Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention.Curr Opin Immunol. 2023;80:102266. [DOI] [PubMed] [PMC]
Wang L, Wang F, Gershwin ME. Human autoimmune diseases: a comprehensive update.J Intern Med. 2015;278:369–95. [DOI] [PubMed]
Angum F, Khan T, Kaler J, Siddiqui L, Hussain A. The Prevalence of Autoimmune Disorders in Women: A Narrative Review.Cureus. 2020;12:e8094. [DOI] [PubMed] [PMC]
Benagiano M, Bianchi P, D’Elios MM, Brosens I, Benagiano G. Autoimmune diseases: Role of steroid hormones.Best Pract Res Clin Obstet Gynaecol. 2019;60:24–34. [DOI] [PubMed]
Samuels H, Malov M, Saha Detroja T, Ben Zaken K, Bloch N, Gal-Tanamy M, et al. Autoimmune Disease Classification Based on PubMed Text Mining.J Clin Med. 2022;11:4345. [DOI] [PubMed] [PMC]
Chandrashekara S, Dhote SV, Anupama KR. The Differential Influence of Immunological Process of Autoimmune Disease on Lipid Metabolism: A Study on RA and SLE.Indian J Clin Biochem. 2019;34:52–9. [DOI] [PubMed] [PMC]
Tahamoli-Roudsari A, Tabatabaei R, Alvandpur N, Basiri Z, Behzad M, Rezaeepoor M, et al. Peripheral distributions of IL-4-producing CD4 + T cells and CD4 + CD25 + FoxP3 + T cells (Tregs) in rheumatoid arthritis patients with poor response to therapy are associated with HLA shared epitope alleles and ACPA status.Immunol Res. 2022;70:481–92. [DOI] [PubMed]
Selmi C, Gershwin ME. Sex and autoimmunity: proposed mechanisms of disease onset and severity.Expert Rev Clin Immunol. 2019;15:607–15. [DOI] [PubMed]
Eggenhuizen PJ, Ng BH, Ooi JD. Treg Enhancing Therapies to Treat Autoimmune Diseases.Int J Mol Sci. 2020;21:7015. [DOI] [PubMed] [PMC]
Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T Cells and Human Disease.Annu Rev Immunol. 2020;38:541–66. [DOI] [PubMed]
Mills KHG. Regulatory T cells: friend or foe in immunity to infection?Nat Rev Immunol. 2004;4:841–55. [DOI] [PubMed]
Mei X, Zhang B, Zhao M, Lu Q. An update on epigenetic regulation in autoimmune diseases.J Transl Autoimmun. 2022;5:100176. [DOI] [PubMed] [PMC]
Wu H, Chen Y, Zhu H, Zhao M, Lu Q. The Pathogenic Role of Dysregulated Epigenetic Modifications in Autoimmune Diseases.Front Immunol. 2019;10:2305. [DOI] [PubMed] [PMC]
Iftimie G, Pantea Stoian A, Socea B, Motofei I, Marcu D, Costache RS, et al. Complications of systemic lupus erythematosus: A review.Rom J Mil Med. 2018;121:9–15. [DOI]
Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus.Nat Immunol. 2020;21:605–14. [DOI] [PubMed] [PMC]
Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, et al. Global epidemiology of systemic lupus erythematosus.Nat Rev Rheumatol. 2021;17:515–32. [DOI] [PubMed] [PMC]
Molooghi K, Sheybani F, Naderi H, Mirfeizi Z, Morovatdar N, Baradaran A. Central nervous system infections in patients with systemic lupus erythematosus: a systematic review and meta-analysis.Lupus Sci Med. 2022;9:e000560. [DOI] [PubMed] [PMC]
Rekvig OP. Autoimmunity and SLE: Factual and Semantic Evidence-Based Critical Analyses of Definitions, Etiology, and Pathogenesis.Front Immunol. 2020;11:569234. [DOI] [PubMed] [PMC]
Rasouli-Saravani A, Tahamoli-Roudsari A, Basiri Z, Babaei M, Fazaeli A, Roshanaei G, et al. Relevance of autoantibody profile with HLA-DRB1 and -DQB1 alleles in a group of Iranian systemic lupus erythematosus patients.Immunol Lett. 2021;237:11–6. [DOI] [PubMed]
Rasouli-Saravani A, Tahamoli-Roudsari A, Behzad M, Hajilooi M, Solgi G. Clinical Relevance of HLA-DRB1 and -DQB1 Alleles in Iranian Systemic Lupus Erythematosus Patients.Iran J Allergy Asthma Immunol. 2021;20:67–75. [DOI] [PubMed]
Tahamoli-Roudsari A, Rahmani F, Afshar S, Hajilooi M, Solgi G. Expression patterns of T cells-specific long noncoding RNAs in systemic lupus erythematosus patients carrying HLA risk/nonrisk alleles.Lupus. 2023;32:1188–98. [DOI] [PubMed]
Araki Y, Mimura T. Epigenetic Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus.Int J Mol Sci. 2024;25:1019. [DOI] [PubMed] [PMC]
Tsai YG, Liao PF, Hsiao KH, Wu HM, Lin CY, Yang KD. Pathogenesis and novel therapeutics of regulatory T cell subsets and interleukin-2 therapy in systemic lupus erythematosus.Front Immunol. 2023;14:1230264. [DOI] [PubMed] [PMC]
Singh RP, Hahn BH, Bischoff DS. Identification and Contribution of Inflammation-Induced Novel MicroRNA in the Pathogenesis of Systemic Lupus Erythematosus.Front Immunol. 2022;13:848149. [DOI] [PubMed] [PMC]
Chi M, Ma K, Li Y, Quan M, Han Z, Ding Z, et al. Immunological Involvement of MicroRNAs in the Key Events of Systemic Lupus Erythematosus.Front Immunol. 2021;12:699684. [DOI] [PubMed] [PMC]
Gómez-Bañuelos E, Fava A, Andrade F. An update on autoantibodies in systemic lupus erythematosus.Curr Opin Rheumatol. 2023;35:61–7. [DOI] [PubMed] [PMC]
Choi MY, Fritzler MJ. Challenges and advances in SLE autoantibody detection and interpretation.Curr Treatm Opt Rheumatol. 2019;5:147–67. [DOI]
Stohl W. Inhibition of B cell activating factor (BAFF) in the management of systemic lupus erythematosus (SLE).Expert Rev Clin Immunol. 2017;13:623–33. [DOI] [PubMed]
Karrar S, Cunninghame Graham DS. Abnormal B Cell Development in Systemic Lupus Erythematosus: What the Genetics Tell Us.Arthritis Rheumatol. 2018;70:496–507. [DOI] [PubMed] [PMC]
Yap DYH, Chan TM. B Cell Abnormalities in Systemic Lupus Erythematosus and Lupus Nephritis-Role in Pathogenesis and Effect of Immunosuppressive Treatments.Int J Mol Sci. 2019;20:6231. [DOI] [PubMed] [PMC]
Zhang CX, Wang HY, Yin L, Mao YY, Zhou W. Immunometabolism in the pathogenesis of systemic lupus erythematosus.J Transl Autoimmun. 2020;3:100046. [DOI] [PubMed] [PMC]
Winikajtis-Burzyńska A, Brzosko M, Przepiera-Będzak H. Increased Serum Interleukin 10 Levels Are Associated with Increased Disease Activity and Increased Risk of Anti-SS-A/Ro Antibody Positivity in Patients with Systemic Lupus Erythematosus.Biomolecules. 2023;13:974. [DOI] [PubMed] [PMC]
Wang T, Li Z, Li X, Chen L, Zhao H, Jiang C, et al. Expression of CD19+CD24highCD38high B cells, IL10 and IL10R in peripheral blood from patients with systemic lupus erythematosus.Mol Med Rep. 2017;16:6326–33. [DOI] [PubMed]
Xiang S, Zhang J, Zhang M, Qian S, Wang R, Wang Y, et al. Imbalance of helper T cell type 1, helper T cell type 2 and associated cytokines in patients with systemic lupus erythematosus: A meta-analysis.Front Pharmacol. 2022;13:988512. [DOI] [PubMed] [PMC]
Mohannad N, Moaaz M, Shehata RM. AB0345 Th9 cells and their associated cytokines: the probable players in systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (T1DM).Ann Rheum Dis. 2021;80:1197–8. [DOI]
Jiang Q, Yang G, Xiao F, Xie J, Wang S, Lu L, et al. Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases.Front Immunol. 2021;12:688066. [DOI] [PubMed] [PMC]
Chen P, Tsokos GC. T Cell Abnormalities in the Pathogenesis of Systemic Lupus Erythematosus: an Update.Curr Rheumatol Rep. 2021;23:12. [DOI] [PubMed] [PMC]
Huang J, Li X, Zhu Q, Wang M, Xie Z, Zhao T. Imbalance of Th17 cells, Treg cells and associated cytokines in patients with systemic lupus erythematosus: a meta-analysis.Front Immunol. 2024;15:1425847. [DOI] [PubMed] [PMC]
Chen M, Chen X, Wan Q. Altered frequency of Th17 and Treg cells in new-onset systemic lupus erythematosus patients.Eur J Clin Invest. 2018;48:e13012. [DOI] [PubMed]
Handono K, Firdausi SN, Pratama MZ, Endharti AT, Kalim H. Vitamin A improve Th17 and Treg regulation in systemic lupus erythematosus.Clin Rheumatol. 2016;35:631–8. [DOI] [PubMed]
Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS. Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions.Autoimmun Rev. 2015;14:105–16. [DOI] [PubMed]
Lucca LE, Dominguez-Villar M. Modulation of regulatory T cell function and stability by co-inhibitory receptors.Nat Rev Immunol. 2020;20:680–93. [DOI] [PubMed]
Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease.Nat Rev Drug Discov. 2018;17:823–44. [DOI] [PubMed]
Nie J, Li YY, Zheng SG, Tsun A, Li B. FOXP3+ Treg Cells and Gender Bias in Autoimmune Diseases.Front Immunol. 2015;6:493. [DOI] [PubMed] [PMC]
Beccastrini E, D’Elios MM, Emmi G, Silvestri E, Squatrito D, Prisco D, et al. Systemic lupus erythematosus: immunopathogenesis and novel therapeutic targets.Int J Immunopathol Pharmacol. 2013;26:585–96. [DOI] [PubMed]
Jacquemin C, Augusto JF, Scherlinger M, Gensous N, Forcade E, Douchet I, et al. OX40L/OX40 axis impairs follicular and natural Treg function in human SLE.JCI Insight. 2018;3:e122167. [DOI] [PubMed] [PMC]
Xu Z, Jiang X, Dai X, Li B. The Dynamic Role of FOXP3+ Tregs and Their Potential Therapeutic Applications During SARS-CoV-2 Infection.Front Immunol. 2022;13:916411. [DOI] [PubMed] [PMC]
Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3.Nat Rev Immunol. 2017;17:703–17. [DOI] [PubMed] [PMC]
Bacchetta R, Barzaghi F, Roncarolo MG. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation.Ann N Y Acad Sci. 2018;1417:5–22. [DOI] [PubMed]
Heydarinejad P, Gholijani N, Habibagahi Z, Malekmakan MR, Amirghofran Z. FOXP3 Gene Variants in Patients with Systemic Lupus Erythematosus: Association with Disease Susceptibility in Men and Relationship with Abortion in Women.Iran J Immunol. 2022;19:172–83. [DOI] [PubMed]
Raugh A, Allard D, Bettini M. Nature vs. nurture: FOXP3, genetics, and tissue environment shape Treg function.Front Immunol. 2022;13:911151. [DOI] [PubMed] [PMC]
Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease.Nat Rev Mol Cell Biol. 2019;20:590–607. [DOI] [PubMed]
Deng G, Song X, Fujimoto S, Piccirillo CA, Nagai Y, Greene MI. Foxp3 Post-translational Modifications and Treg Suppressive Activity.Front Immunol. 2019;10:2486. [DOI] [PubMed] [PMC]
Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs.Cell. 2018;172:393–407. [DOI] [PubMed] [PMC]
Baylin SB, Jones PA. Epigenetic Determinants of Cancer.Cold Spring Harb Perspect Biol. 2016;8:a019505. [DOI] [PubMed] [PMC]
Hedrich CM. Epigenetics in SLE.Curr Rheumatol Rep. 2017;19:58. [DOI] [PubMed] [PMC]
Farivar S, Shaabanpour Aghamaleki F. Effects of Major Epigenetic Factors on Systemic Lupus Erythematosus.Iran Biomed J. 2018;22:294–302. [DOI] [PubMed] [PMC]
Gao ZX, He T, Zhang P, Hu X, Ge M, Xu YQ, et al. Epigenetic regulation of immune cells in systemic lupus erythematosus: insight from chromatin accessibility.Expert Opin Ther Targets. 2024;28:637–49. [DOI] [PubMed]
von Knethen A, Heinicke U, Weigert A, Zacharowski K, Brüne B. Histone Deacetylation Inhibitors as Modulators of Regulatory T Cells.Int J Mol Sci. 2020;21:2356. [DOI] [PubMed] [PMC]
Liu H, Li P, Wei Z, Zhang C, Xia M, Du Q, et al. Regulation of T cell differentiation and function by epigenetic modification enzymes.Semin Immunopathol. 2019;41:315–26. [DOI] [PubMed]
Luo Y, Wang H. Effects of Non-Coding RNA on Regulatory T Cells and Implications for Treatment of Immunological Diseases.Front Immunol. 2020;11:612060. [DOI] [PubMed] [PMC]
Ahmadi-Motamayel F, Bayat Z, Hajilooi M, Shahryar-Hesami S, Mahdavinezhad A, Samie L, et al. Evaluation of the miRNA-146a and miRNA-155 Expression Levels in Patients with Oral Lichen Planus.Iran J Immunol. 2017;14:316–24. [PubMed]
Qu B, Shen N. miRNAs in the Pathogenesis of Systemic Lupus Erythematosus.Int J Mol Sci. 2015;16:9557–72. [DOI] [PubMed] [PMC]
Rezaeepoor M, Pourjafar M, Tahamoli-Roudsari A, Basiri Z, Hajilooi M, Solgi G. Altered expression of microRNAs may predict therapeutic response in rheumatoid arthritis patients.Int Immunopharmacol. 2020;83:106404. [DOI] [PubMed]
Wu YH, Liu W, Xue B, Zhang L, Liu XY, Liu B, et al. Upregulated Expression of microRNA-16 Correlates with Th17/Treg Cell Imbalance in Patients with Rheumatoid Arthritis.DNA Cell Biol. 2016;35:853–60. [DOI] [PubMed]
Xie M, Wang J, Gong W, Xu H, Pan X, Chen Y, et al. NF-κB-driven miR-34a impairs Treg/Th17 balance via targeting Foxp3.J Autoimmun. 2019;102:96–113. [DOI] [PubMed]
Zhang D, Qiu X, Li J, Zheng S, Li L, Zhao H. MiR-23a-3p-regulated abnormal acetylation of FOXP3 induces regulatory T cell function defect in Graves’ disease.Biol Chem. 2019;400:639–50. [DOI] [PubMed]
Li JQ, Tian JM, Fan XR, Wang ZY, Ling J, Wu XF, et al. miR-106b-5p induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura through NR4A3/Foxp3 pathway.Cell Cycle. 2020;19:1265–74. [DOI] [PubMed] [PMC]
Heyn J, Luchting B, Hinske LC, Hübner M, Azad SC, Kreth S. miR-124a and miR-155 enhance differentiation of regulatory T cells in patients with neuropathic pain.J Neuroinflammation. 2016;13:248. [DOI] [PubMed] [PMC]
Jin LW, Ye HY, Xu XY, Zheng Y, Chen Y. MiR-133a/133b inhibits Treg differentiation in IgA nephropathy through targeting FOXP3.Biomed Pharmacother. 2018;101:195–200. [DOI] [PubMed]
Zhao M, Wang LT, Liang GP, Zhang P, Deng XJ, Tang Q, et al. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4+ T cells of psoriasis vulgaris.Clin Immunol. 2014;150:22–30. [DOI] [PubMed]
Li X, Sun L, Chen L, Xu Y, Kong X. Upregulation of microRNA-219-5p relieves ulcerative colitis through balancing the differentiation of Treg/Th17 cells.Eur J Gastroenterol Hepatol. 2020;32:813–20. [DOI] [PubMed] [PMC]
Zheng R, Xie J, Li W, Shang J, Shi Z, Zhu S, et al. MiR-223-3p affects the proliferation and apoptosis of HCAECs in Kawasaki disease by regulating the expression of FOXP3.Immun Inflamm Dis. 2023;11:e939. [DOI] [PubMed] [PMC]
Li JQ, Hu SY, Wang ZY, Lin J, Jian S, Dong YC, et al. Long non-coding RNA MEG3 inhibits microRNA-125a-5p expression and induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura.Biomed Pharmacother. 2016;83:905–11. [DOI] [PubMed]
Yao X, Wang Q, Zeng P, Hou L, Yang Y, Lu D, et al. LncRNA HOTTIP from synovial fibroblast-derived exosomes: A novel molecular target for rheumatoid arthritis through the miR-1908-5p/STAT3 axis.Exp Cell Res. 2021;409:112943. [DOI] [PubMed]
Zemmour D, Pratama A, Loughhead SM, Mathis D, Benoist C. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity.Proc Natl Acad Sci U S A. 2017;114:E3472–80. [DOI] [PubMed] [PMC]
Huang N, Fan Z, Ma L, Ma H, Huang H, Yu H, et al. Long noncoding RNA RP11340F14.6 promotes a shift in the Th17/Treg ratio by binding with P2X7R in juvenile idiopathic arthritis.Int J Mol Med. 2020;46:859–68. [DOI] [PubMed]
Qiao YQ, Huang ML, Xu AT, Zhao D, Ran ZH, Shen J. LncRNA DQ786243 affects Treg related CREB and Foxp3 expression in Crohn’s disease.J Biomed Sci. 2013;20:87. [DOI] [PubMed] [PMC]
Zou H, Ma S, Li L, Xia X, Zhou Y, Zhang R. Downregulation of circular RNA ETS1 promotes SLE activity and inhibits Treg cell differentiation through miR-1205/FoxP3 molecular axis.Int Immunopharmacol. 2024;128:111539. [DOI] [PubMed]
Hippen KL, Loschi M, Nicholls J, MacDonald KPA, Blazar BR. Effects of MicroRNA on Regulatory T Cells and Implications for Adoptive Cellular Therapy to Ameliorate Graft-versus-Host Disease.Front Immunol. 2018;9:57. [DOI] [PubMed] [PMC]
Chen Z, Dong WH, Chen Q, Li QG, Qiu ZM. Downregulation of miR-199a-3p mediated by the CtBP2-HDAC1-FOXP3 transcriptional complex contributes to acute lung injury by targeting NLRP1.Int J Biol Sci. 2019;15:2627–40. [DOI] [PubMed] [PMC]
Beaulieu YB, Kleinman CL, Landry-Voyer AM, Majewski J, Bachand F. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1.PLoS Genet. 2012;8:e1003078. [DOI] [PubMed] [PMC]
Wu H, Chen S, Li A, Shen K, Wang S, Wang S, et al. LncRNA Expression Profiles in Systemic Lupus Erythematosus and Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets.Front Immunol. 2021;12:792884. [DOI] [PubMed] [PMC]
Pan J, Hu Y, Yuan C, Wu Y, Zhu X. lncRNA NEAT1 promotes the proliferation and metastasis of hepatocellular carcinoma by regulating the FOXP3/PKM2 axis.Front Oncol. 2022;12:928022. [DOI] [PubMed] [PMC]
Zou J, Pei X, Xing D, Wu X, Chen S. LINC00261 elevation inhibits angiogenesis and cell cycle progression of pancreatic cancer cells by upregulating SCP2 via targeting FOXP3.J Cell Mol Med. 2021;25:9826–36. [DOI] [PubMed] [PMC]
Liu Y, Tu H, Zhang L, Xiong J, Li L. FOXP3induced LINC00885 promotes the proliferation and invasion of cervical cancer cells.Mol Med Rep. 2021;23:458. [DOI] [PubMed] [PMC]
He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges.Signal Transduct Target Ther. 2021;6:185. [DOI] [PubMed] [PMC]
Chen X, Jiang C, Sun R, Yang D, Liu Q. Circular Noncoding RNA NR3C1 Acts as a miR-382-5p Sponge to Protect RPE Functions via Regulating PTEN/AKT/mTOR Signaling Pathway.Mol Ther. 2020;28:929–45. [DOI] [PubMed] [PMC]