Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain.Nat Rev Neurosci. 2008;9:46–56. [DOI] [PubMed] [PMC]
McKay KA, Tremlett H, Fisk JD, Zhang T, Patten SB, Kastrukoff L, et al.; CIHR Team in the Epidemiology and Impact of Comorbidity on Multiple Sclerosis. Psychiatric comorbidity is associated with disability progression in multiple sclerosis.Neurology. 2018;90:e1316–23. [DOI] [PubMed] [PMC]
Rossi S, Studer V, Motta C, Polidoro S, Perugini J, Macchiarulo G, et al. Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis.Neurology. 2017;89:1338–47. [DOI] [PubMed]
Concerto C, Rodolico A, Ciancio A, Messina C, Natale A, Mineo L, et al. Vitamin D and depressive symptoms in adults with multiple sclerosis: a scoping review.Int J Environ Res Public Health. 2021;19:199. [DOI] [PubMed] [PMC]
Solaro C, Gamberini G, Masuccio FG. Depression in multiple sclerosis: epidemiology, aetiology, diagnosis and treatment.CNS Drugs. 2018;32:117–33. [DOI] [PubMed]
Feinstein A, Magalhaes S, Richard JF, Audet B, Moore C. The link between multiple sclerosis and depression.Nat Rev Neurol. 2014;10:507–17. [DOI] [PubMed]
Jetté N, Amoozegar F, Patten SB. Depression in epilepsy, migraine, and multiple sclerosis: epidemiology and how to screen for it.Neurol Clin Pract. 2017;7:118–27. [DOI] [PubMed] [PMC]
Tardo LM, McCreary M, Majeed H, Greenberg BM. Determining prevalence of depression and covariates of depression in a cohort of multiple sclerosis patients.J Cent Nerv Syst Dis. 2022;14:11795735221098143. [DOI] [PubMed] [PMC]
Goischke HK. Comorbidities in multiple sclerosis—a plea for interdisciplinary collaboration to improve the quality of life of MS patients.Degener Neurol Neuromuscul Dis. 2019;9:39–53. [DOI] [PubMed] [PMC]
Pokryszko-Dragan A, Frydecka I, Kosmaczewska A, Ciszak L, Bilińska M, Gruszka E, et al. Stimulated peripheral production of interferon-gamma is related to fatigue and depression in multiple sclerosis.Clin Neurol Neurosurg. 2012;114:1153–8. [DOI] [PubMed]
Penner IK, Paul F. Fatigue as a symptom or comorbidity of neurological diseases.Nat Rev Neurol. 2017;13:662–75. [DOI] [PubMed]
Tarasiuk J, Kapica-Topczewska K, Czarnowska A, Chorąży M, Kochanowicz J, Kułakowska A. Co-occurrence of fatigue and depression in people with multiple sclerosis: a mini-review.Front Neurol. 2022;12:817256. [DOI] [PubMed] [PMC]
Wiendl H, Gold R, Berger T, Derfuss T, Linker R, Mäurer M, et al.; ‘Multiple Sclerosis Therapy Consensus Group’ (MSTCG). Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper).Ther Adv Neurol Disord. 2021;14:17562864211039648. [DOI] [PubMed] [PMC]
Pryce CR, Fontana A. Depression in autoimmune diseases.Curr Top Behav Neurosci. 2017;31:139–54. [DOI] [PubMed]
Stamoula E, Siafis S, Dardalas I, Ainatzoglou A, Matsas A, Athanasiadis T, et al. Antidepressants on multiple sclerosis: a review of in vitro and in vivo models.Front Immunol. 2021;12:677879. [DOI] [PubMed] [PMC]
Yuan X, Guo L, Jiang C, Yang X, Huang J. The effect of different administration time and dosage of vitamin D supplementation in patients with multiple sclerosis: a meta-analysis of randomized controlled trials.Neuroimmunomodulation. 2021;28:118–28. [DOI] [PubMed]
Zech LD, Scherf-Clavel M, Daniels C, Schwab M, Deckert J, Unterecker S, et al. Patients with higher vitamin D levels show stronger improvement of self-reported depressive symptoms in psychogeriatric day-care setting.J Neural Transm (Vienna). 2021;128:1233–8. [DOI] [PubMed] [PMC]
Berridge MJ. Vitamin D and depression: cellular and regulatory mechanisms.Pharmacol Rev. 2017;69:80–92. [DOI] [PubMed]
Elrayah EE, Rogers L, Doggui R, Al-Jawaldeh A. Vitamin D insufficiency and deficiency in the Eastern Mediterranean Region (EMR)—misconceptions in public health practice: a scoping review 2019-2020.J Nutr Sci Vitaminol (Tokyo). 2020;66:389–95. [DOI] [PubMed]
Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, et al. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression.J Neuroinflammation. 2022;19:132. [DOI] [PubMed] [PMC]
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse.Mol Psychiatry. 2023;28:284–97. [DOI] [PubMed] [PMC]
Młynarska E, Gadzinowska J, Tokarek J, Forycka J, Szuman A, Franczyk B, et al. The role of the microbiome-brain-gut axis in the pathogenesis of depressive disorder.Nutrients. 2022;14:1921. [DOI] [PubMed] [PMC]
Freimer D, Yang TT, Ho TC, Tymofiyeva O, Leung C. The gut microbiota, HPA axis, and brain in adolescent-onset depression: probiotics as a novel treatment.Brain Behav Immun Health. 2022;26:100541. [DOI] [PubMed] [PMC]
Iob E, Kirschbaum C, Steptoe A. Persistent depressive symptoms, HPA-axis hyperactivity, and inflammation: the role of cognitive-affective and somatic symptoms.Mol Psychiatry. 2020;25:1130–40. [DOI] [PubMed] [PMC]
Zhou A, Hyppönen E. Vitamin D deficiency and C-reactive protein: a bidirectional Mendelian randomization study.Int J Epidemiol. 2023;52:260–71. [DOI] [PubMed] [PMC]
Brasanac J, Hetzer S, Asseyer S, Kuchling J, Bellmann-Strobl J, Ritter K, et al. Central stress processing, T-cell responsivity to stress hormones and disease severity in multiple sclerosis.Brain Commun. 2022;4:fcac086. [DOI] [PubMed] [PMC]
Briones-Buixassa L, Milà R, Mª Aragonès J, Bufill E, Olaya B, Arrufat FX. Stress and multiple sclerosis: a systematic review considering potential moderating and mediating factors and methods of assessing stress.Health Psychol Open. 2015;2:2055102915612271. [DOI] [PubMed] [PMC]
Ceruso A, Martínez-Cengotitabengoa M, Peters-Corbett A, Diaz-Gutierrez MJ, Martínez-Cengotitabengoa M. Alterations of the HPA axis observed in patients with major depressive disorder and their relation to early life stress: a systematic review.Neuropsychobiology. 2020;79:417–27. [DOI] [PubMed]
Song H, Fang F, Tomasson G, Arnberg FK, Mataix-Cols D, Fernández de la Cruz L, et al. Association of stress-related disorders with subsequent autoimmune disease.JAMA. 2018;319:2388–400. [DOI] [PubMed] [PMC]
Michelson D, Stone L, Galliven E, Magiakou MA, Chrousos GP, Sternberg EM, et al. Multiple sclerosis is associated with alterations in hypothalamic-pituitary-adrenal axis function.J Clin Endocrinol Metab. 1994;79:848–53. [DOI] [PubMed]
Schumann EM, Kümpfel T, Then Bergh F, Trenkwalder C, Holsboer F, Auer DP. Activity of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: correlations with gadolinium-enhancing lesions and ventricular volume.Ann Neurol. 2002;51:763–7. [DOI] [PubMed]
Kern S, Krause I, Horntrich A, Thomas K, Aderhold J, Ziemssen T. Cortisol awakening response is linked to disease course and progression in multiple sclerosis.PLoS One. 2013;8:e60647. [DOI] [PubMed] [PMC]
Melief J, de Wit SJ, van Eden CG, Teunissen C, Hamann J, Uitdehaag BM, et al. HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter.Acta Neuropathol. 2013;126:237–49. [DOI] [PubMed]
Gottschalk M, Kümpfel T, Flachenecker P, Uhr M, Trenkwalder C, Holsboer F, et al. Fatigue and regulation of the hypothalamo-pituitary-adrenal axis in multiple sclerosis.Arch Neurol. 2005;62:277–80. [DOI] [PubMed]
Ysrraelit MC, Gaitán MI, Lopez AS, Correale J. Impaired hypothalamic-pituitary-adrenal axis activity in patients with multiple sclerosis.Neurology. 2008;71:1948–54. [DOI] [PubMed]
Trifunovic S, Stevanovic I, Milosevic A, Ristic N, Janjic M, Bjelobaba I, et al. The function of the hypothalamic-pituitary-adrenal axis during experimental autoimmune encephalomyelitis: involvement of oxidative stress mediators.Front Neurosci. 2021;15:649485. [DOI] [PubMed] [PMC]
Rein T, Ambrée O, Fries GR, Rappeneau V, Schmidt U, Touma C. Chapter 9 - The hypothalamic-pituitary-adrenal axis in depression: molecular regulation, pathophysiological role, and translational implications. In: Quevedo J, Carvalho AF, Zarate CA, editors. Neurobiology of depression. Academic Press; 2019. pp. 89–96.
Schindler S, Schmidt L, Stroske M, Storch M, Anwander A, Trampel R, et al. Hypothalamus enlargement in mood disorders.Acta Psychiatr Scand. 2019;139:56–67. [DOI] [PubMed]
Lee CH, Giuliani F. The role of inflammation in depression and fatigue.Front Immunol. 2019;10:1696. [DOI] [PubMed] [PMC]
Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls.Brain Behav Immun. 2020;87:901–9. [DOI] [PubMed] [PMC]
Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression.Biol Psychiatry. 2010;67:446–57. [DOI] [PubMed]
Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies.J Affect Disord. 2013;150:736–44. [DOI] [PubMed]
Maes M, Twisk FN, Kubera M, Ringel K. Evidence for inflammation and activation of cell-mediated immunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-α, PMN-elastase, lysozyme and neopterin.J Affect Disord. 2012;136:933–9. [DOI] [PubMed]
Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior.Neuropsychopharmacology. 2012;37:137–62. [DOI] [PubMed] [PMC]
Al Shweiki MR, Steinacker P, Oeckl P, Hengerer B, Danek A, Fassbender K, et al. Neurofilament light chain as a blood biomarker to differentiate psychiatric disorders from behavioural variant frontotemporal dementia.J Psychiatr Res. 2019;113:137–40. [DOI] [PubMed]
Zhang H. Association of serum neurofilament light chain with depressive symptoms: a population-based study.Res Square [Preprint]. 2022 [cited 2023 Mar 1]. Available from: https://www.researchsquare.com/article/rs-2337172/v1
Yin W, Zhu Y, Yang B, Wang F, Yin K, Zhou C, et al. Plasma neurofilament light chain levels are associated with depressive and anxiety symptoms in Parkinson’s disease.Neurol Sci. 2022;43:2839–43. [DOI] [PubMed]
Eratne D, Loi SM, Walia N, Farrand S, Li QX, Varghese S, et al. A pilot study of the utility of cerebrospinal fluid neurofilament light chain in differentiating neurodegenerative from psychiatric disorders: a ‘C-reactive protein’ for psychiatrists and neurologists?Aust N Z J Psychiatry. 2020;54:57–67. [DOI] [PubMed]
Chen MH, Liu YL, Kuo HW, Tsai SJ, Hsu JW, Huang KL, et al. Neurofilament light chain is a novel biomarker for major depression and related executive dysfunction.Int J Neuropsychopharmacol. 2022;25:99–105. [DOI] [PubMed] [PMC]
Travica N, Berk M, Marx W. Neurofilament light protein as a biomarker in depression and cognitive function.Curr Opin Psychiatry. 2022;35:30–7. [DOI] [PubMed]
Bavato F, Cathomas F, Klaus F, Gütter K, Barro C, Maceski A, et al. Altered neuroaxonal integrity in schizophrenia and major depressive disorder assessed with neurofilament light chain in serum.J Psychiatr Res. 2021;140:141–8. [DOI] [PubMed]
van Velzen LS, Kelly S, Isaev D, Aleman A, Aftanas LI, Bauer J, et al. White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group.Mol Psychiatry. 2020;25:1511–25. [DOI] [PubMed] [PMC]
Spanier S, Kilian HM, Meyer DM, Schlaepfer TE. Treatment resistance in major depression is correlated with increased plasma levels of neurofilament light protein reflecting axonal damage.Med Hypotheses. 2019;127:159–61. [DOI] [PubMed]
Chen WY, Huang MC, Chiu CC, Cheng YC, Kuo CJ, Chen PY, et al. The interactions between vitamin D and neurofilament light chain levels on cognitive domains in bipolar disorder.BJPsych Open. 2022;8:E207. [DOI] [PubMed] [PMC]
Ramezani M, Simani L, Fard MG, Abbaszadeh F, Shadnia S. Increased levels of neurofilament light chain in suicide attempters’ serum.Transl Neurosci. 2022;13:218–23. [DOI] [PubMed] [PMC]
Thebault S, Bose G, Booth R, Freedman MS. Serum neurofilament light in MS: the first true blood-based biomarker?Mult Scler. 2022;28:1491–7. [DOI] [PubMed] [PMC]
Akgün K, Kretschmann N, Haase R, Proschmann U, Kitzler HH, Reichmann H, et al. Profiling individual clinical responses by high-frequency serum neurofilament assessment in MS.Neurol Neuroimmunol Neuroinflamm. 2019;6:e555. [DOI] [PubMed] [PMC]
Bjornevik K, Munger KL, Cortese M, Barro C, Healy BC, Niebuhr DW, et al. Serum neurofilament light chain levels in patients with presymptomatic multiple sclerosis.JAMA Neurol. 2020;77:58–64. [DOI] [PubMed] [PMC]
Wijnands JMA, Kingwell E, Zhu F, Zhao Y, Högg T, Stadnyk K, et al. Health-care use before a first demyelinating event suggestive of a multiple sclerosis prodrome: a matched cohort study.Lancet Neurol. 2017;16:445–51. [DOI] [PubMed]
Wijnands JM, Zhu F, Kingwell E, Zhao Y, Ekuma O, Lu X, et al. Five years before multiple sclerosis onset: phenotyping the prodrome.Mult Scler. 2019;25:1092–101. [DOI] [PubMed]
Sandberg L, Biström M, Salzer J, Vågberg M, Svenningsson A, Sundström P. Vitamin D and axonal injury in multiple sclerosis.Mult Scler. 2016;22:1027–31. [DOI] [PubMed]
Monreal E, Fernández-Velasco JI, García-Sánchez MI, Sainz de la Maza S, Llufriu S, Álvarez-Lafuente R, et al. Association of serum neurofilament light chain levels at disease onset with disability worsening in patients with a first demyelinating multiple sclerosis event not treated with high-efficacy drugs.JAMA Neurol. 2023;80:397–403. [DOI] [PubMed]
Holmøy T, Røsjø E, Zetterberg H, Blennow K, Lindstrøm JC, Steffensen LH, et al. Vitamin D supplementation and neurofilament light chain in multiple sclerosis.Acta Neurol Scand. 2019;139:172–6. [DOI] [PubMed]
Smolders J, Mimpen M, Oechtering J, Damoiseaux J, van den Ouweland J, Hupperts R, et al. Vitamin D3 supplementation and neurofilament light chain in multiple sclerosis.Acta Neurol Scand. 2020;141:77–80. [DOI] [PubMed]
Steinacker P, Al Shweiki MR, Oeckl P, Graf H, Ludolph AC, Schönfeldt-Lecuona C, et al. Glial fibrillary acidic protein as blood biomarker for differential diagnosis and severity of major depressive disorder.J Psychiatr Res. 2021;144:54–8. [DOI] [PubMed]
Meier S, Willemse EAJ, Schaedelin S, Oechtering J, Lorscheider J, Melie-Garcia L, et al. Serum glial fibrillary acidic protein compared with neurofilament light chain as a biomarker for disease progression in multiple sclerosis.JAMA Neurol. 2023;80:287–97. [DOI] [PubMed]
Michel M, Fiebich BL, Kuzior H, Meixensberger S, Berger B, Maier S, et al. Increased GFAP concentrations in the cerebrospinal fluid of patients with unipolar depression.Transl Psychiatry. 2021;11:308. [DOI] [PubMed] [PMC]
Davis S, Thomas A, Perry R, Oakley A, Kalaria RN, O’Brien JT. Glial fibrillary acidic protein in late life major depressive disorder: an immunocytochemical study.J Neurol Neurosurg Psychiatry. 2002;73:556–60. [DOI] [PubMed] [PMC]
Högel H, Rissanen E, Barro C, Matilainen M, Nylund M, Kuhle J, et al. Serum glial fibrillary acidic protein correlates with multiple sclerosis disease severity.Mult Scler. 2020;26:210–9. [DOI] [PubMed]
Heimfarth L, Passos FRS, Monteiro BS, Araújo AAS, Quintans Júnior LJ, Quintans JSS. Serum glial fibrillary acidic protein is a body fluid biomarker: a valuable prognostic for neurological disease – a systematic review.Int Immunopharmacol. 2022;107:108624. [DOI] [PubMed]
Scrimgeour A, Condlin M, Loban A, DeMar J. Omega-3 fatty acids and vitamin D decrease plasma T-tau, GFAP, and UCH-L1 in experimental traumatic brain injury.Curr Dev Nutr. 2021;5:924. [DOI]
Menke A. Is the HPA axis as target for depression outdated, or is there a new hope?Front Psychiatry. 2019;10:101. [DOI] [PubMed] [PMC]
Rolf L, Damoiseaux J, Huitinga I, Kimenai D, van den Ouweland J, Hupperts R, et al. Stress-axis regulation by vitamin D3 in multiple sclerosis.Front Neurol. 2018;9:263. [DOI] [PubMed] [PMC]
Stefanowski B, Antosik-Wójcińska AZ, Święcicki Ł. The effect of vitamin D3 deficiency on the severity of depressive symptoms. Overview of current research.Psychiatr Pol. 2017;51:437–54. Polish. [DOI] [PubMed]
Feige J, Salmhofer H, Hecker C, Kunz AB, Franzen M, Moré E, et al. Life-threatening vitamin D intoxication due to intake of ultra-high doses in multiple sclerosis: a note of caution.Mult Scler. 2019;25:1326–8. [DOI] [PubMed]
Dobson R, Cock HR, Brex P, Giovannoni G. Vitamin D supplementation.Pract Neurol. 2018;18:35–42. [DOI] [PubMed]
Lemke D, Klement RJ, Schweiger F, Schweiger B, Spitz J. Vitamin D resistance as a possible cause of autoimmune diseases: a hypothesis confirmed by a therapeutic high-dose vitamin D protocol.Front Immunol. 2021;12:655739. [DOI] [PubMed] [PMC]
Seuter S, Virtanen JK, Nurmi T, Pihlajamäki J, Mursu J, Voutilainen S, et al. Molecular evaluation of vitamin D responsiveness of healthy young adults.J Steroid Biochem Mol Biol. 2017;174:314–21. [DOI] [PubMed]
Carlberg C, Haq A. The concept of the personal vitamin D response index.J Steroid Biochem Mol Biol. 2018;175:12–7. [DOI] [PubMed]
Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease.Nutrients. 2020;12:2097. [DOI] [PubMed] [PMC]
Hossein-nezhad A, Holick MF. Vitamin D for health: a global perspective.Mayo Clin Proc. 2013;88:720–55. [DOI] [PubMed] [PMC]
Geng C, Shaikh AS, Han W, Chen D, Guo Y, Jiang P. Vitamin D and depression: mechanisms, determination and application.Asia Pac J Clin Nutr. 2019;28:689–94. [DOI] [PubMed]
Sassi F, Tamone C, D’Amelio P. Vitamin D: nutrient, hormone, and immunomodulator.Nutrients. 2018;10:1656. [DOI] [PubMed] [PMC]
Gowda U, Mutowo MP, Smith BJ, Wluka AE, Renzaho AM. Vitamin D supplementation to reduce depression in adults: meta-analysis of randomized controlled trials.Nutrition. 2015;31:421–9. [DOI] [PubMed]
Crupi R, Cambiaghi M, Spatz L, Hen R, Thorn M, Friedman E, et al. Reduced adult neurogenesis and altered emotional behaviors in autoimmune-prone B-cell activating factor transgenic mice.Biol Psychiatry. 2010;67:558–66. [DOI] [PubMed]
Gold SM, Irwin MR. Depression and immunity: inflammation and depressive symptoms in multiple sclerosis.Immunol Allergy Clin North Am. 2009;29:309–20. [DOI] [PubMed] [PMC]
Shirazi HA, Rasouli J, Ciric B, Rostami A, Zhang GX. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation.Exp Mol Pathol. 2015;98:240–5. [DOI] [PubMed] [PMC]
Björkholm C, Monteggia LM. BDNF – a key transducer of antidepressant effects.Neuropharmacology. 2016;102:72–9. [DOI] [PubMed] [PMC]
Kuningas M, Mooijaart SP, Jolles J, Slagboom PE, Westendorp RG, van Heemst D. VDR gene variants associate with cognitive function and depressive symptoms in old age.Neurobiol Aging. 2009;30:466–73. [DOI] [PubMed]
Zhu Y, Zhou R, Yang R, Zhang Z, Bai Y, Chang F, et al. Abnormal neurogenesis in the dentate gyrus of adult mice lacking 1,25-dihydroxy vitamin D3 (1,25-(OH)2D3).Hippocampus. 2012;22:421–33. [DOI] [PubMed]
Knippenberg S, Bol Y, Damoiseaux J, Hupperts R, Smolders J. Vitamin D status in patients with MS is negatively correlated with depression, but not with fatigue.Acta Neurol Scand. 2011;124:171–5. [DOI] [PubMed]
Khan B, Shafiq H, Abbas S, Jabeen S, Khan SA, Afsar T, et al. Vitamin D status and its correlation to depression.Ann Gen Psychiatry. 2022;21:32. [DOI] [PubMed] [PMC]
Ganji V, Milone C, Cody MM, McCarty F, Wang YT. Serum vitamin D concentrations are related to depression in young adult US population: the Third National Health and Nutrition Examination Survey.Int Arch Med. 2010;3:29. [DOI] [PubMed] [PMC]
García-Montero C, Ortega MA, Alvarez-Mon MA, Fraile-Martinez O, Romero-Bazán A, Lahera G, et al. The problem of malnutrition associated with major depressive disorder from a sex-gender perspective.Nutrients. 2022;14:1107. [DOI] [PubMed] [PMC]
Okereke OI, Reynolds CF 3rd, Mischoulon D, Chang G, Vyas CM, Cook NR, et al. Effect of long-term vitamin D3 supplementation vs placebo on risk of depression or clinically relevant depressive symptoms and on change in mood scores: a randomized clinical trial.JAMA. 2020;324:471–80. [DOI] [PubMed] [PMC]
Kaviani M, Nikooyeh B, Zand H, Yaghmaei P, Neyestani TR. Effects of vitamin D supplementation on depression and some involved neurotransmitters.J Affect Disord. 2020;269:28–35. [DOI] [PubMed]
Xu Y, Baylink DJ, Chen CS, Reeves ME, Xiao J, Lacy C, et al. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19.J Transl Med. 2020;18:322. [DOI] [PubMed] [PMC]
Gombash SE, Lee PW, Sawdai E, Lovett-Racke AE. Vitamin D as a risk factor for multiple sclerosis: immunoregulatory or neuroprotective?Front Neurol. 2022;13:796933. [DOI] [PubMed] [PMC]
Di Somma C, Scarano E, Barrea L, Zhukouskaya VV, Savastano S, Mele C, et al. Vitamin D and neurological diseases: an endocrine view.Int J Mol Sci. 2017;18:2482. [DOI] [PubMed] [PMC]
AlJohri R, AlOkail M, Haq SH. Neuroprotective role of vitamin D in primary neuronal cortical culture.eNeurologicalSci. 2018;14:43–8. [DOI] [PubMed] [PMC]
Zorzella-Pezavento SFG, Mimura LAN, Denadai MB, de Souza WDF, Fraga-Silva TFC, Sartori A. Is there a window of opportunity for the therapeutic use of vitamin D in multiple sclerosis?Neural Regen Res. 2022;17:1945–54. [DOI] [PubMed] [PMC]
Hayes CE, Hubler SL, Moore JR, Barta LE, Praska CE, Nashold FE. Vitamin D actions on CD4+ T cells in autoimmune disease.Front Immunol. 2015;6:100. [DOI] [PubMed] [PMC]
Bhargava P, Sotirchos E, Eckstein C, Ntranos A, Gocke A, Mowry E, et al. High-dose vitamin D supplementation reduces IL-17-producing CD4+ T-cells and effector-memory CD4+ T-cells in multiple sclerosis patients (S38.001).Neurology. 2015;84:S38.001.
Charoenngam N, Shirvani A, Holick MF. Vitamin D for skeletal and non-skeletal health: what we should know.J Clin Orthop Trauma. 2019;10:1082–93. [DOI] [PubMed] [PMC]
Martens PJ, Gysemans C, Verstuyf A, Mathieu AC. Vitamin D’s effect on immune function.Nutrients. 2020;12:1248. [DOI] [PubMed] [PMC]
Koetzier SC, van Langelaar J, Wierenga-Wolf AF, Melief MJ, Pol K, Musters S, et al. Improving glucocorticoid sensitivity of brain-homing CD4+ T helper cells by steroid hormone crosstalk.Front Immunol. 2022;13:893702. [DOI] [PubMed] [PMC]
Miclea A, Bagnoud M, Chan A, Hoepner R. A brief review of the effects of vitamin D on multiple sclerosis.Front Immunol. 2020;11:781. [DOI] [PubMed] [PMC]
Vandebergh M, Dubois B, Goris A. Effects of vitamin D and body mass index on disease risk and relapse hazard in multiple sclerosis: a mendelian randomization study.Neurol Neuroimmunol Neuroinflamm. 2022;9:e1165. [DOI] [PubMed] [PMC]
Takahashi S, Maeda T, Sano Y, Nishihara H, Takeshita Y, Shimizu F, et al. Active form of vitamin D directly protects the blood–brain barrier in multiple sclerosis.Clin Exp Neuroimmunol. 2017;8:244–54. [DOI]
Galoppin M, Kari S, Soldati S, Pal A, Rival M, Engelhardt B, et al. Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications.Brain Commun. 2022;4:fcac171. [DOI] [PubMed] [PMC]
Nishihara H, Engelhardt B. Brain barriers and multiple sclerosis: novel treatment approaches from a brain barriers perspective.Handb Exp Pharmacol. 2022;273:295–329. [DOI] [PubMed]
Grishkan IV, Fairchild AN, Calabresi PA, Gocke AR. 1,25-Dihydroxyvitamin D3 selectively and reversibly impairs T helper-cell CNS localization.Proc Natl Acad Sci U S A. 2013;110:21101–6. [DOI] [PubMed] [PMC]
Medina-Rodriguez EM, Beurel E. Blood brain barrier and inflammation in depression.Neurobiol Dis. 2022;175:105926. [DOI] [PubMed]
Beurel E, Lowell JA, Jope RS. Distinct characteristics of hippocampal pathogenic TH17 cells in a mouse model of depression.Brain Behav Immun. 2018;73:180–91. [DOI] [PubMed] [PMC]
Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue.Brain Behav Immun. 2019;81:24–40. [DOI] [PubMed]
Schlaaff K, Dobrowolny H, Frodl T, Mawrin C, Gos T, Steiner J, et al. Increased densities of T and B lymphocytes indicate neuroinflammation in subgroups of schizophrenia and mood disorder patients.Brain Behav Immun. 2020;88:497–506. [DOI] [PubMed]
Rajkowska G, Hughes J, Stockmeier CA, Javier Miguel-Hidalgo J, Maciag D. Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder.Biol Psychiatry. 2013;73:613–21. [DOI] [PubMed] [PMC]
Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue.Curr Drug Targets. 2013;14:1225–36. [DOI] [PubMed] [PMC]
Greene C, Hanley N, Campbell M. Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders.Transl Psychiatry. 2020;10:373. [DOI] [PubMed] [PMC]
Guerrero BL, Sicotte NL. Microglia in multiple sclerosis: friend or foe?Front Immunol. 2020;11:374. [DOI] [PubMed] [PMC]
Radandish M, Khalilian P, Esmaeil N. The role of distinct subsets of macrophages in the pathogenesis of MS and the impact of different therapeutic agents on these populations.Front Immunol. 2021;12:667705. [DOI] [PubMed] [PMC]
Wang J, Wang J, Wang J, Yang B, Weng Q, He Q. Targeting microglia and macrophages: a potential treatment strategy for multiple sclerosis.Front Pharmacol. 2019;10:286. [DOI] [PubMed] [PMC]
Kouba BR, Camargo A, Gil-Mohapel J, Rodrigues ALS. Molecular basis underlying the therapeutic potential of vitamin D for the treatment of depression and anxiety.Int J Mol Sci. 2022;23:7077. [DOI] [PubMed] [PMC]
Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. Association of chronic active multiple sclerosis lesions with disability in vivo.JAMA Neurol. 2019;76:1474–83.Erratum in: JAMA Neurol. 2019;76:1520. [DOI] [PubMed] [PMC]
Airas L, Yong VW. Microglia in multiple sclerosis – pathogenesis and imaging.Curr Opin Neurol. 2022;35:299–306. [DOI] [PubMed]
Spanier JA, Nashold FE, Nelson CD, Praska CE, Hayes CE. Vitamin D3-mediated resistance to a multiple sclerosis model disease depends on myeloid cell 1,25-dihydroxyvitamin D3 synthesis and correlates with increased CD4+ T cell CTLA-4 expression.J Neuroimmunol. 2020;338:577105. [DOI] [PubMed]
Lee PW, Selhorst A, Lampe SG, Liu Y, Yang Y, Lovett-Racke AE. Neuron-specific vitamin D signaling attenuates microglia activation and CNS autoimmunity.Front Neurol. 2020;11:19. [DOI] [PubMed] [PMC]
Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease.Trends Neurosci. 2015;38:637–58. [DOI] [PubMed]
Zhang C, Zhang YP, Li YY, Liu BP, Wang HY, Li KW, et al. Minocycline ameliorates depressive behaviors and neuro-immune dysfunction induced by chronic unpredictable mild stress in the rat.Behav Brain Res. 2019;356:348–57. [DOI] [PubMed]
Marrie RA, Allegretta M, Barcellos LF, Bebo B, Calabresi PA, Correale J, et al. From the prodromal stage of multiple sclerosis to disease prevention.Nat Rev Neurol. 2022;18:559–72. [DOI] [PubMed]
Beltrán E, Gerdes LA, Hansen J, Flierl-Hecht A, Krebs S, Blum H, et al. Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis.J Clin Invest. 2019;129:4758–68. [DOI] [PubMed] [PMC]
Plantone D, Primiano G, Manco C, Locci S, Servidei S, De Stefano N. Vitamin D in neurological diseases.Int J Mol Sci. 2022;24:87. [DOI] [PubMed] [PMC]
Lysandropoulos AP, Jaquiéry E, Jilek S, Pantaleo G, Schluep M, Du Pasquier RA. Vitamin D has a direct immunomodulatory effect on CD8+ T cells of patients with early multiple sclerosis and healthy control subjects.J Neuroimmunol. 2011;233:240–4. [DOI] [PubMed]
Brownlee WJ, Tur C, Manole A, Eshaghi A, Prados F, Miszkiel KA, et al. HLA-DRB1*1501 influences long-term disability progression and tissue damage on MRI in relapse-onset multiple sclerosis.Mult Scler. 2023;29:333–42. [DOI] [PubMed]
Makhani N, Tremlett H. The multiple sclerosis prodrome.Nat Rev Neurol. 2021;17:515–21. [DOI] [PubMed] [PMC]
Yusuf FLA, Ng BC, Wijnands JMA, Kingwell E, Marrie RA, Tremlett H. A systematic review of morbidities suggestive of the multiple sclerosis prodrome.Expert Rev Neurother. 2020;20:799–819. [DOI] [PubMed]
Disanto G, Zecca C, MacLachlan S, Sacco R, Handunnetthi L, Meier UC, et al. Prodromal symptoms of multiple sclerosis in primary care.Ann Neurol. 2018;83:1162–73. [DOI] [PubMed]
Tremlett H, Munger KL, Makhani N. The multiple sclerosis prodrome: evidence to action.Front Neurol. 2022;12:761408. [DOI] [PubMed] [PMC]
Hahn J, Cook NR, Alexander EK, Friedman S, Walter J, Bubes V, et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial.BMJ. 2022;376:e066452. [DOI] [PubMed] [PMC]
Gianfrancesco MA, Stridh P, Rhead B, Shao X, Xu E, Graves JS, et al.; Network of Pediatric Multiple Sclerosis Centers. Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS.Neurology. 2017;88:1623–9. [DOI] [PubMed] [PMC]
Mokry LE, Ross S, Ahmad OS, Forgetta V, Smith GD, Goltzman D, et al. Vitamin D and risk of multiple sclerosis: a mendelian randomization study.PLoS Med. 2015;12:e1001866.Erratum in: PLoS Med. 2016;13:e1001981. [DOI] [PubMed] [PMC]
Rhead B, Bäärnhielm M, Gianfrancesco M, Mok A, Shao X, Quach H, et al. Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk.Neurol Genet. 2016;2:e97. [DOI] [PubMed] [PMC]
Mimura LAN, Fraga-Silva TFC, Oliveira LRC, Ishikawa LLW, Borim PA, Machado CM, et al. Preclinical therapy with vitamin D3 in experimental encephalomyelitis: efficacy and comparison with paricalcitol.Int J Mol Sci. 2021;22:1914. [DOI] [PubMed] [PMC]
Correale J, Hohlfeld R, Baranzini SE. The role of the gut microbiota in multiple sclerosis.Nat Rev Neurol. 2022;18:544–58. [DOI] [PubMed]
Mirza A, Forbes JD, Zhu F, Bernstein CN, Van Domselaar G, Graham M, et al. The multiple sclerosis gut microbiota: a systematic review.Mult Scler Relat Disord. 2020;37:101427. [DOI] [PubMed]
Thirion F, Sellebjerg F, Fan Y, Lyu L, Hansen TH, Pons N, et al. The gut microbiota in multiple sclerosis varies with disease activity.Genome Med. 2023;15:1. [DOI] [PubMed] [PMC]
Sotirchos ES, Bhargava P, Eckstein C, Van Haren K, Baynes M, Ntranos A, et al. Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis.Neurology. 2016;86:382–90. [DOI] [PubMed] [PMC]
Lopez DV, Al-Jaberi FAH, Damas ND, Weinert BT, Pus U, Torres-Rusillo S, et al. Vitamin D inhibits IL-22 production through a repressive vitamin D response element in the il22 promoter.Front Immunol. 2021;12:715059. [DOI] [PubMed] [PMC]
Wing AC, Hygino J, Ferreira TB, Kasahara TM, Barros PO, Sacramento PM, et al. Interleukin-17- and interleukin-22-secreting myelin-specific CD4+ T cells resistant to corticoids are related with active brain lesions in multiple sclerosis patients.Immunology. 2016;147:212–20. [DOI] [PubMed] [PMC]
Ogbu D, Xia E, Sun J. Gut instincts: vitamin D/vitamin D receptor and microbiome in neurodevelopment disorders.Open Biol. 2020;10:200063. [DOI] [PubMed] [PMC]
Zhu F, Tu H, Chen T. The microbiota-gut-brain axis in depression: the potential pathophysiological mechanisms and microbiota combined antidepression effect.Nutrients. 2022;14:2081. [DOI] [PubMed] [PMC]
Chang L, Wei Y, Hashimoto K. Brain-gut-microbiota axis in depression: a historical overview and future directions.Brain Res Bull. 2022;182:44–56. [DOI] [PubMed]
Liang S, Wu X, Hu X, Wang T, Jin F. Recognizing depression from the microbiota–gut–brain axis.Int J Mol Sci. 2018;19:1592. [DOI] [PubMed] [PMC]
Yamamoto EA, Jørgensen TN. Relationships between vitamin D, gut microbiome, and systemic autoimmunity.Front Immunol. 2020;10:3141. [DOI] [PubMed] [PMC]
Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder.Brain Behav Immun. 2015;48:186–94. [DOI] [PubMed]
Ng QX, Peters C, Ho CYX, Lim DY, Yeo WS. A meta-analysis of the use of probiotics to alleviate depressive symptoms.J Affect Disord. 2018;228:13–9. [DOI] [PubMed]
Assa A, Vong L, Pinnell LJ, Avitzur N, Johnson-Henry KC, Sherman PM. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation.J Infect Dis. 2014;210:1296–305. [DOI] [PubMed]
Ooi JH, Li Y, Rogers CJ, Cantorna MT. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis.J Nutr. 2013;143:1679–86. [DOI] [PubMed] [PMC]
Akimbekov NS, Digel I, Sherelkhan DK, Lutfor AB, Razzaque MS. Vitamin D and the host-gut microbiome: a brief overview.Acta Histochem Cytochem. 2020;53:33–42. [DOI] [PubMed] [PMC]
Riccio P, Rossano R. Diet, gut microbiota, and vitamins D + A in multiple sclerosis.Neurotherapeutics. 2018;15:75–91. [DOI] [PubMed] [PMC]
Charoenngam N, Shirvani A, Kalajian TA, Song A, Holick MF. The effect of various doses of oral vitamin D3 supplementation on gut microbiota in healthy adults: a randomized, double-blinded, dose-response study.Anticancer Res. 2020;40:551–6. [DOI] [PubMed]
Singh P, Rawat A, Alwakeel M, Sharif E, Al Khodor S. The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals.Sci Rep. 2020;10:21641. [DOI] [PubMed] [PMC]
Bashir M, Prietl B, Tauschmann M, Mautner SI, Kump PK, Treiber G, et al. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract.Eur J Nutr. 2016;55:1479–89. [DOI] [PubMed] [PMC]
Musazadeh V, Keramati M, Ghalichi F, Kavyani Z, Ghoreishi Z, Alras KA, et al. Vitamin D protects against depression: evidence from an umbrella meta-analysis on interventional and observational meta-analyses.Pharmacol Res. 2023;187:106605. [DOI] [PubMed]
Wong SK, Chin KY, Ima-Nirwana S. Vitamin D and depression: the evidence from an indirect clue to treatment strategy.Curr Drug Targets. 2018;19:888–97. [DOI] [PubMed]
Vigod SN, Wilson CA, Howard LM. Depression in pregnancy.BMJ. 2016;352:i1547. [DOI]
Evans J, Heron J, Francomb H, Oke S, Golding J. Cohort study of depressed mood during pregnancy and after childbirth.BMJ. 2001;323:257–60. [DOI] [PubMed] [PMC]
Williams T, Tur C, Eshaghi A, Doshi A, Chan D, Binks S, et al. Serum neurofilament light and MRI predictors of cognitive decline in patients with secondary progressive multiple sclerosis: analysis from the MS-STAT randomised controlled trial.Mult Scler. 2022;28:1913–26. [DOI] [PubMed] [PMC]
Accortt EE, Lamb A, Mirocha J, Hobel CJ. Vitamin D deficiency and depressive symptoms in pregnancy are associated with adverse perinatal outcomes.J Behav Med. 2018;41:680–9. [DOI] [PubMed]
Vaziri F, Nasiri S, Tavana Z, Dabbaghmanesh MH, Sharif F, Jafari P. A randomized controlled trial of vitamin D supplementation on perinatal depression: in Iranian pregnant mothers.BMC Pregnancy Childbirth. 2016;16:239. [DOI] [PubMed] [PMC]
Lamb AR, Lutenbacher M, Wallston KA, Pepkowitz SH, Holmquist B, Hobel CJ. Vitamin D deficiency and depressive symptoms in the perinatal period.Arch Womens Ment Health. 2018;21:745–55. [DOI] [PubMed]
Accortt EE, Arora C, Mirocha J, Jackman S, Liang R, Karumanchi SA, et al. Low prenatal vitamin D metabolite ratio and subsequent postpartum depression risk.J Womens Health (Larchmt). 2021;30:113–20. [DOI] [PubMed] [PMC]
Upadhyaya S, Ståhlberg T, Silwal S, Arrhenius B, Sourander A. Maternal vitamin D levels during pregnancy and offspring psychiatric outcomes: a systematic review.Int J Mol Sci. 2022;24:63. [DOI] [PubMed] [PMC]
Gould JF, Gibson RA, Green TJ, Makrides M. A systematic review of vitamin D during pregnancy and postnatally and symptoms of depression in the antenatal and postpartum period from randomized controlled trials and observational studies.Nutrients. 2022;14:2300. [DOI] [PubMed] [PMC]
Rahman ST, Waterhouse M, Romero BD, Baxter C, English DR, Almeida OP, et al. Effect of vitamin D supplementation on depression in older Australian adults.Int J Geriatr Psychiatry. 2023;38:e5847. [DOI] [PubMed] [PMC]
Waterhouse M, Sanguineti E, Baxter C, Duarte Romero B, McLeod DSA, English DR, et al. Vitamin D supplementation and risk of falling: outcomes from the randomized, placebo-controlled D-Health Trial.J Cachexia Sarcopenia Muscle. 2021;12:1428–39. [DOI] [PubMed] [PMC]
Heaney RP, Armas LA. Quantifying the vitamin D economy.Nutr Rev. 2015;73:51–67. [DOI] [PubMed]
Hayes CE, Ntambi JM. Multiple sclerosis: lipids, lymphocytes, and vitamin D.Immunometabolism. 2020;2:e200019. [DOI] [PubMed] [PMC]
Liefaard MC, Ligthart S, Vitezova A, Hofman A, Uitterlinden AG, Kiefte-de Jong JC, et al. Vitamin D and C-reactive protein: a mendelian randomization study.PLoS One. 2015;10:e0131740. [DOI] [PubMed] [PMC]
Sangha A, Quon M, Pfeffer G, Orton SM. The role of vitamin D in neuroprotection in multiple sclerosis: an update.Nutrients. 2023;15:2978. [DOI] [PubMed] [PMC]
Lefebvre d’Hellencourt C, Montero-Menei CN, Bernard R, Couez D. Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line.J Neurosci Res. 2003;71:575–82. [DOI] [PubMed]
Herman FJ, Pasinetti GM. Principles of inflammasome priming and inhibition: implications for psychiatric disorders.Brain Behav Immun. 2018;73:66–84. [DOI] [PubMed] [PMC]
Alghamdi S, Alsulami N, Khoja S, Alsufiani H, Tayeb HO, Tarazi FI. Vitamin D supplementation ameliorates severity of major depressive disorder.J Mol Neurosci. 2020;70:230–5. [DOI] [PubMed]
Goischke HK. Neurofilament light chain determination: referee for future vitamin D3 supplementation in multiple sclerosis?Neuroimmunomodulation. 2022;29:520–2. [DOI] [PubMed]
Huang MC, Chen CH, Liu TH, Chung AN, Liu YL, Quednow BB, et al. Comorbidity of ketamine dependence with major depressive disorder increases the vulnerability to neuroaxonal pathology.J Psychiatr Res. 2023;158:360–4. [DOI] [PubMed]
Liu YL, Bavato F, Chung AN, Liu TH, Chen YL, Huang MC, et al. Neurofilament light chain as novel blood biomarker of disturbed neuroaxonal integrity in patients with ketamine dependence.World J Biol Psychiatry. 2021;22:713–21. [DOI] [PubMed]
Rolf L, Muris AH, Bol Y, Damoiseaux J, Smolders J, Hupperts R. Vitamin D3 supplementation in multiple sclerosis: symptoms and biomarkers of depression.J Neurol Sci. 2017;378:30–5. [DOI] [PubMed]
Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol.Am J Clin Nutr. 2003;77:204–10.Erratum in: Am J Clin Nutr. 2003;78:1047. [DOI] [PubMed]
Røsjø E, Lindstrøm JC, Holmøy T, Myhr KM, Varhaug KN, Torkildsen Ø. Natural variation of vitamin D and neurofilament light chain in relapsing-remitting multiple sclerosis.Front Neurol. 2020;11:329. [DOI] [PubMed] [PMC]
Smolders J, Hiller A, Camu W. Editorial: Vitamin D in neurological diseases: from pathophysiology to therapy.Front Neurol. 2021;12:614900. [DOI] [PubMed] [PMC]
Grant WB, Al Anouti F, Boucher BJ, Dursun E, Gezen-Ak D, Jude EB, et al. A narrative review of the evidence for variations in serum 25-hydroxyvitamin D concentration thresholds for optimal health.Nutrients. 2022;14:639. [DOI] [PubMed] [PMC]
Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis.JAMA. 2006;296:2832–8. [DOI] [PubMed]
Sintzel MB, Rametta M, Reder AT. Vitamin D and multiple sclerosis: a comprehensive review.Neurol Ther. 2018;7:59–85. [DOI] [PubMed] [PMC]
Calton EK, Keane KN, Newsholme P, Soares MJ. The impact of vitamin D levels on inflammatory status: a systematic review of immune cell studies.PLoS One. 2015;10:e0141770. [DOI] [PubMed] [PMC]
Shoemaker TJ, Mowry EM. A review of vitamin D supplementation as disease-modifying therapy.Mult Scler. 2018;24:6–11. [DOI] [PubMed]
Weydert JA. Vitamin D in children’s health.Children (Basel). 2014;1:208–26. [DOI] [PubMed] [PMC]
Chonchol M, Kendrick J, Targher G. Extra-skeletal effects of vitamin D deficiency in chronic kidney disease.Ann Med. 2011;43:273–82. [DOI] [PubMed] [PMC]
Fitzgerald KC, Munger KL, Köchert K, Arnason BG, Comi G, Cook S, et al. Association of vitamin D levels with multiple sclerosis activity and progression in patients receiving interferon beta-1b.JAMA Neurol. 2015;72:1458–65. [DOI] [PubMed]
Goncalves-Mendes N, Talvas J, Dualé C, Guttmann A, Corbin V, Marceau G, et al. Impact of vitamin D supplementation on influenza vaccine response and immune functions in deficient elderly persons: a randomized placebo-controlled trial.Front Immunol. 2019;10:65. [DOI] [PubMed] [PMC]
Holmøy T, Torkildsen Ø. Can vitamin D reduce inflammation in relapsing-remitting multiple sclerosis?Expert Rev Neurother. 2016;16:233–5. [DOI] [PubMed]
Borsche L, Glauner B, von Mendel J. COVID-19 mortality risk correlates inversely with vitamin D3 status, and a mortality rate close to zero could theoretically be achieved at 50 ng/mL 25(OH)D3: results of a systematic review and meta-analysis.Nutrients. 2021;13:3596. [DOI] [PubMed] [PMC]
Holick MF, Mazzei L, García Menéndez S, Martín Giménez VM, Al Anouti F, Manucha W. Genomic or non-genomic? A question about the pleiotropic roles of vitamin D in inflammatory-based diseases.Nutrients. 2023;15:767. [DOI] [PubMed] [PMC]
Kaufman HW, Niles JK, Kroll MH, Bi C, Holick MF. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels.PLoS One. 2020;15:e0239252. [DOI] [PubMed] [PMC]
Xie F, Huang T, Lou D, Fu R, Ni C, Hong J, et al. Effect of vitamin D supplementation on the incidence and prognosis of depression: an updated meta-analysis based on randomized controlled trials.Front Public Health. 2022;10:903547. [DOI] [PubMed] [PMC]
Zhu C, Zhang Y, Wang T, Lin Y, Yu J, Xia Q, et al. Vitamin D supplementation improves anxiety but not depression symptoms in patients with vitamin D deficiency.Brain Behav. 2020;10:e01760. [DOI] [PubMed] [PMC]
Guzek D, Kołota A, Lachowicz K, Skolmowska D, Stachoń M, Głąbska D. Effect of vitamin D supplementation on depression in adults: a systematic review of randomized controlled trials (RCTs).Nutrients. 2023;15:951. [DOI] [PubMed] [PMC]
Knippenberg S, Damoiseaux J, Bol Y, Hupperts R, Taylor BV, Ponsonby AL, et al. Higher levels of reported sun exposure, and not vitamin D status, are associated with less depressive symptoms and fatigue in multiple sclerosis.Acta Neurol Scand. 2014;129:123–31. [DOI] [PubMed]
Koch M, Uyttenboogaart M, van Harten A, Heerings M, De Keyser J. Fatigue, depression and progression in multiple sclerosis.Mult Scler. 2008;14:815–22. [DOI] [PubMed]
Kotb MA, Kamal AM, Aldossary NM, Bedewi MA. Effect of vitamin D replacement on depression in multiple sclerosis patients.Mult Scler Relat Disord. 2019;29:111–7. [DOI] [PubMed]
Hollis BW, Wagner CL. Clinical review: the role of the parent compound vitamin D with respect to metabolism and function: why clinical dose intervals can affect clinical outcomes.J Clin Endocrinol Metab. 2013;98:4619–28. [DOI] [PubMed] [PMC]
Vieth R, Kimball S, Hu A, Walfish PG. Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients.Nutr J. 2004;3:8. [DOI] [PubMed] [PMC]
Vieth R. How to optimize vitamin D supplementation to prevent cancer, based on cellular adaptation and hydroxylase enzymology.Anticancer Res. 2009;29:3675–84. [PubMed]
Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data.BMJ. 2017;356:i6583. [DOI] [PubMed] [PMC]
Griffin G, Hewison M, Hopkin J, Kenny RA, Quinton R, Rhodes J, et al. Perspective: Vitamin D supplementation prevents rickets and acute respiratory infections when given as daily maintenance but not as intermittent bolus: implications for COVID-19.Clin Med (Lond). 2021;21:e144–9. [DOI] [PubMed] [PMC]
Manaseki-Holland S, Maroof Z, Bruce J, Mughal MZ, Masher MI, Bhutta ZA, et al. Effect on the incidence of pneumonia of vitamin D supplementation by quarterly bolus dose to infants in Kabul: a randomised controlled superiority trial.Lancet. 2012;379:1419–27. [DOI] [PubMed] [PMC]
Ketha H, Thacher TD, Oberhelman SS, Fischer PR, Singh RJ, Kumar R. Comparison of the effect of daily versus bolus dose maternal vitamin D3 supplementation on the 24,25-dihydroxyvitamin D3 to 25-hydroxyvitamin D3 ratio.Bone. 2018;110:321–5. [DOI] [PubMed] [PMC]
Mikola T, Marx W, Lane MM, Hockey M, Loughman A, Rajapolvi S, et al. The effect of vitamin D supplementation on depressive symptoms in adults: a systematic review and meta-analysis of randomized controlled trials.Crit Rev Food Sci Nutr. 2022:1–18. [DOI] [PubMed]
Kaviani M, Nikooyeh B, Etesam F, Behnagh SJ, Kangarani HM, Arefi M, et al. Effects of vitamin D supplementation on depression and some selected pro-inflammatory biomarkers: a double-blind randomized clinical trial.BMC Psychiatry. 2022;22:694. [DOI] [PubMed] [PMC]
Raygan F, Ostadmohammadi V, Bahmani F, Asemi Z. The effects of vitamin D and probiotic co-supplementation on mental health parameters and metabolic status in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial.Prog Neuropsychopharmacol Biol Psychiatry. 2018;84:50–5. [DOI] [PubMed]
Penckofer S, Ridosh M, Adams W, Grzesiak M, Woo J, Byrn M, et al. Vitamin D supplementation for the treatment of depressive symptoms in women with type 2 diabetes: a randomized clinical trial.J Diabetes Res. 2022;2022:4090807. [DOI] [PubMed] [PMC]
Cortese M, Munger KL, Martínez-Lapiscina EH, Barro C, Edan G, Freedman MS, et al.; BENEFIT Study Group. Vitamin D, smoking, EBV, and long-term cognitive performance in MS: 11-year follow-up of BENEFIT.Neurology. 2020;94:e1950–60. [DOI] [PubMed] [PMC]
Yigit P, Acikgoz A, Mehdiyev Z, Dayi A, Ozakbas S. The relationship between cognition, depression, fatigue, and disability in patients with multiple sclerosis.Ir J Med Sci. 2021;190:1129–36. [DOI] [PubMed]
Whitehouse CE, Fisk JD, Bernstein CN, Berrigan LI, Bolton JM, Graff LA, et al.; CIHR Team in Defining the Burden and Managing the Effects of Psychiatric Comorbidity in Chronic Immunoinflammatory Disease. Comorbid anxiety, depression, and cognition in MS and other immune-mediated disorders.Neurology. 2019;92:e406–17. [DOI] [PubMed] [PMC]
Darwish H, Farran N, Hannoun S, Tadros N, Yamout B, El Ayoubi NK, et al. Serum vitamin D level is associated with speed of processing in multiple sclerosis patients.J Steroid Biochem Mol Biol. 2020;200:105628. [DOI] [PubMed]
Rademacher TD, Meuth SG, Wiendl H, Johnen A, Landmeyer NC. Molecular biomarkers and cognitive impairment in multiple sclerosis: state of the field, limitations, and future direction – a systematic review and meta-analysis.Neurosci Biobehav Rev. 2023;146:105035. [DOI] [PubMed]
Muris AH, Smolders J, Rolf L, Thewissen M, Hupperts R, Damoiseaux J; SOLARIUM study group. Immune regulatory effects of high dose vitamin D3 supplementation in a randomized controlled trial in relapsing remitting multiple sclerosis patients receiving IFNβ; the SOLARIUM study.J Neuroimmunol. 2016;300:47–56. [DOI] [PubMed]
Virgilio E, Vecchio D, Crespi I, Puricelli C, Barbero P, Galli G, et al. Cerebrospinal fluid biomarkers and cognitive functions at multiple sclerosis diagnosis.J Neurol. 2022;269:3249–57. [DOI] [PubMed]
Głąbska D, Kołota A, Lachowicz K, Skolmowska D, Stachoń M, Guzek D. Vitamin D supplementation and mental health in multiple sclerosis patients: a systematic review.Nutrients. 2021;13:4207. [DOI] [PubMed] [PMC]
O’Connor K, Weinstock-Guttman B, Carl E, Kilanowski C, Zivadinov R, Ramanathan M. Patterns of dietary and herbal supplement use by multiple sclerosis patients.J Neurol. 2012;259:637–44. [DOI] [PubMed]
Bergien S, Petersen CM, Lynning M, Kristiansen M, Skovgaard L. “I need personal experiences or some sort of documentation”: a qualitative study on where people with multiple sclerosis seek information on dietary and herbal supplements.BMC Complement Med Ther. 2021;21:213. [DOI] [PubMed] [PMC]
Salami M, Kouchaki E, Asemi Z, Tamtaji OR. How probiotic bacteria influence the motor and mental behaviors as well as immunological and oxidative biomarkers in multiple sclerosis? A double blind clinical trial.J Funct Foods. 2019;52:8–13. [DOI]
Mazidi M, Rezaie P, Ferns GA, Vatanparast H. Impact of probiotic administration on serum C-reactive protein concentrations: systematic review and meta-analysis of randomized control trials.Nutrients. 2017;9:20. [DOI] [PubMed] [PMC]
Hashemi B, Abdollahi M, Abbaspour-Aghdam S, Hazrati A, Malekpour K, Meshgi S, et al. The effect of probiotics on immune responses and their therapeutic application: a new treatment option for multiple sclerosis.Biomed Pharmacother. 2023;159:114195. [DOI] [PubMed]
Dziedzic A, Saluk J. Probiotics and commensal gut microbiota as the effective alternative therapy for multiple sclerosis patients treatment.Int J Mol Sci. 2022;23:14478. [DOI] [PubMed] [PMC]
Wyse J, Mangan R, Zgaga L. Power determination in vitamin D randomised control trials and characterising factors affecting it through a novel simulation-based tool.Sci Rep. 2021;11:10804.Erratum in: Sci Rep. 2021;11:13387. [DOI] [PubMed] [PMC]
Pilz S, Trummer C, Theiler-Schwetz V, Grübler MR, Verheyen ND, Odler B, et al. Critical appraisal of large vitamin D randomized controlled trials.Nutrients. 2022;14:303. [DOI] [PubMed] [PMC]
Jorde R, Sneve M, Figenschau Y, Svartberg J, Waterloo K. Effects of vitamin D supplementation on symptoms of depression in overweight and obese subjects: randomized double blind trial.J Intern Med. 2008;264:599–609. [DOI] [PubMed]
Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: an update.Mult Scler Relat Disord. 2017;14:35–45. [DOI] [PubMed]
Scragg R. Limitations of vitamin D supplementation trials: why observational studies will continue to help determine the role of vitamin D in health.J Steroid Biochem Mol Biol. 2018;177:6–9. [DOI] [PubMed]
Föcker M, Antel J, Ring S, Hahn D, Kanal Ö, Öztürk D, et al. Vitamin D and mental health in children and adolescents.Eur Child Adolesc Psychiatry. 2017;26:1043–66. [DOI] [PubMed]
Bolland MJ, Grey A, Avenell A. Assessment of research waste part 2: wrong study populations- an exemplar of baseline vitamin D status of participants in trials of vitamin D supplementation.BMC Med Res Methodol. 2018;18:101. [DOI] [PubMed] [PMC]
Zgaga L, Shraim R, Bolger E, Wyse J. Statistical power in vitamin D randomized control trials investigating biomarkers as continuous outcomes.J Steroid Biochem Mol Biol. 2022;222:106148. [DOI] [PubMed]
Heaney RP. Guidelines for optimizing design and analysis of clinical studies of nutrient effects.Nutr Rev. 2014;72:48–54. [DOI] [PubMed]
Grant WB, Boucher BJ, Al Anouti F, Pilz S. Comparing the evidence from observational studies and randomized controlled trials for nonskeletal health effects of vitamin D.Nutrients. 2022;14:3811. [DOI] [PubMed] [PMC]
Hupperts R, Smolders J, Vieth R, Holmøy T, Marhardt K, Schluep M, et al.; SOLAR Study Group. Randomized trial of daily high-dose vitamin D3 in patients with RRMS receiving subcutaneous interferon β-1a.Neurology. 2019;93:e1906–16. [DOI] [PubMed] [PMC]
Laurence M, Benito-León J. Epstein-Barr virus and multiple sclerosis: updating Pender’s hypothesis.Mult Scler Relat Disord. 2017;16:8–14. [DOI] [PubMed]
Sollid LM. Epstein-Barr virus as a driver of multiple sclerosis.Sci Immunol. 2022;7:eabo7799. [DOI] [PubMed]
Hrastelj J, Robertson NP. A role for the Epstein-Barr virus in multiple sclerosis aetiology?J Neurol. 2022;269:3962–3. [DOI] [PubMed] [PMC]
Horwitz RI, Hayes-Conroy A, Singer BH, Cullen MR, Badal K, Sim I. Falling down the biological rabbit hole: Epstein-Barr virus, biography, and multiple sclerosis.J Clin Invest. 2022;132:e164141. [DOI] [PubMed] [PMC]
Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis.Science. 2022;375:296–301. [DOI] [PubMed]
Hanwell HE, Banwell B. Assessment of evidence for a protective role of vitamin D in multiple sclerosis.Biochim Biophys Acta. 2011;1812:202–12. [DOI] [PubMed]
Décard BF, von Ahsen N, Grunwald T, Streit F, Stroet A, Niggemeier P, et al. Low vitamin D and elevated immunoreactivity against Epstein-Barr virus before first clinical manifestation of multiple sclerosis.J Neurol Neurosurg Psychiatry. 2012;83:1170–3. [DOI] [PubMed]
Niino M. Risk factors for multiple sclerosis: decreased vitamin D level and remote Epstein-Barr virus infection in the pre-clinical phase of multiple sclerosis.J Neurol Neurosurg Psychiatry. 2012;83:1135. [DOI] [PubMed]
Miele G, Abbadessa G, Cavalla P, Valentino P, Marfia GA, Landi D, et al. Association of vitamin D serum levels and vitamin D supplementation with B cell kinetics and disease activity in multiple sclerosis patients treated with ocrelizumab: an Italian multi-center study.Mult Scler Relat Disord. 2022;68:104395. [DOI] [PubMed]
Rolf L, Muris AH, Hupperts R, Damoiseaux J. Illuminating vitamin D effects on B cells – the multiple sclerosis perspective.Immunology. 2016;147:275–84. [DOI] [PubMed] [PMC]
Linden J, Granåsen G, Salzer J, Svenningsson A, Sundström P. Inflammatory activity and vitamin D levels in an MS population treated with rituximab.Mult Scler J Exp Transl Clin. 2019;5:2055217319826598. [DOI] [PubMed] [PMC]
Røsjø E, Lossius A, Abdelmagid N, Lindstrøm JC, Kampman MT, Jørgensen L, et al. Effect of high-dose vitamin D3 supplementation on antibody responses against Epstein-Barr virus in relapsing-remitting multiple sclerosis.Mult Scler. 2017;23:395–402. [DOI] [PubMed]
Rolf L, Muris AH, Mathias A, Du Pasquier R, Koneczny I, Disanto G, et al. Exploring the effect of vitamin D3 supplementation on the anti-EBV antibody response in relapsing-remitting multiple sclerosis.Mult Scler. 2018;24:1280–7. [DOI] [PubMed] [PMC]
Ascherio A, Munger KL, Lennette ET, Spiegelman D, Hernán MA, Olek MJ, et al. Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study.JAMA. 2001;286:3083–8. [DOI] [PubMed]
Hajeer S, Nasr F, Nabha S, Saab MB, Harati H, Desoutter A, et al. Association between vitamin D deficiency and multiple sclerosis- MRI significance: a scoping review.Heliyon. 2023;9:e15754. [DOI] [PubMed] [PMC]
Guan Y, Jakimovski D, Ramanathan M, Weinstock-Guttman B, Zivadinov R. The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging.Neural Regen Res. 2019;14:373–86. [DOI] [PubMed] [PMC]
Lünemann JD, Tintoré M, Messmer B, Strowig T, Rovira A, Perkal H, et al. Elevated Epstein-Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis.Ann Neurol. 2010;67:159–69. [DOI] [PubMed] [PMC]
Munger KL, Fitzgerald KC, Freedman MS, Hartung HP, Miller DH, Montalbán X, et al. No association of multiple sclerosis activity and progression with EBV or tobacco use in BENEFIT.Neurology. 2015;85:1694–701. [DOI] [PubMed] [PMC]
Farrell RA, Antony D, Wall GR, Clark DA, Fisniku L, Swanton J, et al. Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI.Neurology. 2009;73:32–8. [DOI] [PubMed] [PMC]
Kvistad S, Myhr KM, Holmøy T, Bakke S, Beiske AG, Bjerve KS, et al. Antibodies to Epstein-Barr virus and MRI disease activity in multiple sclerosis.Mult Scler. 2014;20:1833–40. [DOI] [PubMed]
Zivadinov R, Cerza N, Hagemeier J, Carl E, Badgett D, Ramasamy DP, et al. Humoral response to EBV is associated with cortical atrophy and lesion burden in patients with MS.Neurol Neuroimmunol Neuroinflamm. 2016;3:e190. [DOI] [PubMed] [PMC]
Jakimovski D, Zivadinov R, Ramanthan M, Hagemeier J, Weinstock-Guttman B, Tomic D, et al. Serum neurofilament light chain level associations with clinical and cognitive performance in multiple sclerosis: a longitudinal retrospective 5-year study.Mult Scler. 2020;26:1670–81. [DOI] [PubMed]
Simpson S Jr, Taylor B, Blizzard L, Ponsonby AL, Pittas F, Tremlett H, et al. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis.Ann Neurol. 2010;68:193–203. [DOI] [PubMed]
van der Mei IA, Ponsonby AL, Dwyer T, Blizzard L, Taylor BV, Kilpatrick T, et al. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia.J Neurol. 2007;254:581–90. [DOI] [PubMed]
Ascherio A, Munger KL, White R, Köchert K, Simon KC, Polman CH, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression.JAMA Neurol. 2014;71:306–14. [DOI] [PubMed] [PMC]
Mowry EM, Waubant E, McCulloch CE, Okuda DT, Evangelista AA, Lincoln RR, et al. Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis.Ann Neurol. 2012;72:234–40. [DOI] [PubMed] [PMC]
Disanto G, Handel AE, Damoiseaux J, Hupperts R, Giovannoni G, Smolders J, et al. Vitamin D supplementation and antibodies against the Epstein-Barr virus in multiple sclerosis patients.Mult Scler. 2013;19:1679–80. [DOI] [PubMed]
Horwitz RI, Conroy AH, Cullen MR, Colella K, Mawn M, Singer BH, et al. Long COVID and medicine’s two cultures.Am J Med. 2022;135:945–9. [DOI] [PubMed]
Cohen S. Psychosocial vulnerabilities to upper respiratory infectious illness: implications for susceptibility to coronavirus disease 2019 (COVID-19).Perspect Psychol Sci. 2021;16:161–74. [DOI] [PubMed] [PMC]
Glaser R, Friedman SB, Smyth J, Ader R, Bijur P, Brunell P, et al. The differential impact of training stress and final examination stress on herpesvirus latency at the United States Military Academy at West Point.Brain Behav Immun. 1999;13:240–51. [DOI] [PubMed]
Kerr JR. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors.J Clin Pathol. 2019;72:651–8. [DOI] [PubMed]
Aloisi F, Giovannoni G, Salvetti M. Epstein-Barr virus as a cause of multiple sclerosis: opportunities for prevention and therapy.Lancet Neurol. 2023;22:338–49. [DOI] [PubMed]
Grant WB, Whiting SJ, Schwalfenberg GK, Genuis SJ, Kimball SM. Estimated economic benefit of increasing 25-hydroxyvitamin D concentrations of Canadians to or above 100 nmol/L.Dermatoendocrinol. 2016;8:e1248324. [DOI] [PubMed] [PMC]
Ascherio A, Munger KL. Epidemiology of multiple sclerosis: from risk factors to prevention—an update.Semin Neurol. 2016;36:103–14. [DOI] [PubMed]
Zittermann A. The estimated benefits of vitamin D for Germany.Mol Nutr Food Res. 2010;54:1164–71. [DOI] [PubMed]
Giovannoni G. Should we rebrand multiple sclerosis a dementia?Mult Scler Relat Disord. 2017;12:79–81. [DOI] [PubMed]