Note. Reprinted from “Concise outline of the nervous system examination for the generalist,” by Jan MM, Al-Buhairi AR, Baeesa SS. Neurosciences (Riyadh). 2001;6:16–22 (https://nsj.org.sa/content/6/1/16). CC BY-NC.
Declarations
Acknowledgments
I extend sincere gratitude to my supervisor for their unwavering support, invaluable guidance, and scientific insight, which significantly improved this paper. Their constructive feedback enriched my research skills. I’m also deeply thankful to my boss for their leadership and patience. Their belief in my capabilities encouraged me to overcome challenges and focus on my research goals. Their invaluable contributions were key to the success of this research. Any recognition this paper receives is a testament to their dedication and guidance.
The author declares that he has no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This study was partially supported by the Juntendo Research Branding Project, JSPS KAKENHI I grant no. [21K07690, 21K12153, 22H04926]; a Grant-in-Aid for Special Research in Subsidies for ordinary expenses of private schools from The Promotion and Mutual Aid Corporation for Private Schools of Japan; the Brain/MINDS Beyond program grant no. [JP19dm0307101] of the Japan Agency for Medical Research and Development (AMED), under grant no. [JP21wm0425006]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al. Amyotrophic lateral sclerosis.Lancet. 2017;390:2084–98. [DOI] [PubMed]
Kamalian A, Foroughmand I, Koski L, Darvish M, Saghazadeh A, Kamalian A, et al. Metal concentrations in cerebrospinal fluid, blood, serum, plasma, hair, and nails in amyotrophic lateral sclerosis: a systematic review and meta-analysis.J Trace Elem Med Biol. 2023;78:127165. [DOI] [PubMed]
Spencer PS, Palmer VS, Kisby GE, Lagrange E, Horowitz BZ, Valdes Angues R, et al. Early-onset, conjugal, twin-discordant, and clusters of sporadic ALS: pathway to discovery of etiology via lifetime exposome research.Front Neurosci. 2023;17:1005096. [DOI] [PubMed] [PMC]
Newell ME, Adhikari S, Halden RU. Systematic and state-of the science review of the role of environmental factors in Amyotrophic Lateral Sclerosis (ALS) or Lou Gehrig’s disease.Sci Total Environ. 2022;817:152504. [DOI] [PubMed]
Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC. The panoramic view of amyotrophic lateral sclerosis: a fatal intricate neurological disorder.Life Sci. 2022;288:120156. [DOI] [PubMed]
Spencer PS. Parkinsonism and motor neuron disorders: lessons from Western Pacific ALS/PDC.J Neurol Sci. 2022;433:120021. [DOI] [PubMed]
Johnston CA, Stanton BR, Turner MR, Gray R, Blunt AH, Butt D, et al. Amyotrophic lateral sclerosis in an urban setting.J Neurol. 2006;253:1642–3. [DOI] [PubMed]
Ravits J, Paul P, Jorg C. Focality of upper and lower motor neuron degeneration at the clinical onset of ALS.Neurology. 2007;68:1571–5. [DOI] [PubMed]
Jan M. The hypotonic infant: clinical approach.J Pediatr Neurol. 2015;5:181–7. [DOI]
Jan MM, Al-Buhairi AR, Baeesa SS. Concise outline of the nervous system examination for the generalist.Neurosciences (Riyadh). 2001;6:16–22. [PubMed]
Grassano M, Calvo A, Moglia C, Sbaiz L, Brunetti M, Barberis M, et al. Systematic evaluation of genetic mutations in ALS: a population-based study.J Neurol Neurosurg Psychiatry. 2022;93:1190–3. [DOI] [PubMed] [PMC]
Merjane J, Chung R, Patani R, Lisowski L. Molecular mechanisms of amyotrophic lateral sclerosis as broad therapeutic targets for gene therapy applications utilizing adeno-associated viral vectors.Med Res Rev. 2023;43:829–54. [DOI] [PubMed]
Kumar R, Malik Z, Singh M, Rachana R, Mani S, Ponnusamy K, et al. Amyotrophic lateral sclerosis risk genes and suppressor.Curr Gene Ther. 2023;23:148–62. [DOI] [PubMed]
Corcia P, Blasco H, Beltran S, Piegay AS, Vourc’h P. Treatment of hereditary amyotrophic lateral sclerosis.Rev Neurol. 2023;179:54–60. [DOI] [PubMed]
Brenner D, Freischmidt A. Update on genetics of amyotrophic lateral sclerosis.Curr Opin Neurol. 2022;35:672–7. [DOI] [PubMed]
Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W, Figueroa KP, et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2.Nature. 2017;544:362–6. [DOI] [PubMed] [PMC]
Su WM, Gu XJ, Duan QQ, Jiang Z, Gao X, Shang HF, et al. Genetic factors for survival in amyotrophic lateral sclerosis: an integrated approach combining a systematic review, pairwise and network meta-analysis.BMC Med. 2022;20:209. [DOI] [PubMed] [PMC]
Turner MR, Swash M, Ebers GC. Lockhart Clarke’s contribution to the description of amyotrophic lateral sclerosis.Brain. 2010;133:3470–9. [DOI] [PubMed] [PMC]
Mitchell JD, Callagher P, Gardham J, Mitchell C, Dixon M, Addison-Jones R, et al. Timelines in the diagnostic evaluation of people with suspected amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND) – a 20-year review: can we do better?Amyotroph Lateral Scler. 2010;11:537–41. [DOI] [PubMed]
Turner MR, Scaber J, Goodfellow JA, Lord ME, Marsden R, Talbot K. The diagnostic pathway and prognosis in bulbar-onset amyotrophic lateral sclerosis.J Neurol Sci. 2010;294:81–5. [DOI] [PubMed]
Vidovic M, Müschen LH, Brakemeier S, Machetanz G, Naumann M, Castro-Gomez S. Current state and future directions in the diagnosis of amyotrophic lateral sclerosis.Cells. 2023;12:736. [DOI] [PubMed] [PMC]
Glavač D, Mladinić M, Ban J, Mazzone GL, Sámano C, Tomljanović I, et al. The potential connection between molecular changes and biomarkers related to ALS and the development and regeneration of CNS.Int J Mol Sci. 2022;23:11360. [DOI] [PubMed] [PMC]
Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E, et al.; Eurals Consortium. Prognostic factors in ALS: a critical review.Amyotroph Lateral Scler. 2009;10:310–23. [DOI] [PubMed] [PMC]
Brooks BR, Miller RG, Swash M, Munsat TL; World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis.Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9. [DOI] [PubMed]
Wohlfart G. Collateral regeneration in partially denervated muscles.Neurology. 1958;8:175–80. [DOI] [PubMed]
Ince PG, Evans J, Knopp M, Forster G, Hamdalla HHM, Wharton SB, et al. Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS.Neurology. 2003;60:1252–8. [DOI] [PubMed]
Gordon PH, Cheng B, Katz IB, Pinto M, Hays AP, Mitsumoto H, et al.; European Federation of Neurological Societies. The natural history of primary lateral sclerosis.Neurology. 2006;66:647–53. [DOI] [PubMed]
Filippi M, Agosta F, Abrahams S, Fazekas F, Grosskreutz J, Kalra S, et al. EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases.Eur J Neurol. 2010;17:526-e20. [DOI] [PubMed] [PMC]
Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review.J Mol Neurosci. 2008;34:51–61. [DOI] [PubMed]
Thaler HT, Ferber PW, Rottenberg DA. A statistical method for determining the proportions of gray matter, white matter, and CSF using computed tomography.Neuroradiology. 1978;16:133–5. [DOI] [PubMed]
Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications.J Magn Reson Imaging. 2001;13:534–46. [DOI] [PubMed]
Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain.Neurotherapeutics. 2007;4:316–29. [DOI] [PubMed] [PMC]
Oh JS, Suk Park K, Chan Song I, Ju Kim S, Hwang J, Chung A, et al. Fractional anisotropy-based divisions of midsagittal corpus callosum.Neuroreport. 2005;16:317–20. [DOI] [PubMed]
Hofer S, Frahm J. Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging.Neuroimage. 2006;32:989–94. [DOI] [PubMed]
Kim EY, Park HJ, Kim DH, Lee SK, Kim J. Measuring fractional anisotropy of the corpus callosum using diffusion tensor imaging: mid-sagittal versus axial imaging planes.Korean J Radiol. 2008;9:391–5. [DOI] [PubMed] [PMC]
Rutgers DR, Fillard P, Paradot G, Tadié M, Lasjaunias P, Ducreux D. Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury.AJNR Am J Neuroradiol. 2008;29:1730–5. [DOI] [PubMed] [PMC]
Rimkus C de M, Junqueira T de F, Callegaro D, Otaduy MCG, Leite C da C. Segmented corpus callosum diffusivity correlates with the Expanded Disability Status Scale score in the early stages of relapsing-remitting multiple sclerosis.Clinics. 2013;68:1115–20. [DOI] [PubMed] [PMC]
Li Z, Li C, Fan L, Jiang G, Wu J, Jiang T, et al. Altered microstructure rather than morphology in the corpus callosum after lower limb amputation.Sci Rep. 2017;7:44780. [DOI] [PubMed] [PMC]
Lövdén M, Bodammer NC, Kühn S, Kaufmann J, Schütze H, Tempelmann C, et al. Experience-dependent plasticity of white-matter microstructure extends into old age.Neuropsychologia. 2010;48:3878–83. [DOI] [PubMed]
Parizel PM, Ozsarlak, Van Goethem JW, van den Hauwe L, Dillen C, Verlooy J, et al. Imaging findings in diffuse axonal injury after closed head trauma.Eur Radiol. 1998;8:960–5. [DOI] [PubMed]
Hulkower MB, Poliak DB, Rosenbaum SB, Zimmerman ME, Lipton ML. A decade of DTI in traumatic brain injury: 10 years and 100 articles later.AJNR Am J Neuroradiol. 2013;34:2064–74. [DOI] [PubMed] [PMC]
Feldman HM, Yeatman JD, Lee ES, Barde LHF, Gaman-Bean S. Diffusion tensor imaging: a review for pediatric researchers and clinicians.J Dev Behav Pediatr. 2010;31:346–56. [DOI] [PubMed] [PMC]
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis.NMR Biomed. 2010;23:698–710. [DOI] [PubMed] [PMC]
Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging.Magn Reson Med. 2005;53:1432–40. [DOI] [PubMed]
Shimony JS, McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, Lori NF, et al. Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis.Radiology. 1999;212:770–84. [DOI] [PubMed]
Zacharopoulos NG, Narayana PA. Selective measurement of white matter and gray matter diffusion trace values in normal human brain.Med Phys. 1998;25:2237–41. [DOI] [PubMed]
Falconer JC, Narayana PA. Cerebrospinal fluid-suppressed high-resolution diffusion imaging of human brain.Magn Reson Med. 1997;37:119–23. [DOI] [PubMed]
Hirsch JG, Bock M, Essig M, Schad LR. Comparison of diffusion anisotropy measurements in combination with the FLAIR-technique.Magn Reson Imaging. 1999;17:705–16. [DOI] [PubMed]
Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review.NMR Biomed. 2002;15:435–55. [DOI] [PubMed]
Chung AW, Seunarine KK, Clark CA. NODDI reproducibility and variability with magnetic field strength: a comparison between 1.5 T and 3 T.Hum Brain Mapp. 2016;37:4550–65. [DOI] [PubMed] [PMC]
Wheeler-Kingshott CAM, Cercignani M. About “axial” and “radial” diffusivities.Magn Reson Med. 2009;61:1255–60. [DOI] [PubMed]
Kamagata K, Zalesky A, Hatano T, Ueda R, Di Biase MA, Okuzumi A, et al. Gray matter abnormalities in idiopathic Parkinson’s disease: evaluation by diffusional kurtosis imaging and neurite orientation dispersion and density imaging.Hum Brain Mapp. 2017;38:3704–22. [DOI] [PubMed] [PMC]
Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?Neuroimage. 2007;34:144–55. [DOI] [PubMed] [PMC]
Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging.Hum Brain Mapp. 2013;34:2747–66. [DOI] [PubMed] [PMC]
Tournier JD, Mori S, Leemans A. Diffusion tensor imaging and beyond.Magn Reson Med. 2011;65:1532–56. [DOI] [PubMed] [PMC]
Steven AJ, Zhuo J, Melhem ER. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain.AJR Am J Roentgenol. 2014;202:W26–33. [DOI] [PubMed]
Arab A, Wojna-Pelczar A, Khairnar A, Szabó N, Ruda-Kucerova J. Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders.Brain Res Bull. 2018;139:91–8. [DOI] [PubMed]
Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter.Front Phys. 2017;28:61. [DOI] [PubMed] [PMC]
Kamagata K, Tomiyama H, Hatano T, Motoi Y, Abe O, Shimoji K, et al. A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging.Neuroradiology. 2014;56:251–8. [DOI] [PubMed]
Hattori A, Kamagata K, Kirino E, Andica C, Tanaka S, Hagiwara A, et al. White matter alterations in adult with autism spectrum disorder evaluated using diffusion kurtosis imaging.Neuroradiology. 2019;61:1343–53. [DOI] [PubMed]
Kamagata K, Motoi Y, Tomiyama H, Abe O, Ito K, Shimoji K, et al. Relationship between cognitive impairment and white-matter alteration in Parkinson’s disease with dementia: tract-based spatial statistics and tract-specific analysis.Eur Radiol. 2013;23:1946–55. [DOI] [PubMed] [PMC]
Kamiya K, Kamagata K, Ogaki K, Hatano T, Ogawa T, Takeshige-Amano H, et al. Brain white-matter degeneration due to aging and Parkinson disease as revealed by double diffusion encoding.Front Neurosci. 2020;14:584510. [DOI] [PubMed] [PMC]
Andica C, Kamagata K, Hatano T, Saito Y, Ogaki K, Hattori N, et al. MR biomarkers of degenerative brain disorders derived from diffusion imaging.J Magn Reson Imaging. 2020;52:1620–36. [DOI] [PubMed] [PMC]
Lu H, Jensen JH, Ramani A, Helpern JA. Three-dimensional characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging.NMR Biomed. 2006;19:236–47. [DOI] [PubMed]
Szczepankiewicz F, Lätt J, Wirestam R, Leemans A, Sundgren P, van Westen D, et al. Variability in diffusion kurtosis imaging: impact on study design, statistical power and interpretation.Neuroimage. 2013;76:145–54. [DOI] [PubMed]
Betz AL, Iannotti F, Hoff JT. Brain edema: a classification based on blood-brain barrier integrity.Cerebrovasc Brain Metab Rev. 1989;1:133–54. [PubMed]
Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain.Radiology. 1996;201:637–48. [DOI] [PubMed]
Papadakis NG, Martin KM, Mustafa MH, Wilkinson ID, Griffiths PD, Huang CLH, et al. Study of the effect of CSF suppression on white matter diffusion anisotropy mapping of healthy human brain.Magn Reson Med. 2002;48:394–8. [DOI] [PubMed]
Alexander AL, Hasan KM, Lazar M, Tsuruda JS, Parker DL. Analysis of partial volume effects in diffusion-tensor MRI.Magn Reson Med. 2001;45:770–80. [DOI] [PubMed]
Chou MC, Lin YR, Huang TY, Wang CY, Chung HW, Juan CJ, et al. FLAIR diffusion-tensor MR tractography: comparison of fiber tracking with conventional imaging.AJNR Am J Neuroradiol. 2005;26:591–7. [PubMed] [PMC]
Concha L, Gross DW, Beaulieu C. Diffusion tensor tractography of the limbic system.AJNR Am J Neuroradiol. 2005;26:2267–74. [PubMed] [PMC]
Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf Y. Characterization of displaced white matter by brain tumors using combined DTI and fMRI.Neuroimage. 2006;30:1100–11. [DOI] [PubMed]
Pierpaoli C, Jones DK. Removing CSF contamination in brain DT-MRIs by using a two-compartment tensor model.Proc Intl Soc Mag Reson Med. 2004;11:1215.
Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging.Magn Reson Med. 2003;50:1077–88. [DOI] [PubMed]
Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI.Magn Reson Med. 2009;62:717–30. [DOI] [PubMed]
Andica C, Kamagata K, Hatano T, Saito A, Uchida W, Ogawa T, et al. Free-water imaging in white and gray matter in Parkinson’s disease.Cells. 2019;8:839. [DOI] [PubMed] [PMC]
Oestreich LKL, Lyall AE, Pasternak O, Kikinis Z, Newell DT, Savadjiev P, et al.; Australian Schizophrenia Research Bank; Whitford TJ, McCarthy-Jones S. Characterizing white matter changes in chronic schizophrenia: a free-water imaging multi-site study.Schizophr Res. 2017;189:153–61. [DOI] [PubMed] [PMC]
Lyall AE, Pasternak O, Robinson DG, Newell D, Trampush JW, Gallego JA, et al. Greater extracellular free-water in first-episode psychosis predicts better neurocognitive functioning.Mol Psychiatry. 2018;23:701–7. [DOI] [PubMed] [PMC]
Pasternak O, Westin CF, Bouix S, Seidman LJ, Goldstein JM, Woo TU, et al. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset.J Neurosci. 2012;32:17365–72. [DOI] [PubMed] [PMC]
Bergamino M, Pasternak O, Farmer M, Shenton ME, Hamilton JP. Applying a free-water correction to diffusion imaging data uncovers stress-related neural pathology in depression.Neuroimage Clin. 2016;10:336–42. [DOI] [PubMed] [PMC]
Pasternak O, Shenton ME, Westin CF. Estimation of extracellular volume from regularized multi-shell diffusion MRI.Med Image Comput Comput Assist Interv. 2012;15:305–12. [DOI] [PubMed] [PMC]
Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain.Neuroimage. 2012;61:1000–16. [DOI] [PubMed]
Sato K, Kerever A, Kamagata K, Tsuruta K, Irie R, Tagawa K, et al. Understanding microstructure of the brain by comparison of neurite orientation dispersion and density imaging (NODDI) with transparent mouse brain.Acta Radiol Open. 2017;6:2058460117703816. [DOI] [PubMed] [PMC]
Schilling KG, Janve V, Gao Y, Stepniewska I, Landman BA, Anderson AW. Histological validation of diffusion MRI fiber orientation distributions and dispersion.Neuroimage. 2018;165:200–21. [DOI] [PubMed] [PMC]
Grussu F, Schneider T, Tur C, Yates RL, Tachrount M, Ianuş A, et al. Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?Ann Clin Transl Neurol. 2017;4:663–79. [DOI] [PubMed] [PMC]
Colgan N, Siow B, O’Callaghan JM, Harrison IF, Wells JA, Holmes HE, et al. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer’s disease.Neuroimage. 2016;125:739–44. [DOI] [PubMed] [PMC]
Sepehrband F, Clark KA, Ullmann JFP, Kurniawan ND, Leanage G, Reutens DC, et al. Brain tissue compartment density estimated using diffusion-weighted MRI yields tissue parameters consistent with histology.Hum Brain Mapp. 2015;36:3687–702. [DOI] [PubMed] [PMC]
Gong NJ, Dibb R, Pletnikov M, Benner E, Liu C. Imaging microstructure with diffusion and susceptibility MR: neuronal density correlation in disrupted-in-schizophrenia-1 mutant mice.NMR Biomed. 2020;33:e4365. [DOI] [PubMed]
Fick RHJ, Daianu M, Pizzolato M, Wassermann D, Jacobs RE, Thompson PM, et al. Comparison of biomarkers in transgenic Alzheimer rats using multi-shell diffusion MRI.Comput Diffus MRI. 2017;982:187–99. [DOI]
Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications.NMR Biomed. 2019;32:e3841. [DOI] [PubMed]
Guerrero JM, Adluru N, Bendlin BB, Goldsmith HH, Schaefer SM, Davidson RJ, et al. Optimizing the intrinsic parallel diffusivity in NODDI: an extensive empirical evaluation.PLoS One. 2019;14:e0217118. [DOI] [PubMed] [PMC]
Lampinen B, Szczepankiewicz F, Mårtensson J, van Westen D, Sundgren PC, Nilsson M. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: a model comparison using spherical tensor encoding.Neuroimage. 2017;147:517–31. [DOI] [PubMed]
Guerreri M, Szczepankiewicz F, Lampinen B, Palombo M, Nilsson M, Zhang H. Tortuosity assumption not the cause of NODDI’s incompatibility with tensor-valued diffusion encoding [Internet].ISMRM and SMRT Virtual Conference and Exhibition; [cited 2023 Jan 3]. Available from: https://orca.cardiff.ac.uk/147874/
Li J, Pan P, Song W, Huang R, Chen K, Shang H. A meta-analysis of diffusion tensor imaging studies in amyotrophic lateral sclerosis.Neurobiol Aging. 2012;33:1833–8. [DOI] [PubMed]
Zhang F, Chen G, He M, Dai J, Shang H, Gong Q, et al. Altered white matter microarchitecture in amyotrophic lateral sclerosis: a voxel-based meta-analysis of diffusion tensor imaging.Neuroimage Clin. 2018;19:122–9. [DOI] [PubMed] [PMC]
Maj E, Jamroży M, Bielecki M, Bartoszek M, Gołębiowski M, Wojtaszek M, et al. Role of DTI-MRI parameters in diagnosis of ALS: useful biomarkers for daily practice? Tertiary centre experience and literature review.Neurol Neurochir Pol. 2022;56:490–8. [DOI] [PubMed]
Rajagopalan V, Pioro EP. Unbiased MRI analyses identify micropathologic differences between upper motor neuron-predominant ALS phenotypes.Front Neurosci. 2019;13:704. [DOI] [PubMed] [PMC]
Kalra S, Müller HP, Ishaque A, Zinman L, Korngut L, Genge A, et al. A prospective harmonized multicenter DTI study of cerebral white matter degeneration in ALS.Neurology. 2020;95:e943–52. [DOI] [PubMed] [PMC]
Shellikeri S, Myers M, Black SE, Abrahao A, Zinman L, Yunusova Y. Speech network regional involvement in bulbar ALS: a multimodal structural MRI study.Amyotroph Lateral Scler Frontotemporal Degener. 2019;20:385–95. [DOI] [PubMed] [PMC]
Kocar TD, Müller HP, Ludolph AC, Kassubek J. Feature selection from magnetic resonance imaging data in ALS: a systematic review.Ther Adv Chronic Dis. 2021;12:20406223211051000. [DOI] [PubMed] [PMC]
Behler A, Müller HP, Ludolph AC, Kassubek J. Diffusion tensor imaging in amyotrophic lateral sclerosis: machine learning for biomarker development.Int J Mol Sci. 2023;24:1911. [DOI] [PubMed] [PMC]
Müller HP, Gorges M, Del Tredici K, Ludolph AC, Kassubek J. The same cortico-efferent tract involvement in progressive bulbar palsy and in ‘classical’ ALS: a tract of interest-based MRI study.Neuroimage Clin. 2019;24:101979. [DOI] [PubMed] [PMC]
El Mendili MM, Grapperon AM, Dintrich R, Stellmann JP, Ranjeva JP, Guye M, et al. Alterations of microstructure and sodium homeostasis in fast amyotrophic lateral sclerosis progressors: a brain DTI and sodium MRI study.AJNR Am J Neuroradiol. 2022;43:984–90. [DOI] [PubMed] [PMC]
Bao Y, Yang L, Chen Y, Zhang B, Li H, Tang W, et al. Radial diffusivity as an imaging biomarker for early diagnosis of non-demented amyotrophic lateral sclerosis.Eur Radiol. 2018;28:4940–8. [DOI] [PubMed]
Ratai EM, Alshikho MJ, Zürcher NR, Loggia ML, Cebulla CL, Cernasov P, et al. Integrated imaging of [11C]-PBR28 PET, MR diffusion and magnetic resonance spectroscopy 1H-MRS in amyotrophic lateral sclerosis.Neuroimage Clin. 2018;20:357–64. [DOI] [PubMed] [PMC]
Chen QF, Zhang XH, Huang NX, Chen HJ. Identification of amyotrophic lateral sclerosis based on diffusion tensor imaging and support vector machine.Front Neurol. 2020;11:275. [DOI] [PubMed] [PMC]
Müller HP, Del Tredici K, Lulé D, Müller K, Weishaupt JH, Ludolph AC, et al. In vivo histopathological staging in C9orf72-associated ALS: a tract of interest DTI study.Neuroimage Clin. 2020;27:102298. [DOI] [PubMed] [PMC]
Müller HP, Lulé D, Roselli F, Behler A, Ludolph AC, Kassubek J. Segmental involvement of the corpus callosum in C9orf72-associated ALS: a tract of interest-based DTI study.Ther Adv Chronic Dis. 2021;12:20406223211002969. [DOI] [PubMed] [PMC]
Querin G, Biferi MG, Pradat PF. Biomarkers for C9orf7-ALS in symptomatic and pre-symptomatic patients: state-of-the-art in the new era of clinical trials.J Neuromuscul Dis. 2022;9:25–37. [DOI] [PubMed] [PMC]
Huang NX, Zou ZY, Xue YJ, Chen HJ. Abnormal cerebral microstructures revealed by diffusion kurtosis imaging in amyotrophic lateral sclerosis.J Magn Reson Imaging. 2020;51:554–62. [DOI] [PubMed]
Welton T, Maller JJ, Lebel RM, Tan ET, Rowe DB, Grieve SM. Diffusion kurtosis and quantitative susceptibility mapping MRI are sensitive to structural abnormalities in amyotrophic lateral sclerosis.Neuroimage Clin. 2019;24:101953. [DOI] [PubMed] [PMC]
Gatto RG, Mustafi SM, Amin MY, Mareci TH, Wu YC, Magin RL. Neurite orientation dispersion and density imaging can detect presymptomatic axonal degeneration in the spinal cord of ALS mice.Funct Neurol. 2018;33:155–63. [PubMed] [PMC]
Broad RJ, Gabel MC, Dowell NG, Schwartzman DJ, Seth AK, Zhang H, et al. Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS.J Neurol Neurosurg Psychiatry. 2019;90:404–11. [DOI] [PubMed] [PMC]
Wen J, Zhang H, Alexander DC, Durrleman S, Routier A, Rinaldi D, et al.; Predict to Prevent Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis (PREV-DEMALS) Study Group. Neurite density is reduced in the presymptomatic phase of C9orf72 disease.J Neurol Neurosurg Psychiatry. 2019;90:387–94. [DOI] [PubMed]
Zhu T, Hu R, Qiu X, Taylor M, Tso Y, Yiannoutsos C, et al. Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study.Neuroimage. 2011;56:1398–411. [DOI] [PubMed] [PMC]
Andica C, Kamagata K, Hayashi T, Hagiwara A, Uchida W, Saito Y, et al. Scan–rescan and inter-vendor reproducibility of neurite orientation dispersion and density imaging metrics.Neuroradiology. 2020;62:483–94. [DOI] [PubMed] [PMC]
Cercignani M, Bammer R, Sormani MP, Fazekas F, Filippi M. Inter-sequence and inter-imaging unit variability of diffusion tensor MR imaging histogram-derived metrics of the brain in healthy volunteers.AJNR Am J Neuroradiol. 2003;24:638–43. [PubMed] [PMC]
Kamagata K, Shimoji K, Hori M, Nishikori A, Tsuruta K, Yoshida M, et al. Intersite reliability of diffusion tensor imaging on two 3T scanners.Magn Reson Med Sci. 2015;14:227–33. [DOI] [PubMed]
Mahoney CJ, Simpson IJA, Nicholas JM, Fletcher PD, Downey LE, Golden HL, et al. Longitudinal diffusion tensor imaging in frontotemporal dementia.Ann Neurol. 2015;77:33–46. [DOI] [PubMed] [PMC]
Tu MC, Lo CP, Huang CF, Hsu YH, Huang WH, Deng JF, et al. Effectiveness of diffusion tensor imaging in differentiating early-stage subcortical ischemic vascular disease, Alzheimer’s disease and normal ageing.PLoS One. 2017;12:e0175143. [DOI] [PubMed] [PMC]
Voineskos AN, Lobaugh NJ, Bouix S, Rajji TK, Miranda D, Kennedy JL, et al. Diffusion tensor tractography findings in schizophrenia across the adult lifespan.Brain. 2010;133:1494–504. [DOI] [PubMed] [PMC]
Cetin Karayumak S, Bouix S, Ning L, James A, Crow T, Shenton M, et al. Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters.Neuroimage. 2019;184:180–200. [DOI] [PubMed] [PMC]
Tax CM, Grussu F, Kaden E, Ning L, Rudrapatna U, John Evans C, et al. Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms.Neuroimage. 2019;195:285–99. [DOI] [PubMed] [PMC]
De Santis S, Barazany D, Jones DK, Assaf Y. Resolving relaxometry and diffusion properties within the same voxel in the presence of crossing fibres by combining inversion recovery and diffusion-weighted acquisitions.Magn Reson Med. 2016;75:372–80. [DOI] [PubMed] [PMC]
Reymbaut A, Critchley J, Durighel G, Sprenger T, Sughrue M, Bryskhe K, et al. Toward nonparametric diffusion-T1 characterization of crossing fibers in the human brain.Magn Reson Med. 2021;85:2815–27. [DOI] [PubMed] [PMC]
Ravanfar P, Loi SM, Syeda WT, Van Rheenen TE, Bush AI, Desmond P, et al. Systematic review: quantitative susceptibility mapping (QSM) of brain iron profile in neurodegenerative diseases.Front Neurosci. 2021;15:618435. [DOI] [PubMed] [PMC]