Summarizing documented clinical manifestations, gut microbial profiles, and conventional and new microbial-related therapies in proteinopathies
ND
Hallmarks
Clinical manifestations
Conventional therapies
Gut microbial profile
New microbial-related therapies
PD
Lewy bodies
Bradykinesia, tremor or postural instabilityConstipation
L-DOPA, dopaminergic agonists, MAO-B inhibitors and COMT inhibitors
Reduction of anti-inflammatory species and greater abundance of pro-inflammatory Enterobacteriaceae [13, 53, 66, 69, 70]SIBO and Helicobacter pylori infection [79, 87, 88]
Probiotic containing Lactobacillus casei Shirota and Bifidobacerium strains [79, 89–91]Regular intake of Bacillus spp. [66, 94, 95]Regular consumption of synbiotics [96]FMT [101, 102]
AD
Senile plaques, neurofibrillary tangles
Progressive loss of memory, language and learning capabilities
To increase acetylcholine levelsTo decrease NMDA glutamate receptors activity
Reduction in gut microbiota diversity [123]Differences in Firmicutes:Bacteroidetes ratio [124]Helicobacter pylori infection [125, 126]Larger proportion of pro-inflammatory Escherichia/ Shigella spp. taxa and lower proportion of anti-inflammatory Eubacterium rectale spp. taxa [127]
Multibiotics [147]Lactobacilli and Bifibodbacterium combinations [148]Probiotic mixture combined with selenium as prebiotic [149]Daily consumption of probiotic-fermented kefir [150]FMT [154]
HD
mHTT aggregations
Depression, dementia, motor alterations and GIT dysfunction
Dopamine inhibitors, anti-excitotoxic compounds and antipsychotic drugs
Conceptualization was agreed by EMP and RM who scanned the literature, retrieved and extracted information from articles referenced in the review. PAG analyzed the literature and also extracted information from articles. EMP and PAG compiled all the information and wrote the first version of the manuscript. RM critically read the manuscript and prepared a second version of the article. All authors edited the manuscript and revised the final submitted version.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Bourdenx M, Koulakiotis NS, Sanoudou D, Bezard E, Dehay B, Tsarbopoulos A.Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: examples of amyloidopathies, tauopathies and synucleinopathies. Prog Neurobiol.2017;155:171–93. [DOI] [PubMed]
Gandhi J, Antonelli AC, Afridi A, Vatsia S, Joshi G, Romanov V, Murray IVJ, Khan SA.Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev Neurosci.2019;30:339–58. [DOI] [PubMed]
Marsh AP.Molecular mechanisms of proteinopathies across neurodegenerative disease: a review. Neurol Res Pract.2019;1:35. [DOI] [PubMed] [PMC]
Bayer TA.Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders?Eur Neuropsychopharmacol. 2015;25:713–24. [DOI] [PubMed]
Collins SM, Bercik P.The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology.2009;136:2003–14. [DOI] [PubMed]
Carabotti M, Scirocco A, Maselli MA, Severi C.The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol.2015;28:203–9. [PubMed] [PMC]
Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S.Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci.2017;74:3769–87. [DOI] [PubMed]
Huitzil S, Sandoval-Motta S, Frank A, Aldana M.Modeling the role of the microbiome in evolution. Front Physiol.2018;9:1836. [DOI] [PubMed] [PMC]
Moeller AH, Li Y, Mpoudi Ngole E, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, et al. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci U S A.2014;111:16431–5. [DOI] [PubMed] [PMC]
Dinan TG, Cryan JF.Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol.2017;595:489–503. [DOI] [PubMed] [PMC]
Wolfe BE.Using cultivated microbial communities to dissect microbiome assembly: challenges, limitations, and the path ahead. mSystems.2018;3:e00161–17. [DOI] [PubMed] [PMC]
Hirschberg S, Gisevius B, Duscha A, Haghikia A.Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int J Mol Sci.2019;20:3109. [DOI]
Roy Sarkar S, Banerjee S.Gut microbiota in neurodegenerative disorders. J Neuroimmunol.2019;328:98–104. [DOI] [PubMed]
Quigley EMM.Gut bacteria in health and disease. Gastroenterol Hepatol.2013;9:560–9. [PubMed] [PMC]
Zhu X, Han Y, Du J, Liu R, Jin K, Yi W.Microbiota-gut-brain axis and the central nervous system. Oncotarget.2017;8:53829–38. [DOI] [PubMed] [PMC]
Lankelma JM, Nieuwdorp M, de Vos WM, Wiersinga WJ.The gut microbiota in internal medicine: implications for health and disease. Neth J Med.2015;73:61–8. [PubMed]
Spielman LJ, Gibson DL, Klegeris A.Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int.2018;120:149–63. [DOI] [PubMed]
Leser TD, Mølbak L.Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol.2009;11:2194–206. [DOI] [PubMed]
Marques TM, Wall R, Ross RP, Fitzgerald GF, Ryan CA, Stanton C.Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol.2010;21:149–56. [DOI] [PubMed]
Tilocca B, Pieroni L, Soggiu A, Britti D, Bonizzi L, Roncada P, et al. Gut-brain axis and neurodegeneration: state-of-the-art of meta-omics sciences for microbiota characterization. Int J Mol Sci.2020;21:4045. [DOI]
Cenit MC, Sanz Y, Codoñer-Franch P.Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol.2017;23:5486–98. [DOI] [PubMed] [PMC]
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature.2012;486:207–14. [DOI] [PubMed] [PMC]
Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al.; MetaHIT Consortium. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol.2014;32:834–41. [DOI] [PubMed]
Joshi D, Roy S, Banerjee S.Prebiotics: a functional food in health and disease. In: Natural products and drug discovery. An integrated approach. Elsevier; 2018. pp. 507–23.
Sommer F, Bäckhed F.The gut microbiota--masters of host development and physiology. Nat Rev Microbiol.2013;11:227–38. [DOI] [PubMed]
Chandra S, Alam MT, Dey J, Sasidharan BCP, Ray U, Srivastava AK, et al. Healthy gut, healthy brain: the gut microbiome in neurodegenerative disorders. Curr Top Med Chem.2020;20:1142–53. [DOI] [PubMed]
Bienenstock J, Kunze W, Forsythe P.Microbiota and the gut-brain axis. Nutr Rev.2015;73Suppl 1:28–31. [DOI] [PubMed]
Martín R, Langella P.Emerging health concepts in the probiotics field: streamlining the definitions. Front Microbiol.2019;10:1047. [DOI] [PubMed] [PMC]
Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell.2013;155:1451–63. [DOI] [PubMed] [PMC]
Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol.2004;558:263–75. [DOI] [PubMed] [PMC]
Farzi A, Fröhlich EE, Holzer P.Gut microbiota and the neuroendocrine system. Neurotherapeutics.2018;15:5–22. [DOI] [PubMed] [PMC]
Tang F, Zhu G, Jiao Z, Ma C, Wang B.Self-reported adherence in patients with epilepsy who missed their medications and reasons for nonadherence in China. Epilepsy Behav.2013;27:85–9. [DOI] [PubMed]
Macpherson AJ, Harris NL.Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol.2004;4:478–85. [DOI] [PubMed]
Neufeld KAM, Kang N, Bienenstock J, Foster JA.Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol.2011;4:492–4. [DOI] [PubMed] [PMC]
Sampson TR, Mazmanian SK.Control of brain development, function, and behavior by the microbiome. Cell Host Microbe.2015;17:565–76. [DOI] [PubMed] [PMC]
Ridaura V, Belkaid Y.Gut microbiota: the link to your second brain. Cell.2015;161:193–4. [DOI] [PubMed]
Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell.2015;161:264–76. [DOI] [PubMed] [PMC]
O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF.Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res.2015;277:32–48. [DOI] [PubMed]
Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF.Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol.2016;19:pyw020. [DOI] [PubMed] [PMC]
Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev.2019;99:1877–2013. [DOI] [PubMed]
Fülling C, Dinan TG, Cryan JF.Gut microbe to brain signaling: what happens in vagus… Neuron. 2019;101:998–1002. [DOI]
Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF.Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry.2015;78:e7–9. [DOI] [PubMed]
Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med.2014;6:263ra158. [DOI]
Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci.2015;18:965–77. [DOI] [PubMed] [PMC]
Cryan JF, Dinan TG.Gut microbiota: microbiota and neuroimmune signalling—Metchnikoff to microglia. Nat Rev Gastroenterol Hepatol.2015;12:494–6. [DOI] [PubMed]
Ait-Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, et al. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil.2014;26:510–20. [DOI] [PubMed]
Rondanelli M, Giacosa A, Faliva MA, Perna S, Allieri F, Castellazzi AM.Review on microbiota and effectiveness of probiotics use in older. World J Clin Cases.2015;3:156–62. [DOI] [PubMed] [PMC]
Köhler C, Maes M, Slyepchenko A, Berk M, Solmi M, Lanctôt KL, et al. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer’s disease. Curr Pharm Des.2016;22:6152–66. [DOI] [PubMed]
Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord.2017;32:1264–1310. [DOI] [PubMed] [PMC]
Lanciego JL, Luquin N, Obeso JA.Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med.2012;2:a009621. [DOI] [PubMed] [PMC]
Blesa J, Lanciego JL, Obeso JA.Editorial: Parkinson’s disease: cell vulnerability and disease progression. Front Neuroanat.2015;9:125. [DOI] [PubMed] [PMC]
Nair AT, Ramachandran V, Joghee NM, Antony S, Ramalingam G.Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: a critical review. J Neurogastroenterol Motil.2018;24:30–42. [DOI] [PubMed] [PMC]
Blauwendraat C, Heilbron K, Vallerga CL, Bandres-Ciga S, von Coelln R, Pihlstrøm L, et al.; International Parkinson’s Disease Genomics Consortium (IPDGC). Parkinson’s disease age at onset genome-wide association study: defining heritability, genetic loci, and α-synuclein mechanisms. Mov Disord.2019;34:866–75. [DOI] [PubMed] [PMC]
Franco R, Navarro G, Martínez-Pinilla E.Lessons on differential neuronal-death-vulnerability from familial cases of Parkinson’s and Alzheimer’s diseases. Int J Mol Sci.2019;20:3297 [DOI]
Franco R, Rivas-Santisteban R, Reyes-Resina I, Navarro G, Martínez-Pinilla E.Microbiota and other preventive strategies and non-genetic risk factors in Parkinson’s disease. Front Aging Neurosci.2020;12:12. [DOI] [PubMed] [PMC]
Li Y, Cookson MR.Proteomics; applications in familial Parkinson’s disease. J Neurochem.2019;151:446–58. [DOI] [PubMed] [PMC]
Hornykiewicz O.The discovery of dopamine deficiency in the parkinsonian brain. J Neural Transm Suppl.2006;70:9–15. [DOI]
Birkmayer W, Hornykiewicz O.Der L-Dioxyphenylalanin (= L-DOPA)-Effekt beim Parkinson-Syndrom des Menschen: zur Pathogenese und Behandlung der Parkinson-Akinese. Arch für Psychiatr und Nervenkrankheiten.1962;203:560–74. German. [DOI]
Birkmayer W, Hornykiewicz O.Weitere experimentelle Untersuchungen über L-DOPA beim Parkinson-Syndrom und Reserpin-Parkinsonismus. Arch für Psychiatr und Nervenkrankheiten.1964;206:367–81. German. [DOI]
Cacabelos R.Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci.2017;18:551. [DOI]
Armstrong MJ, Okun MS.Diagnosis and treatment of Parkinson disease: a review. JAMA.2020;323: 548–60. [DOI] [PubMed]
Guridi J, Rodriguez-Rojas R, Carmona-Abellán M, Parras O, Becerra V, Lanciego JL.History and the future challenges of the subthalamic nucleus as surgical target: review article. Mov Disord.2018;33:1540–50. [DOI] [PubMed]
Boertien JM, Pereira PAB, Aho VTE, Scheperjans F.Increasing comparability and utility of gut microbiome studies in Parkinson’s disease: a systematic review. J Parkinsons Dis.2019;9:S297–312. [DOI] [PubMed] [PMC]
Houser MC, Tansey MG.The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis?NPJ Parkinsons Dis. 2017;3:3. [DOI] [PubMed] [PMC]
Parashar A, Udayabanu M.Gut microbiota: implications in Parkinson’s disease. Parkinsonism Relat Disord.2017;38:1–7. [DOI] [PubMed] [PMC]
Braak H, de Vos RAI, Bohl J, Del Tredici K.Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett.2006;396:67–72. [DOI] [PubMed]
Svensson E, Horváth-Puhó E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol.2015;78:522–9. [DOI] [PubMed]
Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord.2015;30:350–8. [DOI] [PubMed]
Lubomski M, Tan AH, Lim SY, Holmes AJ, Davis RL, Sue CM.Parkinson’s disease and the gastrointestinal microbiome. J Neurol.2020;267:2507–23. [DOI] [PubMed]
Guo S, Al-Sadi R, Said HM, Ma TY.Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol.2013;182:375–87. [DOI] [PubMed] [PMC]
Song S, Liu J, Zhang F, Hong JS.Norepinephrine depleting toxin DSP-4 and LPS alter gut microbiota and induce neurotoxicity in α-synuclein mutant mice. Sci Rep.2020;10:15054. [DOI] [PubMed] [PMC]
Singh NK, Banerjee BD, Bala K, Chhillar M, Chhillar N.Gene-gene and gene-environment interaction on the risk of Parkinson’s disease. Curr Aging Sci.2014;7:101–9. [DOI] [PubMed]
Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord.2015;30:1351–60. [DOI] [PubMed]
Pal GD, Shaikh M, Forsyth CB, Ouyang B, Keshavarzian A, Shannon KM.Abnormal lipopolysaccharide binding protein as marker of gastrointestinal inflammation in Parkinson disease. Front Neurosci.2015;9:306. [DOI] [PubMed] [PMC]
Milan Manani S, Virzí GM, Giuliani A, Baretta M, Corradi V, De Cal M, et al. Lipopolysaccharide evaluation in peritoneal dialysis patients with peritonitis. Blood Purif.2020;49:434–9. [DOI] [PubMed]
Del Tredici K, Braak H.A not entirely benign procedure: progression of Parkinson’s disease. Acta Neuropathol.2008;115:379–84. [DOI] [PubMed]
Mukherjee A, Biswas A, Das SK.Gut dysfunction in Parkinson’s disease. World J Gastroenterol.2016;22:5742–52. [DOI] [PubMed] [PMC]
Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Björklund T, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol.2014;128:805–20. [DOI] [PubMed]
Uemura N, Yagi H, Uemura MT, Hatanaka Y, Yamakado H, Takahashi R.Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol Neurodegener.2018;13:21. [DOI] [PubMed] [PMC]
Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell.2016;167:1469–80.e12. [DOI] [PubMed] [PMC]
Shen X, Yang H, Wu Y, Zhang D, Jiang H.Meta-analysis: association of Helicobacter pylori infection with Parkinson’s diseases. Helicobacter.2017;22:e12398. [DOI]
Fasano A, Bove F, Gabrielli M, Petracca M, Zocco MA, Ragazzoni E, et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord.2013;28:1241–9. [DOI] [PubMed]
Tan AH, Mahadeva S, Thalha AM, Gibson PR, Kiew CK, Yeat CM, et al. Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord.2014;20:535–40. [DOI] [PubMed]
Çamcí G, Oğuz S.Association between Parkinson’s disease and Helicobacter pylori. J Clin Neurol.2016;12:147–50. [DOI] [PubMed] [PMC]
Dardiotis E, Tsouris Z, Mentis AFA, Siokas V, Michalopoulou A, Sokratous M, et al. H. pylori and Parkinson’s disease: meta-analyses including clinical severity. Clin Neurol Neurosurg.2018;175:16–24. [DOI] [PubMed]
Anderson G, Seo M, Berk M, Carvalho AF, Maes M.Gut permeability and microbiota in Parkinson’s disease: role of depression, tryptophan catabolites, oxidative and nitrosative stress and melatonergic pathways. Curr Pharm Des.2016;22:6142–51. [DOI] [PubMed]
Gazerani P.Probiotics for Parkinson’s disease. Int J Mol Sci.2019;20:4121. [DOI]
Cassani E, Privitera G, Pezzoli G, Pusani C, Madio C, Iorio L, et al. Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol Dietol.2011;57:117–21. [PubMed]
Georgescu D, Ancusa OE, Georgescu LA, Ionita I, Reisz D.Nonmotor gastrointestinal disorders in older patients with Parkinson’s disease: is there hope? Clin Interv Aging. 2016;11:1601–8. [DOI] [PubMed] [PMC]
Tamtaji OR, Taghizadeh M, Daneshvar Kakhaki R, Kouchaki E, Bahmani F, Borzabadi S, et al. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr.2019;38:1031–5. [DOI] [PubMed]
Srivastav S, Neupane S, Bhurtel S, Katila N, Maharjan S, Choi H, et al. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J Nutr Biochem.2019;69:73–86. [DOI] [PubMed]
Surwase SN, Jadhav JP.Bioconversion of L-tyrosine to L-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids.2011;41:495–506. [DOI] [PubMed]
van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk G, et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun.2019;10:310. [DOI] [PubMed] [PMC]
Barichella M, Pacchetti C, Bolliri C, Cassani E, Iorio L, Pusani C, et al. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. Neurology.2016;87:1274–80. [DOI] [PubMed]
Gentile F, Doneddu PE, Riva N, Nobile-Orazio E, Quattrini A.Diet, microbiota and brain health: unraveling the network intersecting metabolism and neurodegeneration. Int J Mol Sci.2020;21:7471. [DOI]
Gubert C, Kong G, Renoir T, Hannan AJ.Exercise, diet and stress as modulators of gut microbiota: implications for neurodegenerative diseases. Neurobiol Dis.2020;134:104621. [DOI] [PubMed]
Chen C, Zhang BB, Hu AL, Li H, Liu J, Zhang F.Protective role of cinnabar and realgar in Hua-Feng-Dan against LPS plus rotenone-induced neurotoxicity and disturbance of gut microbiota in rats. J Ethnopharmacol.2020;247:112299. [DOI] [PubMed]
Hu AL, Song S, Li Y, Xu SF, Zhang F, Li C, et al. Mercury sulfide-containing Hua-Feng-Dan and 70W (Rannasangpei) protect against LPS plus MPTP-induced neurotoxicity and disturbance of gut microbiota in mice. J Ethnopharmacol.2020;254:112674. [DOI] [PubMed]
Huang H, Xu H, Luo Q, He J, Li M, Chen H, et al. Fecal microbiota transplantation to treat Parkinson’s disease with constipation: a case report. Medicine (Baltimore).2019;98:e16163. [DOI] [PubMed] [PMC]
Liu J, Xu F, Nie Z, Shao L.Gut microbiota approach—a new strategy to treat Parkinson’s disease. Front Cell Infect Microbiol.2020;10:570658. [DOI] [PubMed] [PMC]
Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E.The gut microbiome in human neurological disease: a review. Ann Neurol.2017;81:369–82. [DOI] [PubMed]
Khoruts A, Hoffmann DE, Palumbo FB.The impact of regulatory policies on the future of fecal microbiota transplantation. J Law Med Ethics.2019;47:482–504. [DOI] [PubMed]
2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 16:391–460. [DOI]
Möller HJ, Graeber MB.The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatry Clin Neurosci.1998;248:111–22. [DOI] [PubMed]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT.Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med2011;1:a006189. [DOI] [PubMed] [PMC]
Nussbaum RL, Ellis CE.Alzheimer’s disease and Parkinson’s disease. N Engl J Med.2003;348:1356–64. [DOI] [PubMed]
Ganguly G, Chakrabarti S, Chatterjee U, Saso L.Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des Devel Ther. 2017;11:797–810. [DOI] [PubMed] [PMC]
Sweeney MD, Sagare AP, Zlokovic BV.Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol.2018;14:133–50. [DOI] [PubMed] [PMC]
Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV.Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta.2016;1862:887–900. [DOI] [PubMed] [PMC]
Boscher E, Husson T, Quenez O, Laquerrière A, Marguet F, Cassinari K, et al. Copy number variants in miR-138 as a potential risk factor for early-onset Alzheimer’s disease. J Alzheimers Dis.2019;68:1243–55. [DOI] [PubMed]
Ramirez Aguilar L, Acosta-Uribe J, Giraldo MM, Moreno S, Baena A, Alzate D, et al. Genetic origin of a large family with a novel PSEN1 mutation (Ile416Thr). Alzheimers Dement.2019;15:709–19. [DOI] [PubMed] [PMC]
Cummings JL, Tong G, Ballard C.Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J Alzheimers Dis.2019;67:779–94. [DOI] [PubMed] [PMC]
Bachurin SO, Gavrilova SI, Samsonova A, Barreto GE, Aliev G.Mild cognitive impairment due to Alzheimer disease: contemporary approaches to diagnostics and pharmacological intervention. Pharmacol Res.2018;129:216–26. [DOI] [PubMed]
van Dyck CH.Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry.2018;83:311–9. [DOI] [PubMed] [PMC]
Wischik CM, Harrington CR, Storey JMD.Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol.2014;88:529–39. [DOI] [PubMed]
Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard E 4th, Taylor CM, Welsh DA, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry.2015;77:607–15. [DOI] [PubMed] [PMC]
Zhan G, Yang N, Li S, Huang N, Fang X, Zhang J, et al. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging (Albany NY).2018;10:1257–67. [DOI] [PubMed] [PMC]
Miró Ll, Moretó M, Amat C, Polo J, Pérez-Bosque A.Aging effects on gut microbiota in SAMP8 mice. MDPI.2020;61:25. [DOI]
Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep.2017;7:13537. [DOI] [PubMed] [PMC]
Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis.2018;63:1337–46. [DOI] [PubMed]
Park AM, Omura S, Fujita M, Sato F, Tsunoda I.Helicobacter pylori and gut microbiota in multiple sclerosis versus Alzheimer’s disease: 10 pitfalls of microbiome studies. Clin Exp Neuroimmunol.2017;8:215–32. [DOI] [PubMed] [PMC]
Roubaud-Baudron C, Krolak-Salmon P, Quadrio I, Mégraud F, Salles N.Impact of chronic Helicobacter pylori infection on Alzheimer’s disease: preliminary results. Neurobiol Aging.2012;33:1009.e11–9. [DOI]
Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging.2017;49:60–8. [DOI] [PubMed]
Sobol CV.Role of microbiota in neurodegenerative diseases. Russ J Dev Biol.2018;49:297–313. [DOI]
Zhao Y, Dua P, Lukiw WJ.Microbial sources of amyloid and relevance to amyloidogenesis and Alzheimer’s disease (AD). J Alzheimers Dis Parkinsonism.2015;5:177. [DOI] [PubMed] [PMC]
Hill JM, Lukiw WJ.Microbial-generated amyloids and Alzheimer’s disease (AD). Front Aging Neurosci.2015;7:9. [DOI] [PubMed] [PMC]
Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL, et al. Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies. Mol Psychiatry.2018;23:1948–56. [DOI] [PubMed]
Asti A, Gioglio L.Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation?J Alzheimers Dis.2014;39:169–79. [DOI] [PubMed]
Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep.2017;7:41802. [DOI] [PubMed] [PMC]
Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep.2016;6:30028. [DOI] [PubMed] [PMC]
Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, et al. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep.2017;7:13510. [DOI] [PubMed] [PMC]
Yang X, Yu D, Xue L, Li H, Du J.Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B.2020;10:475–87. [DOI] [PubMed] [PMC]
Yamamoto K, Kushida M, Tsuduki T.The effect of dietary lipid on gut microbiota in a senescence-accelerated prone mouse model (SAMP8). Biogerontology.2018;19:367–83. [DOI] [PubMed]
Wang J, Lei X, Xie Z, Zhang X, Cheng X, Zhou W, et al. CA-30, an oligosaccharide fraction derived from Liuwei Dihuang decoction, ameliorates cognitive deterioration via the intestinal microbiome in the senescence-accelerated mouse prone 8 strain. Aging (Albany NY).2019;11:3463–86. [DOI] [PubMed] [PMC]
Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S, et al. SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol.2018;55:7987–8000. [DOI] [PubMed] [PMC]
Azm SAN, Djazayeri A, Safa M, Azami K, Ahmadvand B, Sabbaghziarani F, et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats. Appl Physiol Nutr Metab.2018;43:718–26. [DOI] [PubMed]
Nimgampalle M, Yellamma K.Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J Clin Diagn Res.2017;11:KC01-5. [DOI] [PMC] [PubMed]
Distrutti E, O’Reilly JA, McDonald C, Cipriani S, Renga B, Lynch MA, et al. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS One.2014;9:e106503. [DOI] [PubMed] [PMC]
Yen CH, Wang CH, Wu WT, Chen HL.Fructo-oligosaccharide improved brain β-amyloid, β-secretase, cognitive function, and plasma antioxidant levels in D-galactose-treated Balb/cJ mice. Nutr Neurosci.2017;20:228–37. [DOI] [PubMed]
Ono K, Hirohata M, Yamada M.Ferulic acid destabilizes preformed β-amyloid fibrils in vitro. Biochem Biophys Res Commun.2005;336:444–9. [DOI] [PubMed]
Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun.2018;9:3555. [DOI] [PubMed] [PMC]
Han D, Li Z, Liu T, Yang N, Li Y, He J, et al. Prebiotics regulation of intestinal microbiota attenuates cognitive dysfunction induced by surgery stimulation in APP/PS1 mice. Aging Dis.2020;11:1029–45. [DOI] [PubMed] [PMC]
Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci.2016;8:256. [DOI] [PubMed] [PMC]
Agahi A, Hamidi GA, Daneshvar R, Hamdieh M, Soheili M, Alinaghipour A, et al. Does severity of Alzheimer’s disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front Neurol.2018;9:662. [DOI] [PubMed] [PMC]
Tamtaji OR, Heidari-soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, et al. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: a randomized, double-blind, controlled trial. Clin Nutr.2019;38:2569–75. [DOI] [PubMed]
Ton AMM, Campagnaro BP, Alves GA, Aires R, Côco LZ, Arpini CM, et al. Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxid Med Cell Longev. 2020:2638703.
Vendrik KEW, Ooijevaar RE, de Jong PRC, Laman JD, van Oosten BW, van Hilten JJ, et al. Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol.2020;10:98. [DOI] [PubMed] [PMC]
Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry.2019;9:189. [DOI] [PubMed] [PMC]
Holsinger RMD, Elangovan S.Neuroprotective effects of fecal microbiota transplantation in a mouse model of Alzheimer’s disease. Alzheimers Dement.2020;16:e046523. [DOI]
Hazan S.Rapid improvementin Alzheimer’s diseasesymptomsfollowing fecal microbiota transplantation: a case report. J Int Med Res.2020;48:300060520925930. [DOI]
Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet.1993;4:398–403. [DOI] [PubMed]
Ross SE, Johnson KB, Siek KA, Gordon JS, Khan DU, Haverhals LM.Two complementary personal medication management applications developed on a common platform: case report. J Med Internet Res.2011;13:e45. [DOI] [PubMed] [PMC]
Tabrizi SJ, Scahill RI, Durr A, Roos RA, Leavitt BR, Jones R, et al. Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol.2011;10:31–42. [DOI] [PubMed]
Cattaneo E, Zuccato C, Tartari M.Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci.2005;6:919–30. [DOI] [PubMed]
Wolf RC, Thomann PA, Thomann AK, Vasic N, Wolf ND, Landwehrmeyer GB, et al. Brain structure in preclinical Huntington’s disease: a multi-method approach. Neurodegener Dis.2013;12:13–22. [DOI] [PubMed]
Ross CA, Tabrizi SJ.Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol.2011;10:83–98. [DOI] [PubMed]
Roze E, Saudou F, Caboche J.Pathophysiology of Huntington’s disease: from huntingtin functions to potential treatments. Curr Opin Neurol.2008;21:497–503. [DOI] [PubMed]
Frank S.Treatment of Huntington’s disease. Neurotherapeutics.2014;11:153–60. [DOI] [PubMed] [PMC]
Creus-Muncunill J, Guisado-Corcoll A, Venturi V, Pantano L, Escaramís G, Garcíade Herreros M, et al. Huntington’s disease brain-derived small RNAs recapitulate associated neuropathology in mice. Acta Neuropathol.2021;141:565–84. [DOI] [PubMed]
van der Burg JMM, Winqvist A, Aziz NA, Maat-Schieman MLC, Roos RAC, Bates GP, et al. Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice. Neurobiol Dis.2011;44:1–8. [DOI] [PubMed]
van der Burg JMM, Gardiner SL, Ludolph AC, Landwehrmeyer GB, Roos RAC, Aziz NA.Body weight is a robust predictor of clinical progression in Huntington disease. Ann Neurol.2017;82:479–83. [DOI] [PubMed]
Verwaest KA, Vu TN, Laukens K, Clemens LE, Nguyen HP, Van Gasse B, et al. 1H NMR based metabolomics of CSF and blood serum: a metabolic profile for a transgenic rat model of Huntington disease. Biochim Biophys Acta.2011;1812:1371–9. [DOI] [PubMed]
Kong G, Cao KAL, Judd LM, Li S, Renoir T, Hannan AJ.Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis.2020;135:104268. [DOI] [PubMed]
Stan TL, Soylu-Kucharz R, Burleigh S, Prykhodko O, Cao L, Franke N, et al. Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington’s disease. Sci Rep.2020;10:18270. [DOI] [PubMed] [PMC]
Radulescu CI, Garcia-Miralles M, Sidik H, Bardile CF, Yusof NABM, Lee HU, et al. Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease. Neurobiol Dis.2019;127:65–75. [DOI] [PubMed]
Wasser CI, Mercieca EC, Kong G, Hannan AJ, McKeown SJ, Glikmann-Johnston Y, et al. Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance and clinical outcomes. Brain Commun.2020;2:fcaa110. [DOI] [PubMed] [PMC]
Rea K, Dinan TG, Cryan JF.Gut microbiota: a perspective for psychiatrists. Neuropsychobiology.2020;79:50–62. [DOI] [PubMed]
Kim YK, Shin C.The microbiota-gut-brain axis in neuropsychiatric disorders: pathophysiological mechanisms and novel treatments. Curr Neuropharmacol.2018;16:559–73. [DOI] [PubMed] [PMC]
Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One.2010;5:e10667. [DOI] [PubMed] [PMC]
Biagi E, Rampelli S, Turroni S, Quercia S, Candela M, Brigidi P.The gut microbiota of centenarians: signatures of longevity in the gut microbiota profile. Mech Ageing Dev.2017;165:180–4. [DOI] [PubMed]
Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol.2016;16:90. [DOI] [PubMed] [PMC]
Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF.Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation.2019;16:53. [DOI] [PubMed] [PMC]
Arora K, Green M, Prakash S.The microbiome and Alzheimer’s disease: potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front Bioeng Biotechnol.2020;8:537847. [DOI] [PubMed] [PMC]