MR: Funding acquisition, Writing—original draft, Writing—review & editing. CR and RM: Data curation, Writing—review & editing. MC and JM: Conceptualization, Data curation, Writing—original draft, Writing—review & editing.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This research was funded by Spanish Ministry of Science and Innovation [PID2023-150539OB-I00], funded by MCIN/AEI/10.13039/501100011033 to MC, and the ICREA Academia Prize funded by ICREA Foundation to MC. This research was funded by Instituto de Salud Carlos III (ISCIII) [AC24/00028] to JM. Grants were from the Catalan Agency for the Management of University and Research Grants (AGAUR), specifically [2021-SGR-01328] to JM and [2021-SGR-00350] to MC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Argilés G, Tabernero J, Labianca R, Hochhauser D, Salazar R, Iveson T, et al.; ESMO Guidelines Committee. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann Oncol. 2020;31:1291–305. [DOI] [PubMed]
Capdevila J, Gómez MA, Guillot M, Páez D, Pericay C, Safont MJ, et al. SEOM-GEMCAD-TTD clinical guidelines for localized rectal cancer (2021).Clin Transl Oncol. 2022;24:646–57. [DOI] [PubMed] [PMC]
Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints.Cancer Discov. 2015;5:43–51. [DOI] [PubMed] [PMC]
Westcott PMK, Sacks NJ, Schenkel JM, Ely ZA, Smith O, Hauck H, et al. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer.Nat Cancer. 2021;2:1071–85. [DOI] [PubMed] [PMC]
Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, et al. Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities.Cell. 2019;177:1035–49.e19. [DOI] [PubMed] [PMC]
Mallett S, Timmer A, Sauerbrei W, Altman DG. Reporting of prognostic studies of tumour markers: a review of published articles in relation to REMARK guidelines.Br J Cancer. 2010;102:173–80. [DOI] [PubMed] [PMC]
Hayes DF, Sauerbrei W, McShane LM. REMARK guidelines for tumour biomarker study reporting: a remarkable history.Br J Cancer. 2023;128:443–5. [DOI] [PubMed] [PMC]
Cañellas-Socias A, Cortina C, Hernando-Momblona X, Palomo-Ponce S, Mulholland EJ, Turon G, et al. Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells.Nature. 2022;611:603–13. [DOI] [PubMed] [PMC]
Parida PK, Marquez-Palencia M, Nair V, Kaushik AK, Kim K, Sudderth J, et al. Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness.Cell Metab. 2022;34:90–105.e7. [DOI] [PubMed] [PMC]
Parida PK, Marquez-Palencia M, Ghosh S, Khandelwal N, Kim K, Nair V, et al. Limiting mitochondrial plasticity by targeting DRP1 induces metabolic reprogramming and reduces breast cancer brain metastases.Nat Cancer. 2023;4:893–907. [DOI] [PubMed] [PMC]
Cascone T, Awad MM, Spicer JD, He J, Lu S, Sepesi B, et al.; CheckMate 77T Investigators. Perioperative Nivolumab in Resectable Lung Cancer.N Engl J Med. 2024;390:1756–69. [DOI] [PubMed]
Provencio M, Nadal E, González-Larriba JL, Martínez-Martí A, Bernabé R, Bosch-Barrera J, et al. Perioperative Nivolumab and Chemotherapy in Stage III Non-Small-Cell Lung Cancer.N Engl J Med. 2023;389:504–13. [DOI] [PubMed]
Blank CU, Lucas MW, Scolyer RA, van de Wiel BA, Menzies AM, Lopez-Yurda M, et al. Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma.N Engl J Med. 2024;391:1696–708. [DOI] [PubMed]
Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al.; KEYNOTE-522 Investigators. Pembrolizumab for Early Triple-Negative Breast Cancer.N Engl J Med. 2020;382:810–21. [DOI] [PubMed]
Sinicrope FA, Ou FS, Zemla T, Nixon AB, Mody K, Levasseur A, et al. Randomized trial of standard chemotherapy alone or combined with atezolizumab as adjuvant therapy for patients with stage III colon cancer and deficient mismatch repair (ATOMIC, Alliance A021502).J Clin Oncol. 2019;37:e15169. [DOI]
Chalabi M, van den Dungen LDW, Verschoor YL, Balduzzi S, de Gooyer PGM, Kok N, et al. LBA24 Neoadjuvant immunotherapy in locally advanced MMR-deficient colon cancer: 3-year disease-free survival from NICHE-2.Ann Oncol. 2024;35:S1217–8. [DOI]
Chalabi M, Fanchi LF, Dijkstra KK, Van den Berg JG, Aalbers AG, Sikorska K, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers.Nat Med. 2020;26:566–76. [DOI] [PubMed]
Morton D, Seymour M, Magill L, Handley K, Glasbey J, Glimelius B, et al.; FOxTROT Collaborative Group. Preoperative Chemotherapy for Operable Colon Cancer: Mature Results of an International Randomized Controlled Trial.J Clin Oncol. 2023;41:1541–52. [DOI] [PubMed] [PMC]
Hong EK, Chalabi M, Landolfi F, Castagnoli F, Park SJ, Sikorska K, et al. Colon cancer CT staging according to mismatch repair status: Comparison and suggestion of imaging features for high-risk colon cancer.Eur J Cancer. 2022;174:165–75. [DOI] [PubMed]
Cohen R, Taieb J, Fiskum J, Yothers G, Goldberg R, Yoshino T, et al. Microsatellite Instability in Patients With Stage III Colon Cancer Receiving Fluoropyrimidine With or Without Oxaliplatin: An ACCENT Pooled Analysis of 12 Adjuvant Trials.J Clin Oncol. 2021;39:642–51. [DOI] [PubMed] [PMC]
Chalabi M, Verschoor YL, Tan PB, Balduzzi S, Van Lent AU, Grootscholten C, et al. Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair-Deficient Colon Cancer.N Engl J Med. 2024;390:1949–58. [DOI] [PubMed]
Xu RH, Wang F, Chen G, Qiu M, Ma J, Liu H, et al. Neoadjuvant treatment of IBI310 (anti-CTLA-4 antibody) plus sintilimab (anti-PD-1 antibody) in patients with microsatellite instability-high/mismatch repair-deficient colorectal cancer: Results from a randomized, open-labeled, phase Ib study.J Clin Oncol. 2024;42:3505. [DOI]
de Gooyer PGM, Verschoor YL, van den Dungen LDW, Balduzzi S, Marsman HA, Geukes Foppen MH, et al. Neoadjuvant nivolumab and relatlimab in locally advanced MMR-deficient colon cancer: a phase 2 trial.Nat Med. 2024;30:3284–90. [DOI] [PubMed] [PMC]
Yu JH, Xiao BY, Li DD, Jiang W, Ding Y, Wu XJ, et al. Neoadjuvant camrelizumab plus apatinib for locally advanced microsatellite instability-high or mismatch repair-deficient colorectal cancer (NEOCAP): a single-arm, open-label, phase 2 study.Lancet Oncol. 2024;25:843–52. [DOI] [PubMed]
Hu H, Kang L, Zhang J, Wu Z, Wang H, Huang M, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial.Lancet Gastroenterol Hepatol. 2022;7:38–48. [DOI] [PubMed]
de la Fouchardiere C, Zaanan A, Cohen R, Le Sourd SM, Tougeron D, Soularue E, et al. 504O IMHOTEP Phase II trial of neoadjuvant pembrolizumab in dMMR/MSI tumors: Results of the colorectal cancer cohort.Ann Oncol. 2024;35:S429. [DOI]
Shiu KK, Jiang Y, Saunders M, Seligmann JF, Iveson T, Wilson RH, et al. NEOPRISM-CRC: Neoadjuvant pembrolizumab stratified to tumour mutation burden for high risk stage 2 or stage 3 deficient-MMR/MSI-high colorectal cancer.J Clin Oncol. 2024;42:LBA3504. [DOI]
Ludford K, Ho WJ, Thomas JV, Raghav KPS, Murphy MB, Fleming ND, et al. Neoadjuvant Pembrolizumab in Localized Microsatellite Instability High/Deficient Mismatch Repair Solid Tumors.J Clin Oncol. 2023;41:2181–90. [DOI] [PubMed] [PMC]
Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M, et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer.N Engl J Med. 2022;386:2363–76. [DOI] [PubMed] [PMC]
Cercek A, Sinopoli JC, Shia J, Weiss JA, Temple L, Smith JJ, et al. Durable complete responses to PD-1 blockade alone in mismatch repair deficient locally advanced rectal cancer.J Clin Oncol. 2024;42:LBA3512. [DOI]
Chen G, Jin Y, Guan WL, Zhang RX, Xiao WW, Cai PQ, et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study.Lancet Gastroenterol Hepatol. 2023;8:422–31. [DOI] [PubMed]
Lenz HJ, Van Cutsem E, Luisa Limon M, Wong KYM, Hendlisz A, Aglietta M, et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study.J Clin Oncol. 2022;40:161–70. [DOI] [PubMed]
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz H, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study.Lancet Oncol. 2017;18:1182–91. [DOI] [PubMed] [PMC]
Overman MJ, Lonardi S, Wong KYM, Lenz H, Gelsomino F, Aglietta M, et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer.J Clin Oncol. 2018;36:773–9. [DOI] [PubMed]
André T, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142.Ann Oncol. 2022;33:1052–60. [DOI] [PubMed]
Overman MJ, Gelsomino F, Aglietta M, Wong M, Miron MLL, Leonard G, et al. Nivolumab plus relatlimab in patients with previously treated microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study.J Immunother Cancer. 2024;12:e008689. [DOI] [PubMed] [PMC]
Kim JH, Kim SY, Baek JY, Cha YJ, Ahn JB, Kim HS, et al. A Phase II Study of Avelumab Monotherapy in Patients with Mismatch Repair-Deficient/Microsatellite Instability-High or POLE-Mutated Metastatic or Unresectable Colorectal Cancer.Cancer Res Treat. 2020;52:1135–44. [DOI] [PubMed] [PMC]
Taïeb J, Bouche O, André T, Le Malicot K, Laurent-Puig P, Bez J, et al.; SAMCO-PRODIGE 54 Investigators. Avelumab vs Standard Second-Line Chemotherapy in Patients With Metastatic Colorectal Cancer and Microsatellite Instability: A Randomized Clinical Trial.JAMA Oncol. 2023;9:1356–63. [DOI] [PubMed] [PMC]
Oh CR, Kim JE, Hong YS, Kim SY, Ahn JB, Baek JY, et al. Phase II study of durvalumab monotherapy in patients with previously treated microsatellite instability-high/mismatch repair-deficient or POLE-mutated metastatic or unresectable colorectal cancer.Int J Cancer. 2022;150:2038–45. [DOI] [PubMed]
Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H, et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164.J Clin Oncol. 2020;38:11–9. [DOI] [PubMed] [PMC]
André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, et al.; KEYNOTE-177 Investigators. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer.N Engl J Med. 2020;383:2207–18. [DOI] [PubMed]
Diaz LA Jr, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al.; KEYNOTE-177 Investigators. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study.Lancet Oncol. 2022;23:659–70. [DOI] [PubMed] [PMC]
Andre T, Elez E, Van Cutsem E, Jensen LH, Bennouna J, Mendez G, et al.; CheckMate 8HW Investigators. Nivolumab plus Ipilimumab in Microsatellite-Instability-High Metastatic Colorectal Cancer.N Engl J Med. 2024;391:2014–26. [DOI] [PubMed]
Li J, Hu H, Qin G, Bai F, Wu X, Ke H, et al. Biomarkers of Pathologic Complete Response to Neoadjuvant Immunotherapy in Mismatch Repair-Deficient Colorectal Cancer.Clin Cancer Res. 2024;30:368–78. [DOI] [PubMed]
Li J, Wu C, Hu H, Qin G, Wu X, Bai F, et al. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer.Cancer Cell. 2023;41:1152–69.e7. [DOI] [PubMed]
Quintanilha JCF, Graf RP, Fisher VA, Oxnard GR, Ellis H, Panarelli N, et al. Comparative Effectiveness of Immune Checkpoint Inhibitors vs Chemotherapy in Patients With Metastatic Colorectal Cancer With Measures of Microsatellite Instability, Mismatch Repair, or Tumor Mutational Burden.JAMA Netw Open. 2023;6:e2252244. [DOI] [PubMed] [PMC]
Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response.Science. 2019;364:485–91. [DOI] [PubMed] [PMC]
Georgiadis A, Durham JN, Keefer LA, Bartlett BR, Zielonka M, Murphy D, et al. Noninvasive Detection of Microsatellite Instability and High Tumor Mutation Burden in Cancer Patients Treated with PD-1 Blockade.Clin Cancer Res. 2019;25:7024–34. [DOI] [PubMed] [PMC]
Schrock AB, Ouyang C, Sandhu J, Sokol E, Jin D, Ross JS, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer.Ann Oncol. 2019;30:1096–103. [DOI] [PubMed]
Loupakis F, Depetris I, Biason P, Intini R, Prete AA, Leone F, et al. Prediction of Benefit from Checkpoint Inhibitors in Mismatch Repair Deficient Metastatic Colorectal Cancer: Role of Tumor Infiltrating Lymphocytes.Oncologist. 2020;25:481–7. [DOI] [PubMed] [PMC]
Chida K, Kawazoe A, Kawazu M, Suzuki T, Nakamura Y, Nakatsura T, et al. A Low Tumor Mutational Burden and PTEN Mutations Are Predictors of a Negative Response to PD-1 Blockade in MSI-H/dMMR Gastrointestinal Tumors.Clin Cancer Res. 2021;27:3714–24. [DOI] [PubMed]
Manca P, Corti F, Intini R, Mazzoli G, Miceli R, Germani MM, et al. Tumour mutational burden as a biomarker in patients with mismatch repair deficient/microsatellite instability-high metastatic colorectal cancer treated with immune checkpoint inhibitors.Eur J Cancer. 2023;187:15–24. [DOI] [PubMed]
Westcott PMK, Muyas F, Hauck H, Smith OC, Sacks NJ, Ely ZA, et al. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity.Nat Genet. 2023;55:1686–95. [DOI] [PubMed] [PMC]
Kawazu M, Ueno T, Saeki K, Sax N, Togashi Y, Kanaseki T, et al. HLA Class I Analysis Provides Insight Into the Genetic and Epigenetic Background of Immune Evasion in Colorectal Cancer With High Microsatellite Instability.Gastroenterology. 2022;162:799–812. [DOI] [PubMed]
Middha S, Yaeger R, Shia J, Stadler ZK, King S, Guercio S, et al. Majority of B2M-Mutant and -Deficient Colorectal Carcinomas Achieve Clinical Benefit From Immune Checkpoint Inhibitor Therapy and Are Microsatellite Instability-High.JCO Precis Oncol. 2019;3:PO.18.00321. [DOI] [PubMed] [PMC]
Germano G, Lu S, Rospo G, Lamba S, Rousseau B, Fanelli S, et al. CD4 T Cell-Dependent Rejection of Beta-2 Microglobulin Null Mismatch Repair-Deficient Tumors.Cancer Discov. 2021;11:1844–59. [DOI] [PubMed]
Zhang C, Li D, Xiao B, Zhou C, Jiang W, Tang J, et al. B2M and JAK1/2-mutated MSI-H Colorectal Carcinomas Can Benefit From Anti-PD-1 Therapy.J Immunother. 2022;45:187–93. [DOI] [PubMed] [PMC]
Sui Q, Zhang X, Chen C, Tang J, Yu J, Li W, et al. Inflammation promotes resistance to immune checkpoint inhibitors in high microsatellite instability colorectal cancer.Nat Commun. 2022;13:7316. [DOI] [PubMed] [PMC]
Corti F, Lonardi S, Intini R, Salati M, Fenocchio E, Belli C, et al. The Pan-Immune-Inflammation Value in microsatellite instability-high metastatic colorectal cancer patients treated with immune checkpoint inhibitors.Eur J Cancer. 2021;150:155–67. [DOI] [PubMed]
Pietrantonio F, Lonardi S, Corti F, Infante G, Elez ME, Fakih M, et al. Nomogram to predict the outcomes of patients with microsatellite instability-high metastatic colorectal cancer receiving immune checkpoint inhibitors.J Immunother Cancer. 2021;9:e003370. [DOI] [PubMed] [PMC]
Saberzadeh-Ardestani B, Graham RP, McMahon S, Ahanonu E, Shi Q, Williams C, et al. Immune Marker Spatial Distribution and Clinical Outcome after PD-1 Blockade in Mismatch Repair-deficient, Advanced Colorectal Carcinomas.Clin Cancer Res. 2023;29:4268–77. [DOI] [PubMed] [PMC]
Gallois C, Landi M, Taieb J, Sroussi M, Saberzadeh-Ardestani B, Cazelles A, et al. Transcriptomic Signatures of MSI-High Metastatic Colorectal Cancer Predict Efficacy of Immune Checkpoint Inhibitors.Clin Cancer Res. 2023;29:3771–8. [DOI] [PubMed] [PMC]
Chida K, Kawazoe A, Suzuki T, Kawazu M, Ueno T, Takenouchi K, et al. Transcriptomic Profiling of MSI-H/dMMR Gastrointestinal Tumors to Identify Determinants of Responsiveness to Anti-PD-1 Therapy.Clin Cancer Res. 2022;28:2110–7. [DOI] [PubMed] [PMC]
Sui Q, Liu D, Jiang W, Tang J, Kong L, Han K, et al. Dickkopf 1 impairs the tumor response to PD-1 blockade by inactivating CD8+ T cells in deficient mismatch repair colorectal cancer.J Immunother Cancer. 2021;9:e001498. [DOI] [PubMed] [PMC]
Bortolomeazzi M, Keddar MR, Montorsi L, Acha-Sagredo A, Benedetti L, Temelkovski D, et al. Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation Cohorts.Gastroenterology. 2021;161:1179–93. [DOI] [PubMed] [PMC]
Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ, Quist M, et al. Genetic Mechanisms of Immune Evasion in Colorectal Cancer.Cancer Discov. 2018;8:730–49. [DOI] [PubMed] [PMC]
Lal N, White BS, Goussous G, Pickles O, Mason MJ, Beggs AD, et al. KRAS Mutation and Consensus Molecular Subtypes 2 and 3 Are Independently Associated with Reduced Immune Infiltration and Reactivity in Colorectal Cancer.Clin Cancer Res. 2018;24:224–33. [DOI] [PubMed] [PMC]
Kamal Y, Schmit SL, Hoehn HJ, Amos CI, Frost HR. Transcriptomic Differences between Primary Colorectal Adenocarcinomas and Distant Metastases Reveal Metastatic Colorectal Cancer Subtypes.Cancer Res. 2019;79:4227–41. [DOI] [PubMed] [PMC]
Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su M, Melms JC, et al. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade.Cell. 2018;175:984–97.e24. [DOI] [PubMed] [PMC]
Eide PW, Moosavi SH, Eilertsen IA, Brunsell TH, Langerud J, Berg KCG, et al. Metastatic heterogeneity of the consensus molecular subtypes of colorectal cancer.NPJ Genom Med. 2021;6:59. [DOI] [PubMed] [PMC]
Ratovomanana T, Nicolle R, Cohen R, Diehl A, Siret A, Letourneur Q, et al. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability.Ann Oncol. 2023;34:703–13. [DOI] [PubMed]
Bartman CR, Weilandt DR, Shen Y, Lee WD, Han Y, TeSlaa T, et al. Slow TCA flux and ATP production in primary solid tumours but not metastases.Nature. 2023;614:349–57. [DOI] [PubMed] [PMC]
Bezwada D, Perelli L, Lesner NP, Cai L, Brooks B, Wu Z, et al. Mitochondrial complex I promotes kidney cancer metastasis.Nature. 2024;633:923–31. [DOI] [PubMed] [PMC]
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression.Science. 2020;368:eaaw5473. [DOI] [PubMed] [PMC]
Porporato PE, Payen VL, Pérez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, et al. A mitochondrial switch promotes tumor metastasis.Cell Rep. 2014;8:754–66. [DOI] [PubMed]
LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis.Nat Cell Biol. 2014;16:992–1003. [DOI] [PubMed] [PMC]
Shelton SD, House S, Martins Nascentes Melo L, Ramesh V, Chen Z, Wei T, et al. Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.Sci Adv. 2024;10:eadk8801. [DOI] [PubMed] [PMC]
Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS, et al. Lymph protects metastasizing melanoma cells from ferroptosis.Nature. 2020;585:113–8. [DOI] [PubMed] [PMC]
Hong X, Roh W, Sullivan RJ, Wong KHK, Wittner BS, Guo H, et al. The Lipogenic Regulator SREBP2 Induces Transferrin in Circulating Melanoma Cells and Suppresses Ferroptosis.Cancer Discov. 2021;11:678–95. [DOI] [PubMed] [PMC]
Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth.Nature. 2016;532:255–8. [DOI] [PubMed] [PMC]
Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells.Nature. 2015;527:186–91. [DOI] [PubMed] [PMC]
Renner K, Bruss C, Schnell A, Koehl G, Becker HM, Fante M, et al. Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy.Cell Rep. 2019;29:135–50.e9. [DOI] [PubMed]
Qian Y, Galan-Cobo A, Guijarro I, Dang M, Molkentine D, Poteete A, et al. MCT4-dependent lactate secretion suppresses antitumor immunity in LKB1-deficient lung adenocarcinoma.Cancer Cell. 2023;41:1363–80.e7. [DOI] [PubMed] [PMC]
Sharma NS, Gupta VK, Garrido VT, Hadad R, Durden BC, Kesh K, et al. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy.J Clin Invest. 2020;130:451–65. [DOI] [PubMed] [PMC]
Stanczak MA, Rodrigues Mantuano N, Kirchhammer N, Sanin DE, Jacob F, Coelho R, et al. Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade.Sci Transl Med. 2022;14:eabj1270. [DOI] [PubMed] [PMC]
Martinez-Ordoñez A, Duran A, Ruiz-Martinez M, Cid-Diaz T, Zhang X, Han Q, et al. Hyaluronan driven by epithelial aPKC deficiency remodels the microenvironment and creates a vulnerability in mesenchymal colorectal cancer.Cancer Cell. 2023;41:252–71.e9. [DOI] [PubMed] [PMC]
Cappellesso F, Orban MP, Shirgaonkar N, Berardi E, Serneels J, Neveu MA, et al. Targeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer.Nat Cancer. 2022;3:1464–83. [DOI] [PubMed] [PMC]
Rossi M, Altea-Manzano P, Demicco M, Doglioni G, Bornes L, Fukano M, et al. PHGDH heterogeneity potentiates cancer cell dissemination and metastasis.Nature. 2022;605:747–53. [DOI] [PubMed] [PMC]
Mukherjee A, Bezwada D, Greco F, Zandbergen M, Shen T, Chiang C, et al. Adipocytes reprogram cancer cell metabolism by diverting glucose towards glycerol-3-phosphate thereby promoting metastasis.Nat Metab. 2023;5:1563–77. [DOI] [PubMed]
Shelton PM, Duran A, Nakanishi Y, Reina-Campos M, Kasashima H, Llado V, et al. The Secretion of miR-200s by a PKCζ/ADAR2 Signaling Axis Promotes Liver Metastasis in Colorectal Cancer.Cell Rep. 2018;23:1178–91. [DOI] [PubMed] [PMC]
Jiang L, Xiao L, Sugiura H, Huang X, Ali A, Kuro-o M, et al. Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition.Oncogene. 2015;34:3908–16. [DOI] [PubMed] [PMC]
Najjar YG, Menk AV, Sander C, Rao U, Karunamurthy A, Bhatia R, et al. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma.JCI Insight. 2019;4:e124989. [DOI] [PubMed] [PMC]
Jaiswal AR, Liu AJ, Pudakalakatti S, Dutta P, Jayaprakash P, Bartkowiak T, et al. Melanoma Evolves Complete Immunotherapy Resistance through the Acquisition of a Hypermetabolic Phenotype.Cancer Immunol Res. 2020;8:1365–80. [DOI] [PubMed] [PMC]
Tian J, Luo J, Zeng X, Ke C, Wang Y, Liu Z, et al. Targeting oxidative phosphorylation to increase the efficacy of immune-combination therapy in renal cell carcinoma.J Immunother Cancer. 2024;12:e008226. [DOI] [PubMed] [PMC]
Dupuy F, Tabariès S, Andrzejewski S, Dong Z, Blagih J, Annis MG, et al. PDK1-Dependent Metabolic Reprogramming Dictates Metastatic Potential in Breast Cancer.Cell Metab. 2015;22:577–89. [DOI] [PubMed]
Andrzejewski S, Klimcakova E, Johnson RM, Tabariès S, Annis MG, McGuirk S, et al. PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs.Cell Metab. 2017;26:778–87.e5. [DOI] [PubMed]
Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, et al. Metabolic Heterogeneity in Human Lung Tumors.Cell. 2016;164:681–94. [DOI] [PubMed] [PMC]
Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, et al. Glucose feeds the TCA cycle via circulating lactate.Nature. 2017;551:115–8. [DOI] [PubMed] [PMC]
Xu IM, Lai RK, Lin SH, Tse AP, Chiu DK, Koh HY, et al. Transketolase counteracts oxidative stress to drive cancer development.Proc Natl Acad Sci U S A. 2016;113:E725–34. [DOI] [PubMed] [PMC]
Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, et al. Targeting Breast Cancer Stem Cell State Equilibrium through Modulation of Redox Signaling.Cell Metab. 2018;28:69–86.e6. [DOI] [PubMed] [PMC]
Tasdogan A, Faubert B, Ramesh V, Ubellacker JM, Shen B, Solmonson A, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential.Nature. 2020;577:115–20. [DOI] [PubMed] [PMC]
Chen L, Zhang Z, Hoshino A, Zheng HD, Morley M, Arany Z, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism.Nat Metab. 2019;1:404–15. [PubMed] [PMC]
Ding H, Chen Z, Wu K, Huang SM, Wu WL, LeBoeuf SE, et al. Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition.Sci Adv. 2021;7:eabk1023. [DOI] [PubMed] [PMC]
Aurora AB, Khivansara V, Leach A, Gill JG, Martin-Sandoval M, Yang C, et al. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells.Proc Natl Acad Sci U S A. 2022;119:e2120617119. [DOI] [PubMed] [PMC]
Lee JS, Adler L, Karathia H, Carmel N, Rabinovich S, Auslander N, et al. Urea Cycle Dysregulation Generates Clinically Relevant Genomic and Biochemical Signatures.Cell. 2018;174:1559–70.e22. [DOI] [PubMed] [PMC]
Lee MS, Dennis C, Naqvi I, Dailey L, Lorzadeh A, Ye G, et al. Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer.Nature. 2023;616:339–47. [DOI] [PubMed] [PMC]
Best SA, Gubser PM, Sethumadhavan S, Kersbergen A, Negrón Abril YL, Goldford J, et al. Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer.Cell Metab. 2022;34:874–87.e6. [DOI] [PubMed]
Pillai R, LeBoeuf SE, Hao Y, New C, Blum JLE, Rashidfarrokhi A, et al. Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer.Sci Adv. 2024;10:eadm9859. [DOI] [PubMed] [PMC]
Alexander ET, Mariner K, Donnelly J, Phanstiel O 4th, Gilmour SK. Polyamine Blocking Therapy Decreases Survival of Tumor-Infiltrating Immunosuppressive Myeloid Cells and Enhances the Antitumor Efficacy of PD-1 Blockade.Mol Cancer Ther. 2020;19:2012–22. [DOI] [PubMed] [PMC]
Chen H, Tong T, Lu SY, Ji L, Xuan B, Zhao G, et al. Urea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesis.Cell Metab. 2023;35:651–66.e7. [DOI] [PubMed]
Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer.Nature. 2018;564:268–72. [DOI] [PubMed]
Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O’Brien SA, et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer.Cell. 2020;181:442–59.e29. [DOI] [PubMed]
Pelka K, Hofree M, Chen JH, Sarkizova S, Pirl JD, Jorgji V, et al. Spatially organized multicellular immune hubs in human colorectal cancer.Cell. 2021;184:4734–52.e20. [DOI] [PubMed] [PMC]
Tie J, Cohen JD, Lahouel K, Lo SN, Wang Y, Kosmider S, et al.; DYNAMIC Investigators. Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer.N Engl J Med. 2022;386:2261–72. [DOI] [PubMed] [PMC]
Pedrosa L, Esposito F, Thomson TM, Maurel J. The Tumor Microenvironment in Colorectal Cancer Therapy.Cancers (Basel). 2019;11:1172. [DOI] [PubMed] [PMC]
Pedrosa L, Foguet C, Oliveres H, Archilla I, de Herreros MG, Rodríguez A, et al. A novel gene signature unveils three distinct immune-metabolic rewiring patterns conserved across diverse tumor types and associated with outcomes.Front Immunol. 2022;13:926304. [DOI] [PubMed] [PMC]
Sánchez-Tilló E, Pedrosa L, Vila I, Chen Y, Győrffy B, Sánchez-Moral L, et al. The EMT factor ZEB1 paradoxically inhibits EMT in BRAF-mutant carcinomas.JCI Insight. 2023;8:e164629. [DOI] [PubMed] [PMC]
Guo Y, Lu X, Chen Y, Rendon B, Mitchell RA, Cuatrecasas M, et al. Zeb1 induces immune checkpoints to form an immunosuppressive envelope around invading cancer cells.Sci Adv. 2021;7:eabd7455. [DOI] [PubMed] [PMC]
Madurga S, Foguet C, Oliveres H, Mas F, Maurel J, Cascante M. 338P A new clinically applicable immune-metabolic signature (IMMETCOLS) reveals metabolic singularities in consensus molecular subtypes (CMS) in colorectal cancer.Ann Oncol. 2022;33:S691. [DOI]
Bell HN, Huber AK, Singhal R, Korimerla N, Rebernick RJ, Kumar R, et al. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer.Cell Metab. 2023;35:134–49.e6. [DOI] [PubMed] [PMC]
Tarragó-Celada J, Foguet C, Tarrado-Castellarnau M, Marin S, Hernández-Alias X, Perarnau J, et al. Cysteine and Folate Metabolism Are Targetable Vulnerabilities of Metastatic Colorectal Cancer.Cancers (Basel). 2021;13:425. [DOI] [PubMed] [PMC]