The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This study was funded by the CIBERehd [EHD15PI05/2016] and “Fondo de Investi-gaciones Sanitarias, Instituto de Salud Carlos III”, Spain [PI19/00819, co-funded by European Regional Development Fund/European Social Fund, “Investing in your future”] Spanish Ministry of Economy, Industry and Competitiveness [SAF2016-75197-R] “Junta de Castilla y Leon” [SA074P20] AECC Scientific Foundation (2017/2020), Spain; “Proyectos de Investigación. Modalidad C2”, University of Salamanca [18.K137/463AC01 and 18.K140/463AC01] “Centro Internacional sobre el Envejecimiento” [OLD-HEPAMARKER, 0348_CIE_6_E], Spain and Fundación University of Salamanca, Spain [PC-TCUE18-20_051] Fundació Marato TV3 [Ref. 201916-31]. Juan Cordoba Fellowship from the Spanish Association for the Study of the Liver [Fellowship Grant 2021 (AEHH)]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol. 2021;18:835–56. [DOI] [PubMed]
Kalas MA, Chavez L, Leon M, Taweesedt PT, Surani S.Abnormal liver enzymes: a review for clinicians. World J Hepatol. 2021;13:1688–98. [DOI] [PubMed] [PMC]
Pugh RNH, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R.Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60:646–9. [DOI] [PubMed]
Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PCJ.A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000;31:864–71. [DOI] [PubMed]
Tulchinsky M, Colletti PM, Allen TW.Hepatobiliary scintigraphy in acute cholecystitis. Semin Nucl Med. 2012;42:84–100. [DOI] [PubMed]
Chang HY, Liu B, Wang YZ, Wang WJ, Wang W, Li D, et al. Percutaneous transhepatic cholangiography versus endoscopic retrograde cholangiography for the pathological diagnosis of suspected malignant bile duct strictures. Medicine (Baltimore). 2020;99:e19545. [DOI] [PubMed] [PMC]
Voegeli DR, Crummy AB, Weese JL.Percutaneous transhepatic cholangiography, drainage, and biopsy in patients with malignant biliary obstruction. An alternative to surgery. Am J Surg. 1985;150:243–7. [DOI] [PubMed]
Rassam F, Olthof PB, Richardson H, van Gulik TM, Bennink RJ.Practical guidelines for the use of technetium-99m mebrofenin hepatobiliary scintigraphy in the quantitative assessment of liver function. Nucl Med Commun. 2019;40:297–307. [DOI] [PubMed]
Ørntoft NW, Munk OL, Frisch K, Ott P, Keiding S, Sørensen M.Hepatobiliary transport kinetics of the conjugated bile acid tracer 11C-CSar quantified in healthy humans and patients by positron emission tomography. J Hepatol. 2017;67:321–7. [DOI] [PubMed]
Ferraioli G, Soares Monteiro LB.Ultrasound-based techniques for the diagnosis of liver steatosis. World J Gastroenterol. 2019;25:6053–62. [DOI] [PubMed] [PMC]
Ferraioli G, Meloni MF.Contrast-enhanced ultrasonography of the liver using SonoVue. Ultrasonography. 2018;37:25–35. [DOI] [PubMed] [PMC]
Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41:1126–47. [DOI] [PubMed]
Do RKG, Rusinek H, Taouli B.Dynamic contrast-enhanced MR imaging of the liver: current status and future directions. Magn Reson Imaging Clin N Am. 2009;17:339–49. [DOI] [PubMed]
Manduca A, Bayly PJ, Ehman RL, Kolipaka A, Royston TJ, Sack I, et al. MR elastography: principles, guidelines, and terminology. Magn Reson Med. 2021;85:2377–90. [DOI] [PubMed] [PMC]
Nadarevic T, Giljaca V, Colli A, Fraquelli M, Casazza G, Miletic D, et al. Computed tomography for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease. Cochrane Database Syst Rev. 2021;CD013362. [DOI] [PMC]
De Gaetano AM, Rufini V, Castaldi P, Gatto AM, Filograna L, Giordano A, et al. Clinical applications of 18F-FDG PET in the management of hepatobiliary and pancreatic tumors. Abdom Imaging. 2012;37:983–1003. [DOI] [PubMed]
Negrin JA, Zanzi I, Margouleff D.Hepatobiliary scintigraphy after biliary tract surgery. Semin Nucl Med. 1995;25:28–35. [DOI] [PubMed]
Gupta M, Choudhury PS, Singh S, Hazarika D.Liver functional volumetry by Tc-99m mebrofenin hepatobiliary scintigraphy before major liver resection: a game changer. Indian J Nucl Med. 2018;33:277–83. [DOI] [PubMed] [PMC]
Stockmann M, Lock JF, Malinowski M, Niehues SM, Seehofer D, Neuhaus P.The LiMAx test: a new liver function test for predicting postoperative outcome in liver surgery. HPB (Oxford). 2010;12:139–46. [DOI] [PubMed] [PMC]
Cammann S, Oldhafer F, Ringe KI, Ramackers W, Timrott K, Kleine M, et al. Use of the liver maximum function capacity test (LiMAx) for the management of liver resection in cirrhosis - a case of hypopharyngeal cancer liver metastasis. Int J Surg Case Rep. 2017;39:140–4. [DOI] [PubMed] [PMC]
Sánchez-Fernández P, Martínez-Ordaz JL, Sánchez-Reyes K, Ferat-Osorio E.Usefulness of hepatobiliary scintigraphy in the follow-up of patients with biliary reconstruction. Rev Med Inst Mex Seguro Soc. 2015;53:538–45. Spanish. [PubMed]
van Roekel C, Reinders MTM, van der Velden S, Lam MGEH, Braat MNGJA.Hepatobiliary imaging in liver-directed treatments. Semin Nucl Med. 2019;49:227–36. [DOI] [PubMed]
Foley WD, Jochem RJ.Computed tomography. Focal and diffuse liver disease. Radiol Clin North Am. 1991;29:1213–33. [DOI] [PubMed]
Stephens DH, Sheedy PF, Hattery RR, MacCarty RL.Computed tomography of the liver. AJR Am J Roentgenol. 1977;128:579–90. [DOI] [PubMed]
Tamm EP, Silverman PM.“Computed tomography of the liver”—a commentary. AJR Am J Roentgenol. 2006;186:1217–9. [DOI] [PubMed]
Marolf AJ.Diagnostic imaging of the hepatobiliary system: an update. Vet Clin North Am Small Anim Pract. 2017;47:555–68. [DOI] [PubMed]
Tsurusaki M, Sofue K, Hori M, Sasaki K, Ishii K, Murakami T, et al. Dual-energy computed tomography of the liver: uses in clinical practices and applications. Diagnostics (Basel). 2021;11:161. [DOI] [PubMed] [PMC]
Sharma B, Martin A, Zerizer I.Positron emission tomography-computed tomography in liver imaging. Semin Ultrasound CT MR. 2013;34:66–80. [DOI] [PubMed]
O’Neill EK, Cogley JR, Miller FH.The ins and outs of liver imaging. Clin Liver Dis. 2015;19:99–121. [DOI] [PubMed]
Vallejo Desviat P, Martínez De Vega V, Recio Rodríguez M, Jiménez De La Peña M, Carrascoso Arranz J.Diffusion MRI in the study of hepatic lesions. Cir Esp. 2013;91:9–16. Spanish. [DOI] [PubMed]
Idilman IS, Li J, Yin M, Venkatesh SK.MR elastography of liver: current status and future perspectives. Abdom Radiol (NY). 2020;45:3444–62. [DOI] [PubMed] [PMC]
Iwashita T, Doi S, Yasuda I.Endoscopic ultrasound-guided biliary drainage: a review. Clin J Gastroenterol. 2014;7:94–102. [DOI] [PubMed] [PMC]
Salerno R, Davies SEC, Mezzina N, Ardizzone S.Comprehensive review on EUS-guided biliary drainage. World J Gastrointest Endosc. 2019;11:354–64. [DOI] [PubMed] [PMC]
Li Z, Li TF, Ren JZ, Li WC, Ren JL, Shui SF, et al. Value of percutaneous transhepatic cholangiobiopsy for pathologic diagnosis of obstructive jaundice: analysis of 826 cases. Acta Radiol. 2017;58:3–9. [DOI] [PubMed]
Mohkam K, Malik Y, Derosas C, Isaac J, Marudanayagam R, Mehrzad H, et al. Percutaneous transhepatic cholangiographic endobiliary forceps biopsy versus endoscopic ultrasound fine needle aspiration for proximal biliary strictures: a single-centre experience. HPB. 2017;19:530–7. [DOI] [PubMed]
Fohlen A, Bazille C, Menahem B, Jegonday MA, Dupont B, Le Pennec V, et al. Transhepatic forceps biopsy combined with biliary drainage in obstructive jaundice: safety and accuracy. Eur Radiol. 2019;29:2426–35. [DOI] [PubMed]
Hayat U, Bakker C, Dirweesh A, Khan MY, Adler DG, Okut H, et al. EUS-guided versus percutaneous transhepatic cholangiography biliary drainage for obstructed distal malignant biliary strictures in patients who have failed endoscopic retrograde cholangiopancreatography: a systematic review and meta-analysis. Endosc Ultrasound. 2022;11:4–16. [DOI] [PubMed] [PMC]
Balachandran S, Nealon WH, Goodman P.Operative cholangiography performed during laparoscopic cholecystectomy. Semin Ultrasound CT MR. 1993;14:325–30. [DOI] [PubMed]
Lim SH, Tan HTA, Shelat VG.Comparison of indocyanine green dye fluorescent cholangiography with intra-operative cholangiography in laparoscopic cholecystectomy: a meta-analysis. Surg Endosc. 2021;35:1511–20. [DOI] [PubMed]
Huang X, Chen Y, Shao M, Li C, Zhang A, Dong J, et al. The value of 99mTc-labeled galactosyl human serum albumin single-photon emission computerized tomography/computed tomography on regional liver function assessment and posthepatectomy failure prediction in patients with hilar cholangiocarcinoma. Nucl Med Commun. 2020;41:1128–35. [DOI] [PubMed]
Labeur TA, Cieslak KP, Van Gulik TM, Takkenberg RB, van der Velden S, Lam MGEH, et al. The utility of 99mTc-mebrofenin hepatobiliary scintigraphy with SPECT/CT for selective internal radiation therapy in hepatocellular carcinoma. Nucl Med Commun. 2020;41:740–9. [DOI] [PubMed]
Wang H, Cao Y.Spatially resolved assessment of hepatic function using 99mTc-IDA SPECT. Med Phys. 2013;40:092501. [DOI] [PubMed] [PMC]
Markowicz-Piasecka M, Dębski P, Mikiciuk-Olasik E, Sikora J.Synthesis and biocompatibility studies of new iminodiacetic acid derivatives. Molecules. 2017;22:2265. [DOI] [PubMed] [PMC]
Yon M, Billotey C, Marty JD.Gadolinium-based contrast agents: from gadolinium complexes to colloidal systems. Int J Pharm. 2019;569:118577. [DOI] [PubMed]
Ye F, Liu J, Ouyang H.Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)- enhanced magnetic resonance imaging and multidetector-row computed tomography for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94:e1157. [DOI] [PubMed] [PMC]
Shimada S, Kamiyama T, Kakisaka T, Orimo T, Nagatsu A, Asahi Y, et al. Impact of gadolinium-ethoxybenzyl- diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging on the prognosis of hepatocellular carcinoma after surgery. JGH Open. 2020;5:41–9. [DOI] [PubMed] [PMC]
Welle CL, Guglielmo FF, Venkatesh SK.MRI of the liver: choosing the right contrast agent. Abdom Radiol (NY). 2020;45:384–92. [DOI] [PubMed]
Feng Q, Guan S, Zhao JR, Zhao XY, Zhang CC, Wang L, et al. Gadobenate dimeglumine-enhanced magnetic resonance imaging can accurately predict the severity of esophageal varices and portal vein pressure in patients with hepatitis B cirrhosis. J Dig Dis. 2020;21:104–11. [DOI] [PubMed]
Liu C, Sun Y, Yang Y, Feng Y, Xie X, Qi L, et al. Gadobenate dimeglumine-enhanced biliary imaging from the hepatobiliary phase can predict progression in patients with liver cirrhosis. Eur Radiol. 2021;31:5840–50. [DOI] [PubMed]
Delbeke D, Martin WH, Sandler MP, Chapman WC, Wright JK Jr, Pinson CW.Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg. 1998;133:510–6. [DOI] [PubMed]
He YX, Guo QY.Clinical applications and advances of positron emission tomography with fluorine-18- fluorodeoxyglucose (18F-FDG) in the diagnosis of liver neoplasms. Postgrad Med J. 2008;84:246–51. [DOI] [PubMed]
Tan GJS, Berlangieri SU, Lee ST, Scott AM.FDG PET/CT in the liver: lesions mimicking malignancies. Abdom Imaging. 2014;39:187–95. [DOI] [PubMed]
Ben-Haim S, Ell P.18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med. 2009;50:88–99. [DOI] [PubMed]
Almuhaideb A, Papathanasiou N, Bomanji J.18F-FDG PET/CT imaging in oncology. Ann Saudi Med. 2011;31:3–13. [DOI] [PubMed] [PMC]
Georgakopoulos A, Pianou N, Kelekis N, Chatziioannou S.Impact of 18F-FDG PET/CT on therapeutic decisions in patients with colorectal cancer and liver metastases. Clin Imaging. 2013;37:536–41. [DOI] [PubMed]
Lee SM, Kim HS, Lee S, Lee JW.Emerging role of 18F-fluorodeoxyglucose positron emission tomography for guiding management of hepatocellular carcinoma. World J Gastroenterol. 2019;25:1289–306. [DOI] [PubMed] [PMC]
Weber WA, Ziegler SI, Thödtmann R, Hanauske AR, Schwaiger M.Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med. 1999;40:1771–7. [PubMed]
Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508. [DOI] [PubMed]
Lee JW, Paeng JC, Kang KW, Kwon HW, Suh KS, Chung JK, et al. Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for hepatocellular carcinoma. J Nucl Med. 2009;50:682–7. [DOI] [PubMed]
Sørensen M, Mikkelsen KS, Frisch K, Bass L, Bibby BM, Keiding S.Hepatic galactose metabolism quantified in humans using 2-18F-fluoro-2-deoxy-D-galactose PET/CT. J Nucl Med. 2011;52:1566–72. [DOI] [PubMed] [PMC]
Keiding S, Sørensen M, Frisch K, Gormsen LC, Munk OL.Quantitative PET of liver functions. Am J Nucl Med Mol Imaging. 2018;8:73–85. [PubMed] [PMC]
Khan MA, Combs CS, Brunt EM, Lowe VJ, Wolverson MK, Solomon H, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol. 2000;32:792–7. [DOI] [PubMed]
Yoon KT, Kim JK, Kim DY, Ahn SH, Lee JD, Yun M, et al. Role of 18F-fluorodeoxyglucose positron emission tomography in detecting extrahepatic metastasis in pretreatment staging of hepatocellular carcinoma. Oncology. 2007;72:104–10. [DOI] [PubMed]
Sørensen M, Frisch K, Bender D, Keiding S.The potential use of 2-[18F]fluoro-2-deoxy-D-galactose as a PET/CT tracer for detection of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2011;38:1723–31. [DOI] [PubMed] [PMC]
Kołodziej M, Bober B, Saracyn M, Kamiński G.The role of PET/CT with 11C-methionine in contemporary nuclear medicine. Wiad Lek. 2020;73:2076–9. [DOI] [PubMed]
Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J.11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol. 2008;10:1–18. [DOI] [PubMed]
Lapa C, Garcia-Velloso MJ, Lückerath K, Samnick S, Schreder M, Otero PR, et al. 11C-methionine-PET in multiple myeloma: a combined study from two different institutions. Theranostics. 2017;7:2956–64. [DOI] [PubMed] [PMC]
D’souza MM, Sharma R, Jaimini A, Saw SK, Singh D, Mondal A.Combined 18F-FDG and 11C-methionine PET/CT scans in a case of metastatic hepatocellular carcinoma. Indian J Nucl Med. 2014;29:171–4. [DOI] [PubMed] [PMC]
Harris SM, Davis JC, Snyder SE, Butch ER, Vavere AL, Kocak M, et al. Evaluation of the biodistribution of 11C-methionine in children and young adults. J Nucl Med. 2013;54:1902–8. [DOI] [PubMed] [PMC]
Morales-Lozano MI, Viering O, Samnick S, Rodriguez-Otero P, Buck AK, Marcos-Jubilar M, et al. 18F-FDG and 11C-methionine PET/CT in newly diagnosed multiple myeloma patients: comparison of volume-based PET biomarkers. Cancers (Basel). 2020;12:1042. [DOI] [PubMed] [PMC]
Kuang Y, Salem N, Tian H, Kolthammer JA, Corn DJ, Wu C, et al. Imaging lipid synthesis in hepatocellular carcinoma with [methyl-11C]choline: correlation with in vivo metabolic studies. J Nucl Med. 2011;52:98–106. [DOI] [PubMed]
Dang YZ, Zhang DX, Wang GD, Zhao HL, Huang SG, Li J.Safety and efficacy of the metabolic profiling of the BIMRT utilizing 18F FDG PET-CT. Technol Cancer Res Treat. 2020;19:1533033820960723. [DOI] [PubMed] [PMC]
Lee YH, Wu MR, Hsiao JK.Organic anion transporting polypeptide 1B1 is a potential reporter for dual MR and optical imaging. Int J Mol Sci. 2021;22:8797. [DOI] [PubMed] [PMC]
Portnoy E, Gurina M, Magdassi S, Eyal S.Evaluation of the near infrared compound indocyanine green as a probe substrate of p-glycoprotein. Mol Pharm. 2012;9:3595–601. [DOI] [PubMed]
Namikawa T, Sato T, Hanazaki K.Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green. Surg Today. 2015;45:1467–74. [DOI] [PubMed]
Dutta HK, Rao DN, Gupta DK.Indocyanine green clearance test to evaluate liver function in rat model of extrahepatic biliary atresia. Afr J Paediatr Surg. 2018;15:5–9. [DOI] [PubMed] [PMC]
Schwarz C, Plass I, Fitschek F, Punzengruber A, Mittlböck M, Kampf S, et al. The value of indocyanine green clearance assessment to predict postoperative liver dysfunction in patients undergoing liver resection. Sci Rep. 2019;9:8421. [DOI] [PubMed] [PMC]
Wakabayashi T, Cacciaguerra AB, Abe Y, Bona ED, Nicolini D, Mocchegiani F, et al. Indocyanine green fluorescence navigation in liver surgery: a systematic review on dose and timing of administration. Ann Surg. 2022;275:1025–34. [DOI] [PubMed]
Purich K, Dang JT, Poonja A, Sun WYL, Bigam D, Birch D, et al. Intraoperative fluorescence imaging with indocyanine green in hepatic resection for malignancy: a systematic review and meta-analysis of diagnostic test accuracy studies. Surg Endosc. 2020;34:2891–903. [DOI] [PubMed]
Qi C, Zhang H, Chen Y, Su S, Wang X, Huang X, et al. Effectiveness and safety of indocyanine green fluorescence imaging-guided hepatectomy for liver tumors: a systematic review and first meta-analysis. Photodiagnosis Photodyn Ther. 2019;28:346–53. [DOI] [PubMed]
Hu Y, Fu T, Zhang Z, Hua L, Zhao Q, Zhang W.Does application of indocyanine green fluorescence imaging enhance clinical outcomes in liver resection? A meta-analysis. Photodiagnosis Photodyn Ther. 2021;36:102554. [DOI] [PubMed]
Majlesara A, Golriz M, Hafezi M, Saffari A, Stenau E, Maier-Hein L, et al. Indocyanine green fluorescence imaging in hepatobiliary surgery. Photodiagnosis Photodyn Ther. 2017;17:208–15. [DOI] [PubMed]
Zhang YM, Shi R, Hou JC, Liu ZR, Cui ZL, Li Y, et al. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. J Cancer Res Clin Oncol. 2017;143:51–8. [DOI] [PubMed] [PMC]
Osayi SN, Wendling MR, Drosdeck JM, Chaudhry UI, Perry KA, Noria SF, et al. Near-infrared fluorescent cholangiography facilitates identification of biliary anatomy during laparoscopic cholecystectomy. Surg Endosc. 2015;29:368–75. [DOI] [PubMed] [PMC]
Kramer W, Wess G.Bile acid transport systems as pharmaceutical targets. Eur J Clin Invest. 1996;26:715–32. [DOI] [PubMed]
Ørntoft NW, Gormsen LC, Keiding S, Munk OL, Ott P, Sørensen M.Hepatic bile acid transport increases in the postprandial state: a functional 11C-CSar PET/CT study in healthy humans. JHEP Rep. 2021;3:100288. [DOI] [PubMed] [PMC]
Schacht AC, Sørensen M, Munk OL, Frisch K.Radiosynthesis of N-11C-methyl-taurine-conjugated bile acids and biodistribution studies in pigs by PET/CT. J Nucl Med. 2016;57:628–33. [DOI] [PubMed]
Testa A, Dall’Angelo S, Mingarelli M, Augello A, Schweiger L, Welch A, et al. Design, synthesis, in vitro characterization and preliminary imaging studies on fluorinated bile acid derivatives as PET tracers to study hepatic transporters. Bioorg Med Chem. 2017;25:963–76. [DOI] [PubMed]
Chong HS, Chen Y, Kang CS, Sun X, Wu N.Novel 64Cu-radiolabeled bile acid conjugates for targeted PET imaging. Bioorg Med Chem Lett. 2015;25:1082–5. [DOI] [PubMed] [PMC]
Blazquez AG, Briz O, Romero MR, Rosales R, Monte MJ, Vaquero J, et al. Characterization of the role of ABCG2 as a bile acid transporter in liver and placenta. Mol Pharmacol. 2012;81:273–83. [DOI] [PubMed]
Mendoza ME, Monte MJ, Serrano MA, Pastor-Anglada M, Stieger B, Meier PJ, et al. Physiological characteristics of allo-cholic acid. J Lipid Res. 2003;44:84–92. [DOI] [PubMed]
Leuenberger M, Häusler S, Höhn V, Euler A, Stieger B, Lochner M.Characterization of novel fluorescent bile salt derivatives for studying human bile salt and organic anion transporters. J Pharmacol Exp Ther. 2021;377:346–57. [DOI] [PubMed]
Rohacova J, Marin ML, Martínez-Romero A, O’Connor JE, Gomez-Lechon MJ, Donato MT, et al. Photophysical characterization and flow cytometry applications of cholylamidofluorescein, a fluorescent bile acid scaffold. Photochem Photobiol Sci. 2008;7:860–6. [DOI] [PubMed]
Annaert P, Ye ZW, Stieger B, Augustijns P.Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica. 2010;40:163–76. [DOI] [PubMed]
Monte MJ, Rosales R, Macias RI, Iannota V, Martinez-Fernandez A, Romero MR, et al. Cytosol-nucleus traffic and colocalization with FXR of conjugated bile acids in rat hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2008;295:G54–62. [DOI] [PubMed]
Monte MJ, Dominguez S, Palomero MF, Macias RI, Marin JJG.Further evidence of the usefulness of bile acids as molecules for shuttling cytostatic drugs toward liver tumors. J Hepatol. 1999;31:521–8. [DOI] [PubMed]
Lozano E, Monte MJ, Briz O, Hernández-Hernández A, Banales JM, Marin JJG, et al. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium-dependent bile acid transporter (ASBT). J Control Release. 2015;216:93–102. [DOI] [PubMed]
Milkiewicz P, Mills CO, Hubscher SG, Cardenas R, Cardenas T, Williams A, et al. Visualization of the transport of primary and secondary bile acids across liver tissue in rats: in vivo study with fluorescent bile acids. J Hepatol. 2001;34:4–10. [DOI] [PubMed]
Milkiewicz P, Baiocchi L, Mills CO, Ahmed M, Khalaf H, Keogh A, et al. Plasma clearance of cholyl-lysyl-fluorescein: a pilot study in humans. J Hepatol. 1997;27:1106–9. [DOI] [PubMed]
Milkiewicz P, Saksena S, Cardenas T, Mills CO, Elias E.Plasma elimination of cholyl-lysyl-fluorescein (CLF): a pilot study in patients with liver cirrhosis. Liver. 2000;20:330–4. [DOI] [PubMed]
Mills CO, Milkiewicz P, Saraswat V, Elias E.Cholyllysyl fluroscein and related lysyl fluorescein conjugated bile acid analogues. Yale J Biol Med. 1997;70:447–57. [PubMed] [PMC]
Barber JA, Stahl SH, Summers C, Barrett G, Park BK, Foster JR, et al. Quantification of drug-induced inhibition of canalicular cholyl-l-lysyl-fluorescein excretion from hepatocytes by high content cell imaging. Toxicol Sci. 2015;148:48–59. [DOI] [PubMed]
Vartak N, Guenther G, Joly F, Damle-Vartak A, Wibbelt G, Fickel J, et al. Intravital dynamic and correlative imaging of mouse livers reveals diffusion-dominated canalicular and flow-augmented ductular bile flux. Hepatology. 2021;73:1531–50. [DOI] [PubMed]
Crawford JM, Lin YJ, Teicher BA, Narciso JP, Gollan JL.Physical and biological properties of fluorescent dansylated bile salt derivatives: the role of steroid ring hydroxylation. Biochim Biophys Acta. 1991;1085:223–34. [DOI] [PubMed]
Rohacova J, Sastre G, Marin ML, Miranda MA.Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin. J Phys Chem B. 2011;115:10518–24. [DOI] [PubMed]
Filipe HAL, Pokorná Š, Hof M, Amaro M, Loura LMS.Orientation of nitro-group governs the fluorescence lifetime of nitrobenzoxadiazole (NBD)-labeled lipids in lipid bilayers. Phys Chem Chem Phys. 2019;21:1682–8. [DOI] [PubMed]
Rohacova J, Marín ML, Martinez-Romero A, Diaz L, O’Connor JE, Gomez-Lechon MJ, et al. Fluorescent benzofurazan-cholic acid conjugates for in vitro assessment of bile acid uptake and its modulation by drugs. ChemMedChem. 2009;4:466–72. [PubMed]