The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, to any qualified researcher.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Mercanti L, Sindaco M, Mazzone M, Di Marcantonio MC, Piscione M, Muraro R, et al. PDAC, the Influencer Cancer: Cross-Talk with Tumor Microenvironment and Connected Potential Therapy Strategies.Cancers (Basel). 2023;15:2923. [DOI] [PubMed] [PMC]
Dikiy S, Rudensky AY. Principles of regulatory T cell function.Immunity. 2023;56:240–55. [DOI] [PubMed]
Zhu Y, Tan L, Luo D, Wang X. Identification and Validation of T-Cell Exhaustion Signature for Predicting Prognosis and Immune Response in Pancreatic Cancer by Integrated Analysis of Single-Cell and Bulk RNA Sequencing Data.Diagnostics (Basel). 2024;14:667. [DOI] [PubMed] [PMC]
Clough E, Barrett T. The Gene Expression Omnibus Database.Methods Mol Biol. 2016;1418:93–110. [DOI] [PubMed] [PMC]
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner.Bioinformatics. 2013;29:15–21. [DOI] [PubMed] [PMC]
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species.Nat Biotechnol. 2018;36:411–20. [DOI] [PubMed] [PMC]
Osorio D, Cai JJ. Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell RNA-sequencing data quality control.Bioinformatics. 2021;37:963–7. [DOI] [PubMed] [PMC]
Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data.Nat Commun. 2022;13:1246. [DOI] [PubMed] [PMC]
Garcia-Moreno A, López-Domínguez R, Villatoro-García JA, Ramirez-Mena A, Aparicio-Puerta E, Hackenberg M, et al. Functional Enrichment Analysis of Regulatory Elements.Biomedicines. 2022;10:590. [DOI] [PubMed] [PMC]
Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res. 2019;47:W556–60. [DOI] [PubMed] [PMC]
Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a Shared Vision for Cancer Genomic Data.N Engl J Med. 2016;375:1109–12. [DOI] [PubMed] [PMC]
Tordai H, Torres O, Csepi M, Padányi R, Lukács GL, Hegedűs T. Lightway access to AlphaMissense data that demonstrates a balanced performance of this missense mutation predictor.bioRxiv 2023.10.30.564807 [Preprint]. 2023 [cited 2023 Nov 2]. Available from: https://www.biorxiv.org/content/10.1101/2023.10.30.564807v1
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold.Nature. 2021;596:583–9. [DOI] [PubMed] [PMC]
Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, et al. InterPro in 2022.Nucleic Acids Res. 2023;51:D418–27. [DOI] [PubMed] [PMC]
Chi X, Luo S, Ye P, Hwang WL, Cha JH, Yan X, et al. T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications.Front Immunol. 2023;14:1104771. [DOI] [PubMed] [PMC]
McNutt AT, Francoeur P, Aggarwal R, Masuda T, Meli R, Ragoza M, et al. GNINA 1.0: molecular docking with deep learning.J Cheminform. 2021;13:43. [DOI] [PubMed] [PMC]
Goulart MR, Stasinos K, Fincham REA, Delvecchio FR, Kocher HM. T cells in pancreatic cancer stroma.World J Gastroenterol. 2021;27:7956–68. [DOI] [PubMed] [PMC]
Poddighe D. Autoimmune pancreatitis and pancreatic cancer: Epidemiological aspects and immunological considerations.World J Gastroenterol. 2021;27:3825–36. [DOI] [PubMed] [PMC]
Bailey SR, Nelson MH, Himes RA, Li Z, Mehrotra S, Paulos CM. Th17 cells in cancer: the ultimate identity crisis.Front Immunol. 2014;5:276. [DOI] [PubMed] [PMC]
Guo Y, Xie Y, Gao M, Zhao Y, Franco F, Wenes M, et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity.Nat Immunol. 2021;22:746–56. [DOI] [PubMed] [PMC]
Wang JC, Xu Y, Huang ZM, Lu XJ. T cell exhaustion in cancer: Mechanisms and clinical implications.J Cell Biochem. 2018;119:4279–86. [DOI] [PubMed]
Saka D, Gökalp M, Piyade B, Cevik NC, Arik Sever E, Unutmaz D, et al. Mechanisms of T-Cell Exhaustion in Pancreatic Cancer.Cancers (Basel). 2020;12:2274. [DOI] [PubMed] [PMC]
Fan C, Hu H, Shen Y, Wang Q, Mao Y, Ye B, et al. PRF1 is a prognostic marker and correlated with immune infiltration in head and neck squamous cell carcinoma.Transl Oncol. 2021;14:101042. [DOI] [PubMed] [PMC]
Huo Q, Ning L, Xie N. Identification of GZMA as a Potential Therapeutic Target Involved in Immune Infiltration in Breast Cancer by Integrated Bioinformatical Analysis.Breast Cancer (Dove Med Press). 2023;15:213–26. [DOI] [PubMed] [PMC]
Wang X, Guo L, Zhang W. Extraction of Innate Immune Genes in Dairy Cattle and the Regulation of Their Expression in Early Embryos.Genes (Basel). 2024;15:372. [DOI] [PubMed] [PMC]
Yuan L, Xu J, Shi Y, Jin Z, Bao Z, Yu P, et al. CD3D Is an Independent Prognostic Factor and Correlates With Immune Infiltration in Gastric Cancer.Front Oncol. 2022;12:913670. [DOI] [PubMed] [PMC]
Ng SS, De Labastida Rivera F, Yan J, Corvino D, Das I, Zhang P, et al. The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation.Nat Immunol. 2020;21:1205–18. [DOI] [PubMed] [PMC]
Zhao J, Wei K, Shi Y, Jiang P, Xu L, Chang C, et al. Identification of immunological characterization and Anoikis-related molecular clusters in rheumatoid arthritis.Front Mol Biosci. 2023;10:1202371. [DOI] [PubMed] [PMC]
Triebwasser M, Jarocha DJ, Breda L, Fedorky M, Rivella S. Rescue of Murine IL-7 Receptor Deficiency with Human IL-7 Receptor Gene Therapy.Blood. 2021;138:3131. [DOI]
Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory.Immunity. 2012;37:1130–44. [DOI] [PubMed] [PMC]
Tu W, Tu Y, Tan C, Zhong H, Xu S, Wang J, et al. Elucidating the role of T-cell exhaustion-related genes in colorectal cancer: a single-cell bioinformatics perspective.Funct Integr Genomics. 2023;23:259. [DOI] [PubMed]
Im SJ, Ha SJ. Re-defining T-Cell Exhaustion: Subset, Function, and Regulation.Immune Netw. 2020;20:e2. [DOI] [PubMed] [PMC]
Ayars M, O’Sullivan E, Macgregor-Das A, Shindo K, Kim H, Borges M, et al. IL2RG, identified as overexpressed by RNA-seq profiling of pancreatic intraepithelial neoplasia, mediates pancreatic cancer growth.Oncotarget. 2017;8:83370–83. [DOI] [PubMed] [PMC]
Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M, et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia.Nat Genet. 2011;43:932–9. [DOI] [PubMed] [PMC]
AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine through an International Consortium.Cancer Discov. 2017;7:818–31. [DOI] [PubMed] [PMC]
McElroy CA, Dohm JA, Walsh STR. Structural and biophysical studies of the human IL-7/IL-7Rα complex.Structure. 2009;17:54–65. [DOI] [PubMed] [PMC]
Petersen TE, Thøgersen HC, Skorstengaard K, Vibe-Pedersen K, Sahl P, Sottrup-Jensen L, et al. Partial primary structure of bovine plasma fibronectin: three types of internal homology.Proc Natl Acad Sci U S A. 1983;80:137–41. [DOI] [PubMed] [PMC]
Leahy DJ, Aukhil I, Erickson HP. 2.0 Å Crystal Structure of a Four-Domain Segment of Human Fibronectin Encompassing the RGD Loop and Synergy Region.Cell. 1996;84:155–64. [DOI] [PubMed]
Thiruchenthooran V, Sánchez-López E, Gliszczyńska A. Perspectives of the Application of Non-Steroidal Anti-Inflammatory Drugs in Cancer Therapy: Attempts to Overcome Their Unfavorable Side Effects.Cancers (Basel). 2023;15:475. [DOI] [PubMed] [PMC]
Robertson E. Oxaprozin. In: Enna SJ, Bylund DB, editors. xPharm: The Comprehensive Pharmacology Reference. New York: Elsevier; 2007. pp. 1–7. [DOI]
Awasthi N, Mikels-Vigdal AJ, Stefanutti E, Schwarz MA, Monahan S, Smith V, et al. Therapeutic efficacy of anti-MMP9 antibody in combination with nab-paclitaxel-based chemotherapy in pre-clinical models of pancreatic cancer.J Cell Mol Med. 2019;23:3878–87. [DOI] [PubMed] [PMC]
Ianni A, Celenza G, Franceschini N. Oxaprozin: A new hope in the modulation of matrix metalloproteinase 9 activity.Chem Biol Drug Des. 2019;93:811–7. [DOI] [PubMed]
Parsi E, Salabat A. Comparison of O/W and IL/W Microemulsion Systems as Potential Carriers of Sparingly Soluble Celecoxib Drug.J Solution Chem. 2020;49:68–82. [DOI]
Wen B, Wei YT, Mu LL, Wen GR, Zhao K. The molecular mechanisms of celecoxib in tumor development.Medicine (Baltimore). 2020;99:e22544. [DOI] [PubMed] [PMC]