell in humans.Cell Immunol. 1996;169:91–8. [DOI] [PubMed]
Wortzman ME, Clouthier DL, McPherson AJ, Lin GH, Watts TH. The contextual role of TNFR family members in CD8+ T-cell control of viral infections.Immunol Rev. 2013;255:125–48. [DOI]
Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses.J Exp Med. 1997;186:47–55. [DOI] [PubMed] [PMC]
Dharmadhikari B, Wu M, Abdullah NS, Rajendran S, Ishak ND, Nickles E, et al. CD137 and CD137L signals are main drivers of type 1, cell-mediated immune responses.Oncoimmunology. 2015;5:e1113367. [DOI] [PubMed] [PMC]
Futagawa T, Akiba H, Kodama T, Takeda K, Hosoda Y, Yagita H, et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells.Int Immunol. 2002;14:275–86. [DOI] [PubMed]
Zhang X, Voskens CJ, Sallin M, Maniar A, Montes CL, Zhang Y, et al. CD137 promotes proliferation and survival of human B cells.J Immunol. 2010;184:787–95. [DOI] [PubMed]
Amodio G, Gregori S. Dendritic cells a double-edge sword in autoimmune responses.Front Immunol. 2012;3:233. [DOI] [PubMed] [PMC]
Iberg CA, Hawiger D. Natural and induced tolerogenic dendritic cells.J Immunol. 2020;204:733–44. [DOI] [PubMed] [PMC]
Raker VK, Domogalla MP, Steinbrink K. Tolerogenic dendritic cells for regulatory T cell induction in man.Front Immunol. 2015;6:569. [DOI] [PubMed] [PMC]
Romani N, Reider D, Heuer M, Ebner S, Kämpgen E, Eibl B, et al. Generation of mature dendritic cells from human blood An improved method with special regard to clinical applicability.J Immunol Methods. 1996;196:137–51. [DOI] [PubMed]
Lutz MB, Suri RM, Niimi M, Ogilvie AL, Kukutsch NA, Rössner S, et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo.Eur J Immunol. 2000;30:1813–22. [DOI] [PubMed]
Piemonti L, Monti P, Allavena P, Sironi M, Soldini L, Leone BE, et al. Glucocorticoids affect human dendritic cell differentiation and maturation.J Immunol. 1999;162:6473–81. [PubMed]
Kurochkina Y, Tikhonova M, Tyrinova T, Leplina O, Sizikov A, Sulutian A, et al. SAT0212 The safety and tolerability of intra-articular injection of tolerogenic dendritic cells in patients with rheumatoid arthritis: the preliminary results.Ann Rheum Dis. 2018;77:966–7. [DOI]
Jauregui-Amezaga A, Cabezón R, Ramírez-Morros A, España C, Rimola J, Bru C, et al. Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory Crohn’s disease: a phase I study.J Crohns Colitis. 2015;9:1071–8. [DOI] [PubMed]
Ferreira GB, Vanherwegen AS, Eelen G, Gutiérrez ACF, Van Lommel L, Marchal K, et al. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways.Cell Rep. 2015;10:711–25. [DOI] [PubMed]
Nikolic T, Zwaginga JJ, Uitbeijerse BS, Woittiez NJ, de Koning EJ, Aanstoot H-J, et al. Safety and feasibility of intradermal injection with tolerogenic dendritic cells pulsed with proinsulin peptide—for type 1 diabetes.Lancet Diabetes Endocrinol. 2020;8:470–2. [DOI] [PubMed]
Bell GM, Anderson AE, Diboll J, Reece R, Eltherington O, Harry RA, et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis.Ann Rheum Dis. 2017;76:227–34. [DOI] [PubMed] [PMC]
Willekens B, Cools N. Beyond the magic bullet: current progress of therapeutic vaccination in multiple sclerosis.CNS Drugs. 2018;32:401–10. [DOI] [PubMed] [PMC]
Joo YB, Park JE, Choi CB, Choi J, Jang JA, Heo M, et al. Phase 1 study of immunotherapy using autoantigen-loaded dendritic cells in patients with anti-citrullinated peptide antigen positive rheumatoid arthritis.In: 2014 ACR/ARHP Annual Meeting. ACR/ARHP Annual Meeting; 2014 Nov 14-19; Boston, MA. American College of Rheumatology; 2024.
Benham H, Nel HJ, Law SC, Mehdi AM, Street S, Ramnoruth N, et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype–positive rheumatoid arthritis patients.Sci Transl Med. 2015;7:290ra87. [DOI] [PubMed]
Machen J, Harnaha J, Lakomy R, Styche A, Trucco M, Giannoukakis N. Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells.J Immunol. 2004;173:4331–41. [DOI] [PubMed]
Hackstein H, Taner T, Zahorchak AF, Morelli AE, Logar AJ, Gessner A, et al. Rapamycin inhibits IL-4—induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo.Blood. 2003;101:4457–63. [DOI] [PubMed]
Comi M, Amodio G, Gregori S. Interleukin-10-producing DC-10 is a unique tool to promote tolerance via antigen-specific T regulatory type 1 cells.Front Immunol. 2018;9:682. [DOI] [PubMed] [PMC]
Kryczanowsky F, Raker V, Graulich E, Domogalla MP, Steinbrink K. IL-10–modulated human dendritic cells for clinical use: identification of a stable and migratory subset with improved tolerogenic activity.J Immunol. 2016;197:3607–17. [DOI] [PubMed]
Kim SH, Kim S, Oligino TJ, Robbins PD. Effective treatment of established mouse collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express FasL.Mol Ther. 2002;6:584–90. [PubMed]
van Laar GG, van Hamburg JP, Tas SW. Extrathymic AIRE-expressing cells: friends or foes in autoimmunity and cancer?Autoimmun Rev. 2022;21:103141. [DOI] [PubMed]
Lee NK, Kim SN, Park CG. Immune cell targeting nanoparticles: a review.Biomater Res. 2021;25:44. [DOI]
Lewis JS, Dolgova NV, Zhang Y, Xia CQ, Wasserfall CH, Atkinson MA, et al. A combination dual-sized microparticle system modulates dendritic cells and prevents type 1 diabetes in prediabetic NOD mice.Clin Immunol. 2015;160:90–102. [DOI] [PubMed] [PMC]
Engman C, Wen Y, Meng WS, Bottino R, Trucco M, Giannoukakis N. Generation of antigen-specific Foxp3+ regulatory T-cells in vivo following administration of diabetes-reversing tolerogenic microspheres does not require provision of antigen in the formulation.Clin Immunol. 2015;160:103–23. [DOI] [PubMed]
Maldonado RA, LaMothe RA, Ferrari JD, Zhang AH, Rossi RJ, Kolte PN, et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance.Proc Natl Acad Sci U S A. 2015;112:E156–65. [DOI] [PubMed] [PMC]
Cappellano G, Woldetsadik AD, Orilieri E, Shivakumar Y, Rizzi M, Carniato F, et al. Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis.Vaccine. 2014;32:5681–9. [DOI] [PubMed]
Kelly CP, Murray JA, Leffler DA, Getts DR, Bledsoe AC, Smithson G, et al.; TAK-101 Study Group. TAK-101 nanoparticles induce gluten-specific tolerance in celiac disease: a randomized, double-blind, placebo-controlled study.Gastroenterology. 2021;161:66–80.e8. [DOI] [PubMed] [PMC]
Freitag TL, Podojil JR, Pearson RM, Fokta FJ, Sahl C, Messing M, et al. Gliadin nanoparticles induce immune tolerance to gliadin in mouse models of celiac disease.Gastroenterology. 2020;158:1667–81.e12. [DOI] [PubMed] [PMC]
Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer.Mol Immunol. 2015;67:28–45. [DOI]
Stern JN, Keskin DB, Kato Z, Waldner H, Schallenberg S, Anderson A, et al. Promoting tolerance to proteolipid protein-induced experimental autoimmune encephalomyelitis through targeting dendritic cells.Proc Natl Acad Sci U S A. 2010;107:17280–5. [DOI] [PubMed] [PMC]
Iberg CA, Hawiger D. Targeting dendritic cells with antigen-delivering antibodies for amelioration of autoimmunity in animal models of multiple sclerosis and other autoimmune diseases.Antibodies (Basel). 2020;9:23. [DOI] [PubMed] [PMC]
Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer.J Clin Invest. 2015;125:3335–7. [DOI] [PubMed] [PMC]
Blair HA, Deeks ED. Abatacept: a review in rheumatoid arthritis.Drugs. 2017;77:1221–33. [DOI] [PubMed]
Chiu YM, Chen DY. Infection risk in patients undergoing treatment for inflammatory arthritis: non-biologics versus biologics.Expert Rev Clin Immunol. 2020;16:207–28. [DOI] [PubMed]
Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties.Am J Transplant. 2005;5:443–53. [DOI] [PubMed]
Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, et al. Belatacept and long-term outcomes in kidney transplantation.N Engl J Med. 2016;374:333–43.Erratum in: N Engl J Med. 2016;374:698. [DOI] [PubMed]
Bernett MJ, Chu SY, Leung I, Moore GL, Lee SH, Pong E, et al. Immune suppression in cynomolgus monkeys by XPro9523: an improved CTLA4-Ig fusion with enhanced binding to CD80, CD86 and neonatal Fc receptor FcRn.MAbs. 2013;5:384–96.
Douthwaite J, Moisan J, Privezentzev C, Soskic B, Sabbah S, Cohen S, et al. A CD80-Biased CTLA4-Ig fusion protein with superior in vivo efficacy by simultaneous engineering of affinity, selectivity, stability, and FcRn binding.J Immunol. 2017;198:528–37.Erratum in: J Immunol. 2017;199:1943. [DOI]
Tabares P, Berr S, Römer PS, Chuvpilo S, Matskevich AA, Tyrsin D, et al. Human regulatory T cells are selectively activated by low-dose application of the CD28 superagonist TGN1412/TAB08.Eur J Immunol. 2014;44:1225–36. [DOI] [PubMed]
Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412.N Engl J Med. 2006;355:1018–28. [DOI] [PubMed]
Tyrsin D, Chuvpilo S, Matskevich A, Nemenov D, Römer PS, Tabares P, et al. From TGN1412 to TAB08: the return of CD28 superagonist therapy to clinical development for the treatment of rheumatoid arthritis.Clin Exp Rheumatol. 2016;34:45–8. [PubMed]
Poirier N, Blancho G, Hiance M, Mary C, Van Assche T, Lempoels J, et al. First-in-human study in healthy subjects with FR104, a pegylated monoclonal antibody fragment antagonist of CD28.J Immunol. 2016;197:4593–602. [DOI] [PubMed]
Watkins BK, Tkachev V, Furlan SN, Hunt DJ, Betz K, Yu A, et al. CD28 blockade controls T cell activation to prevent graft-versus-host disease in primates.J Clin Invest. 2018;128:3991–4007. [DOI] [PubMed] [PMC]
Shock A, Burkly L, Wakefield I, Peters C, Garber E, Ferrant J, et al. CDP7657, an anti-CD40L antibody lacking an Fc domain, inhibits CD40L-dependent immune responses without thrombotic complications: an in vivo study.Arthritis Res Ther. 2015;17:234. [DOI]
Chamberlain C, Colman PJ, Ranger AM, Burkly LC, Johnston GI, Otoul C, et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles.Ann Rheum Dis. 2017;76:1837–44. [DOI] [PubMed]
Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand.Nat Med. 2000;6:114. [DOI] [PubMed]
Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, et al.; BG9588 Lupus Nephritis Trial Group. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis.Arthritis Rheum. 2003;48:719–27. [DOI] [PubMed]
Karnell JL, Albulescu M, Drabic S, Wang L, Moate R, Baca M, et al. A CD40L-targeting protein reduces autoantibodies and improves disease activity in patients with autoimmunity.Sci Transl Med. 2019;11:eaar6584. [DOI] [PubMed]
Oganesyan V, Ferguson A, Grinberg L, Wang L, Phipps S, Chacko B, et al. Fibronectin type III domains engineered to bind CD40L: cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of two complexes.Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013;69:1045–8. [DOI] [PubMed] [PMC]
Ristov J, Espie P, Ulrich P, Sickert D, Flandre T, Dimitrova M, et al. Characterization of the in vitro and in vivo properties of CFZ533, a blocking and non-depleting anti-CD40 monoclonal antibody.Am J Transplant. 2018;18:2895–904. [DOI] [PubMed]
Nashan B, Tedesco H, Van den Hoogen MW, Berger SP, Cibrik D, Mulgaonkar S, et al. CD40 inhibition with CFZ533 - a new, fully human, non-depleting, Fc silent mAB - improves renal allograft function while demonstrating comparable efficacy vs. tacrolimus in de-novo CNI-free kidney transplant recipients.Transplantation. 2018;102:S366. [DOI]
Fisher B, Zeher M, Ng W-F, Bombardieri M, Posch M, Papas AS, et al. The novel anti-CD40 monoclonal antibody CFZ533 shows beneficial effects in patients with primary Sjögren’s syndrome: a phase IIa double-blind, placebo-controlled randomized trial.In: ACR/ARHP Annual Meeting. 2017 ACR/ARHP Annual Meeting; 2017 Sep 18; American College of Rheumatology; 2024.
Faustino LC, Kahaly GJ, Frommer L, Concepcion E, Stefan-Lifshitz M, Tomer Y. Precision medicine in Graves’ disease: CD40 gene variants predict clinical response to an anti-CD40 monoclonal antibody.Front Endocrinol (Lausanne). 2021;12:691781. [DOI] [PubMed] [PMC]
Visvanathan S, Ramanujam M, Schoelch C, Vinisko R, Mueller-Ladner U, Padula S, et al. FRI0231 treatment with BI 655064 (antagonistic anti-CD40 antibody) modulates biomarkers associated with rheumatoid arthritis (RA).Ann Rheum Dis. 2016;75:517. [DOI]
Sullivan B, Tsuji WH, Chindalore VL, Geppert TD, Rudinskaya A, Pardo P, et al. Administration of AMG 557, a human anti-B7RP-1 (ICOSL) antibody, leads to the selective inhibition of anti-KLH IgG responses in subjects with SLE: results of a phase 1 randomized, double-blind, placebo-controlled, sequential, rising, multiple-dose study.In: ACR/ARHP Annual Meeting. 2013 ACR/ARHP Annual Meeting; American College of Rheumatology; 2024.
Seo SK, Choi JH, Kim YH, Kang WJ, Park HY, Suh JH, et al. 4-1BB-mediated immunotherapy of rheumatoid arthritis.Nat Med. 2004;10:1088–94.Erratum in: Nat Med. 2004;10:1261. [DOI] [PubMed]
Lee SW, Park Y, Eun SY, Madireddi S, Cheroutre H, Croft M. Cutting edge: 4-1BB controls regulatory activity in dendritic cells through promoting optimal expression of retinal dehydrogenase.J Immunol. 2012;189:2697–701. [DOI] [PubMed]
Paterson DJ, Jefferies WA, Green JR, Brandon MR, Corthesy P, Puklavec M, et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts.Mol Immunol. 1987;24:1281–90. [DOI] [PubMed]
Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor.J Exp Med. 1994;180:757–62. [DOI] [PubMed] [PMC]
Guttman-Yassky E, Pavel AB, Zhou L, Estrada YD, Zhang N, Xu H, et al. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis.J Allergy Clin Immunol. 2019;144:482–93.e7. [DOI] [PubMed]
Wang G, Hu P, Yang J, Shen G, Wu X. The effects of PDL-Ig on collagen-induced arthritis.Rheumatol Int. 2011;31:513–9. [DOI] [PubMed]
Song MY, Hong CP, Park SJ, Kim JH, Yang BG, Park Y, et al. Protective effects of Fc-fused PD-L1 on two different animal models of colitis.Gut. 2015;64:260–71. [DOI] [PubMed]
Study to assess efficacy, safety, tolerability and pharmacokinetics of PF-07038124 ointment in participants with atopic dermatitis or plaque psoriasis (EMPORIA) [Internet].c2020 [cited 2023 Dec 6]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04664153
Curnock AP, Bossi G, Kumaran J, Bawden LJ, Figueiredo R, Tawar R, et al. Cell-targeted PD-1 agonists that mimic PD-L1 are potent T cell inhibitors.JCI Insight. 2021;6:e152468. [DOI] [PubMed] [PMC]
Comi M, Amodio G, Passeri L, Fortunato M, Santoni de Sio FR, Andolfi G, et al. Generation of powerful human tolerogenic dendritic cells by lentiviral-mediated IL-10 gene transfer.Front Immunol. 2020;11:1260.Erratum in: Front Immunol. 2021;12:672701. [DOI] [PubMed] [PMC]
Passeri L, Andolfi G, Bassi V, Russo F, Giacomini G, Laudisa C, et al. Tolerogenic IL-10-engineered dendritic cell-based therapy to restore antigen-specific tolerance in T cell mediated diseases.J Autoimmun. 2023;138:103051. [DOI] [PubMed]
Tomasoni S, Aiello S, Cassis L, Noris M, Longaretti L, Cavinato RA, et al. Dendritic cells genetically engineered with adenoviral vector encoding dnIKK2 induce the formation of potent CD4+ T-regulatory cells.Transplantation. 2005;79:1056–61. [DOI] [PubMed]
Ruffner MA, Robbins PD. Dendritic cells transduced to express interleukin 4 reduce diabetes onset in both normoglycemic and prediabetic nonobese diabetic mice.PLoS One. 2010;5:e11848. [DOI] [PubMed] [PMC]
Hill JA, Ichim TE, Kusznieruk KP, Li M, Huang X, Yan X, et al. Immune modulation by silencing IL-12 production in dendritic cells using small interfering RNA.J Immunol. 2003;171:691–6.Erratum in: J Immunol. 2003;171:3303. [DOI] [PubMed]
Tan PH, Beutelspacher SC, Lombardi G, George AJ. Creation of tolerogenic dendritic cells by non viral gene transfer with immunoliposomes.Mol Ther. 2005;11:S403. [DOI]