Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges?Am J Hum Genet. 2021;108:764–85. [DOI] [PubMed] [PMC]
Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform.Annu Rev Pharmacol Toxicol. 2010;50:259–93. [DOI] [PubMed]
Southwell AL, Skotte NH, Bennett CF, Hayden MR. Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases.Trends Mol Med. 2012;18:634–43. [DOI] [PubMed]
Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, et al. Targeting Huntingtin Expression in Patients with Huntington’s Disease.N Engl J Med. 2019;380:2307–16. [DOI] [PubMed]
Boak L, McColgan P. Understanding the treatment and post-treatment effects of tominersen in the Phase III GENERATION HD1 study. Genentech USA, Inc.; 2022.
Keller CG, Shin Y, Monteys AM, Renaud N, Beibel M, Teider N, et al. An orally available, brain penetrant, small molecule lowers huntingtin levels by enhancing pseudoexon inclusion.Nat Commun. 2022;13:1150. [DOI] [PubMed] [PMC]
Tran H, Moazami MP, Yang H, McKenna-Yasek D, Douthwright CL, Pinto C, et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide.Nat Med. 2022;28:117–24. [DOI] [PubMed] [PMC]
McLoughlin HS, Gundry K, Rainwater O, Schuster KH, Wellik IG, Zalon AJ, et al. Antisense Oligonucleotide Silencing Reverses Abnormal Neurochemistry in Spinocerebellar Ataxia 3 Mice.Ann Neurol. 2023;94:658–71. [DOI] [PubMed] [PMC]
Hauser S, Helm J, Kraft M, Korneck M, Hübener-Schmid J, Schöls L. Allele-specific targeting of mutant ataxin-3 by antisense oligonucleotides in SCA3-iPSC-derived neurons.Mol Ther Nucleic Acids. 2021;27:99–108. [DOI] [PubMed] [PMC]
Moore LR, Rajpal G, Dillingham IT, Qutob M, Blumenstein KG, Gattis D, et al. Evaluation of Antisense Oligonucleotides Targeting ATXN3 in SCA3 Mouse Models.Mol Ther Nucleic Acids. 2017;7:200–10. [DOI] [PubMed] [PMC]
Alves S, Nascimento-Ferreira I, Auregan G, Hassig R, Dufour N, Brouillet E, et al. Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease.PLoS One. 2008;3:e3341. [DOI] [PubMed] [PMC]
Figueiredo F, Sárkány Z, Silva A, Vilasboas-Campos D, Maciel P, Teixeira-Castro A, et al. Drug repurposing of dopaminergic drugs to inhibit ataxin-3 aggregation.Biomed Pharmacother. 2023;165:115258. [DOI] [PubMed]
Hirunagi T, Sahashi K, Meilleur KG, Katsuno M. Nucleic Acid-Based Therapeutic Approach for Spinal and Bulbar Muscular Atrophy and Related Neurological Disorders.Genes (Basel). 2022;13:109. [DOI] [PubMed] [PMC]
Jauvin D, Chrétien J, Pandey SK, Martineau L, Revillod L, Bassez G, et al. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice.Mol Ther Nucleic Acids. 2017;7:465–74. [DOI] [PubMed] [PMC]
Carrell ST, Carrell EM, Auerbach D, Pandey SK, Bennett CF, Dirksen RT, et al. Dmpk gene deletion or antisense knockdown does not compromise cardiac or skeletal muscle function in mice.Hum Mol Genet. 2016;25:4328–38. [DOI] [PubMed] [PMC]
Yadava RS, Yu Q, Mandal M, Rigo F, Bennett CF, Mahadevan MS. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3’UTR RNA.Hum Mol Genet. 2020;29:1440–53. [DOI] [PubMed] [PMC]
Ait Benichou S, Jauvin D, De Serres-Bérard T, Pierre M, Ling KK, Bennett CF, et al. Antisense oligonucleotides as a potential treatment for brain deficits observed in myotonic dystrophy type 1.Gene Ther. 2022;29:698–709. [DOI] [PubMed] [PMC]
Stoodley J, Vallejo-Bedia F, Seone-Miraz D, Debasa-Mouce M, Wood MJA, Varela MA. Application of Antisense Conjugates for the Treatment of Myotonic Dystrophy Type 1.Int J Mol Sci. 2023;24:2697. [DOI] [PubMed] [PMC]
Bisset DR, Stepniak-Konieczna EA, Zavaljevski M, Wei J, Carter GT, Weiss MD, et al. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy.Hum Mol Genet. 2015;24:4971–83. [DOI] [PubMed] [PMC]
Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model.Proc Natl Acad Sci U S A. 2005;102:5820–5. [DOI] [PubMed] [PMC]
Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice.Mol Ther. 2005;12:618–33. [DOI] [PubMed] [PMC]
Wang YL, Liu W, Wada E, Murata M, Wada K, Kanazawa I. Clinico-pathological rescue of a model mouse of Huntington’s disease by siRNA.Neurosci Res. 2005;53:241–9. [DOI] [PubMed]
Drouet V, Perrin V, Hassig R, Dufour N, Auregan G, Alves S, et al. Sustained effects of nonallele-specific Huntingtin silencing.Ann Neurol. 2009;65:276–85. [DOI] [PubMed]
Hirunagi T, Sahashi K, Tachikawa K, Leu AI, Nguyen M, Mukthavaram R, et al. Selective suppression of polyglutamine-expanded protein by lipid nanoparticle-delivered siRNA targeting CAG expansions in the mouse CNS.Mol Ther Nucleic Acids. 2021;24:1–10. [DOI] [PubMed] [PMC]
Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, et al. Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs.Neuron. 2016;90:535–50. [DOI] [PubMed] [PMC]
Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang YJ, Prudencio M, et al. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis.Sci Transl Med. 2017;9:eaai7866. [DOI] [PubMed] [PMC]
Hu J, Rigo F, Prakash TP, Corey DR. Recognition of c9orf72 Mutant RNA by Single-Stranded Silencing RNAs.Nucleic Acid Ther. 2017;27:87–94. [DOI] [PubMed] [PMC]
Tabrizi SJ, Estevez-Fraga C, van Roon-Mom WMC, Flower MD, Scahill RI, Wild EJ, et al. Potential disease-modifying therapies for Huntington’s disease: lessons learned and future opportunities.Lancet Neurol. 2022;21:645–58. [DOI] [PubMed] [PMC]
Evers MM, Miniarikova J, Juhas S, Vallès A, Bohuslavova B, Juhasova J, et al. AAV5-miHTT Gene Therapy Demonstrates Broad Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington’s Disease Minipig Model.Mol Ther. 2018;26:2163–77. [DOI] [PubMed] [PMC]
Miniarikova J, Evers MM, Konstantinova P. Translation of MicroRNA-Based Huntingtin-Lowering Therapies from Preclinical Studies to the Clinic.Mol Ther. 2018;26:947–62. [DOI] [PubMed] [PMC]
Cerro-Herreros E, González-Martínez I, Moreno-Cervera N, Overby S, Pérez-Alonso M, Llamusí B, et al. Therapeutic Potential of AntagomiR-23b for Treating Myotonic Dystrophy.Mol Ther Nucleic Acids. 2020;21:837–49. [DOI] [PubMed] [PMC]
Martier R, Liefhebber JM, García-Osta A, Miniarikova J, Cuadrado-Tejedor M, Espelosin M, et al. Targeting RNA-Mediated Toxicity in C9orf72 ALS and/or FTD by RNAi-Based Gene Therapy.Mol Ther Nucleic Acids. 2019;16:26–37. [DOI] [PubMed] [PMC]
Monteys AM, Ebanks SA, Keiser MS, Davidson BL. CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo.Mol Ther. 2017;25:12–23. [DOI] [PubMed] [PMC]
Alkanli SS, Alkanli N, Ay A, Albeniz I. CRISPR/Cas9 Mediated Therapeutic Approach in Huntington’s Disease.Mol Neurobiol. 2023;60:1486–98. [DOI] [PubMed] [PMC]
Shin JW, Hong EP, Park SS, Choi DE, Zeng S, Chen RZ, et al. PAM-altering SNP-based allele-specific CRISPR-Cas9 therapeutic strategies for Huntington’s disease.Mol Ther Methods Clin Dev. 2022;26:547–61. [DOI] [PubMed] [PMC]
Shin JW, Hong EP, Park SS, Choi DE, Seong IS, Whittaker MN, et al. Allele-specific silencing of the gain-of-function mutation in Huntington’s disease using CRISPR/Cas9.JCI Insight. 2022;7:e141042. [DOI] [PubMed] [PMC]
Lo Scrudato M, Poulard K, Sourd C, Tomé S, Klein AF, Corre G, et al. Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice.Mol Ther. 2019;27:1372–88. [DOI] [PubMed] [PMC]
Sahel DK, Vora LK, Saraswat A, Sharma S, Monpara J, D’Souza AA, et al. CRISPR/Cas9 Genome Editing for Tissue-Specific In Vivo Targeting: Nanomaterials and Translational Perspective.Adv Sci (Weinh). 2023;10:e2207512. [DOI] [PubMed] [PMC]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.Nature. 2016;533:420–4. [DOI] [PubMed] [PMC]
Shirguppe S, Gapinske M, Swami D, Gosstola N, Acharya P, Miskalis A, et al. In vivo CRISPR base editing for treatment of Huntington’s disease.bioRxiv 2024.07.05.602282 [Preprint]. 2024 [cited 2024 Sep 21]. Available from: https://www.biorxiv.org/content/10.1101/2024.07.05.602282v1 [DOI] [PubMed] [PMC]
Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease.J Clin Invest. 2017;127:2719–24. [DOI] [PubMed] [PMC]
Reddy K, Jenquin JR, Cleary JD, Berglund JA. Mitigating RNA Toxicity in Myotonic Dystrophy using Small Molecules.Int J Mol Sci. 2019;20:4017. [DOI] [PubMed] [PMC]
Chen JL, Taghavi A, Frank AJ, Fountain MA, Choudhary S, Roy S, et al. NMR structures of small molecules bound to a model of a CUG RNA repeat expansion.Bioorg Med Chem Lett. 2024;111:129888. [DOI] [PubMed]
Bahat A, Itzhaki E, Weiss B, Tolmasov M, Tsoory M, Kuperman Y, et al. Lowering mutant huntingtin by small molecules relieves Huntington’s disease symptoms and progression.EMBO Mol Med. 2024;16:523–46. [DOI] [PubMed] [PMC]
Seo H, Sonntag KC, Kim W, Cattaneo E, Isacson O. Proteasome activator enhances survival of Huntington’s disease neuronal model cells.PLoS One. 2007;2:e238. [DOI] [PubMed] [PMC]
Jeon J, Kim W, Jang J, Isacson O, Seo H. Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington’s disease YAC128 mice.Neuroscience. 2016;324:20–8. [DOI] [PubMed]
Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans.FASEB J. 2015;29:611–22. [DOI] [PubMed] [PMC]
Bhat KP, Yan S, Wang C, Li S, Li XJ. Differential ubiquitination and degradation of huntingtin fragments modulated by ubiquitin-protein ligase E3A.Proc Natl Acad Sci U S A. 2014;111:5706–11. [DOI] [PubMed] [PMC]
Jana NR, Zemskov EA, Gh W, Nukina N. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release.Hum Mol Genet. 2001;10:1049–59. [DOI] [PubMed]
Lu B, Al-Ramahi I, Valencia A, Wang Q, Berenshteyn F, Yang H, et al. Identification of NUB1 as a suppressor of mutant Huntington toxicity via enhanced protein clearance.Nat Neurosci. 2013;16:562–70. [DOI] [PubMed]
Hjerpe R, Bett JS, Keuss MJ, Solovyova A, McWilliams TG, Johnson C, et al. UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome.Cell. 2016;166:935–49. [DOI] [PubMed] [PMC]
Gray JT, inventor. Nucleic acid molecules containing spacers and methods of use thereof.United States patent US20180305715A1. 2018 Oct 25.
Batra R, Nelles DA, Roth DM, Krach F, Nutter CA, Tadokoro T, et al. The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1.Nat Biomed Eng. 2021;5:157–68. [DOI] [PubMed] [PMC]
Pascual-Gilabert M, López-Castel A, Artero R. Myotonic dystrophy type 1 drug development: A pipeline toward the market.Drug Discov Today. 2021;26:1765–72. [DOI] [PubMed] [PMC]
Haenfler JM, Skariah G, Rodriguez CM, Monteiro da Rocha A, Parent JM, Smith GD, et al. Targeted Reactivation of FMR1 Transcription in Fragile X Syndrome Embryonic Stem Cells.Front Mol Neurosci. 2018;11:282. [DOI] [PubMed] [PMC]
Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU, et al. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease.Nat Commun. 2017;8:14405. [DOI] [PubMed] [PMC]
Kitakaze K, Taniuchi S, Kawano E, Hamada Y, Miyake M, Oyadomari M, et al. Cell-based HTS identifies a chemical chaperone for preventing ER protein aggregation and proteotoxicity.Elife. 2019;8:e43302. [DOI] [PubMed] [PMC]
Cortez L, Sim V. The therapeutic potential of chemical chaperones in protein folding diseases.Prion. 2014;8:197–202. [DOI] [PubMed] [PMC]
Douglas PM, Summers DW, Cyr DM. Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways.Prion. 2009;3:51–8. [DOI] [PubMed] [PMC]
Mattoo RUH, Goloubinoff P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins.Cell Mol Life Sci. 2014;71:3311–25. [DOI] [PubMed] [PMC]
Cohen SIA, Arosio P, Presto J, Kurudenkandy FR, Biverstal H, Dolfe L, et al. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers.Nat Struct Mol Biol. 2015;22:207–13. [DOI] [PubMed] [PMC]
Kung HC, Lin KJ, Kung CT, Lin TK. Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson’s Disease.Biomedicines. 2021;9:918. [DOI] [PubMed] [PMC]
Hunter J, Rivero-Arias O, Angelov A, Kim E, Fotheringham I, Leal J. Epidemiology of fragile X syndrome: a systematic review and meta-analysis.Am J Med Genet A. 2014;164A:1648–58. [DOI] [PubMed]
Medina A, Mahjoub Y, Shaver L, Pringsheim T. Prevalence and Incidence of Huntington’s Disease: An Updated Systematic Review and Meta-Analysis.Mov Disord. 2022;37:2327–35. [DOI] [PubMed] [PMC]
Lamont R, King M, King A, Schellenberg K, Pfeffer G. Higher than expected incident cases of spinal bulbar muscular atrophy in western Canada.Brain. 2024;147:e43–4. [DOI] [PubMed] [PMC]
Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study.Lancet Neurol. 2013;12:435–42. [DOI] [PubMed] [PMC]
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases.Signal Transduct Target Ther. 2024;9:78. [DOI] [PubMed] [PMC]
Tycko J, Myer VE, Hsu PD. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity.Mol Cell. 2016;63:355–70. [DOI] [PubMed] [PMC]
Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis.Neuron. 2012;74:1031–44. [DOI] [PubMed] [PMC]
Wu H, Wahane A, Alhamadani F, Zhang K, Parikh R, Lee S, et al. Nephrotoxicity of marketed antisense oligonucleotide drugs.Curr Opin Toxicol. 2022;32:100373. [DOI] [PubMed] [PMC]
Verma IM, Somia N. Gene therapy - promises, problems and prospects.Nature. 1997;389:239–42. [DOI] [PubMed]
Scahill RI, Wild EJ, Tabrizi SJ. Biomarkers for Huntington’s disease: an update.Expert Opin Med Diagn. 2012;6:371–5. [DOI] [PubMed]
Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. Don’t edit the human germ line.Nature. 2015;519:410–1. [DOI] [PubMed]
Van de Roovaart HJ, Nguyen N, Veenstra TD. Huntington’s Disease Drug Development: A Phase 3 Pipeline Analysis.Pharmaceuticals (Basel). 2023;16:1513. [DOI] [PubMed] [PMC]