Changes in mitochondrial lipid composition in different disease models of MASLD, ARLD, and HCC

LipidsMitochondrial changesDisease outcomesDisease model
Fatty acids↑ mitochondrial fatty acid β-oxidation at early stagesARLD [66]
MASLD [67]
Mice
↓ mitochondrial fatty acid β-oxidation at advanced stagesARLD [6870]
MASH [67, 68, 71]
Mice
↓ nicotinamide adenine dinucleotide (NAD+/NADH) levels in mitochondriaARLD [69]
MASLD [68]
↑ carnitine palmitoyltransferase-1 in mitochondrial membraneMASLD [67]Mice
↑ lipid peroxidation in mitochondriaARLD [72]
MASLD [71]
MASH [71]
Rat
HepG2
↓ ETC coupling (CI, CIV)MASLD [71]
MASH [67, 71]
Mice
↓ mitophagy mediated by NLRP3 activation and AMPK inhibitionMASLD [73, 74]Mice
Cells
↑ mitochondrial attachment to lipid droplets because of diacylglycerol-O-acyltransferase-2 increased activityMASLD [67]
↑ lipid peroxidation in mitochondriaARLD [72]
MASLD [71]
MASH [71]
Rat
HepG2
↓ mesh due to altered mitochondrial membrane compositionARLD [75, 76]
MASLD [68]
Rat
GlycerideDiacylglycerides↑ pyroptosis via NLRP3 activationMASH [77]Mice
Human
Triglycerides↑ mitochondrial oxidative fluxMASLD [68]
↓ membrane fluidity if the cholesterol/triglycerides ratio is alteredARLD [76]Rat
↑ tumor anabolismHCC [78]
PhospholipidCardiolipin↑ NLRP3 and apoptosis by CL peroxidation and redistribution from IMM to OMMARLD [69, 75, 76]
MASLD [68]
Rat
↓ ETC complex activity (CI, CIII, CIV, and ADP/ATP carrier)ARLD [69]
MASLD [67, 71, 79]
Rat
↑ mPTP opening and cytochrome c release by Bcl-2 family proteins interaction (Bax)ARLD [80]
MASLD [67, 71]
MASH [80]
Rat
Phosphatidylcholine↓ mitochondrial ROS production by CYP2E1 inhibitionARLD [72]
↑apoptosis due to changes in mitochondrial phosphatidylcholine redox state and through JNK activationARLD [76]
MASLD [68, 79]
MASH [68, 77]
Mice
Rat
Human
Phosphatidylethanolamine↓ membrane fluidityARLD [76]
SphingolipidCeramide↑mitochondrial ROS generation and apoptosis by TNFα/Fas signalingARLD [70, 75, 81]
MASLD [68, 73]
MASH [81]
PMH
↓ ETC (CIII)ARLD [70]
MASH [67]
Mice
↓ mitochondrial fatty acid β-oxidationMASLD [68]
MASH [67]
Mice
↓ mitophagy through NLRP3 activation    MASLD [73]
↓ mitochondrial membrane permeabilizationHCC [82]Cell line
↑ mitochondrial depolarizationMASLD [82]
Ganglioside↑ ETC (CIII)MASH [67]
SterolCholesterol↑ mitochondrial ROS productionARLD [75, 83]
MASH [83]
Cells
Human
↓ ETC (CI)MASLD [84]
ARLD [69]
HCC [83]
↑survival by a defective assembly of the apoptosomeHCC [80, 83]Rat
↓ mitochondrial membrane permeabilizationARLD [75, 76, 83]
MASLD [84]
MASH [67, 83, 85]
HCC [80, 83]
HepG2
Mice
Rats
Monkeys
Human
↓ mitochondrial protein transport (SLC25A11) by TNFα and Fas-induced apoptosisARLD [69, 75, 80, 83, 86]
MASH [80, 83, 85, 87]
PMH
Mice
Human
↑ mitochondrial fusion (megamitochondria)ARLD [69]Mice
↑ mPTP by JNK-dependent proinflammatory pathwayARLD [75]
MASH [68]
PMH
↑ alternative (acidic) bile synthesis pathwayMASLD [84]
MASH [88, 89]
HCC [88]
PRH
Mice
Lipid droplets↓ motility and fusion rates of peridroplets mitochondriaMASLD [67]
↑ megamitochondria through fusion-fission rates alterationARLD [66]Mice
↑ function of cytosolic mitochondriaMASLD [90]
HCC [90]

MASLD: metabolic dysfunction-associated steatotic liver disease; ARLD: alcohol-related liver disease; HCC: hepatocellular carcinoma; MASH: metabolic-associated steatohepatitis; ETC: electron transport chain; NLRP3: NLR family pyrin domain containing 3; IMM: inner mitochondrial membrane; OMM: outer mitochondrial membrane; mPTP: mitochondrial permeability transition pore; ROS: reactive oxygen species; JNK: c-Jun N-terminal kinase; TNFα: tumor necrosis factor-alpha