Southey BR, Lee JE, Zamdborg L, Jr NA, Mitchell JW, Li M, et al. Comparing label-free quantitative peptidomics approaches to characterize diurnal variation of peptides in the rat suprachiasmatic nucleus.Anal Chem. 2014;86:443–52. [DOI] [PubMed] [PMC]
Abrahamson EE, Leak RK, Moore RY. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems.Neuroreport. 2001;12:435–40. [DOI] [PubMed]
Paul S, Hanna L, Harding C, Hayter EA, Walmsley L, Bechtold DA, et al. Output from VIP cells of the mammalian central clock regulates daily physiological rhythms.Nat Commun. 2020;11:1453. [DOI] [PubMed] [PMC]
Wen S, Ma D, Zhao M, Xie L, Wu Q, Gou L, et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus.Nat Neurosci. 2020;23:456–467. [DOI] [PubMed]
Albers HE, Walton JC, Gamble KL, 4th JKM, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus.Front Neuroendocrinol. 2017;44:35–82. [DOI] [PubMed] [PMC]
Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections.Brain Res. 2001;916:172–91. [DOI] [PubMed]
Xu P, Berto S, Kulkarni A, Jeong B, Joseph C, Cox KH, et al. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior.Neuron. 2021;109:3268–82.e6. [DOI] [PubMed] [PMC]
Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, et al. Cell-autonomous clock of astrocytes drives circadian behavior in mammals.Science. 2019;363:187–92. [DOI] [PubMed] [PMC]
Takahashi JS. Transcriptional architecture of the mammalian circadian clock.Nat Rev Genet. 2017;18:164–79. [DOI] [PubMed] [PMC]
Koike N, Yoo S, Huang H, Kumar V, Lee C, Kim T, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.Science. 2012;338:349–54. [DOI] [PubMed] [PMC]
Bano-Otalora B, Moye MJ, Brown TM, Lucas RJ, Diekman CO, Belle MDC. Daily electrical activity in the master circadian clock of a diurnal mammal.bioRxiv. 2020;2020.12.23.424225. [DOI]
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork.Eur J Neurosci. 2018;48:2696–717. [DOI] [PubMed]
Lowrey PL, Takahashi JS. Genetics of circadian rhythms in Mammalian model organisms.Adv Genet. 2011;74:175–230. [DOI] [PubMed] [PMC]
Webb AB, Angelo N, Huettner JE, Herzog ED. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.Proc Natl Acad Sci U S A. 2009;106:16493–8. [DOI] [PubMed] [PMC]
Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, et al. Synchronization of cellular clocks in the suprachiasmatic nucleus.Science. 2003;302:1408–12. [DOI] [PubMed]
Herzog ED, Aton SJ, Numano R, Sakaki Y, Tei H. Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons.J Biol Rhythms. 2004;19:35–46. [DOI] [PubMed]
Maywood ES, Chesham JE, O'Brien JA, Hastings MH. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits.Proc Natl Acad Sci U S A. 2011;108:14306–11. [DOI] [PubMed] [PMC]
Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, et al. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag.Science. 2013;342:85–90. [DOI] [PubMed]
Ono D, Honma S, Honma K. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN.Sci Adv. 2016;2:e1600960. [DOI] [PubMed] [PMC]
Colwell CS. Linking neural activity and molecular oscillations in the SCN.Nat Rev Neurosci. 2011;12:553–69. [DOI] [PubMed] [PMC]
Silver R. Suprachiasmatic Nucleus Anatomy, Physiology, and Neurochemistry.Oxford Research Encyclopedia of Neuroscience. 2018.
Hannibal J. Neurotransmitters of the retino-hypothalamic tract.Cell Tissue Res. 2002;309:73–88. [DOI] [PubMed]
Reghunandanan V, Reghunandanan R. Neurotransmitters of the suprachiasmatic nuclei.J Circadian Rhythms. 2006;4:2. [DOI] [PubMed] [PMC]
Reghunandanan V. Vasopressin in circadian function of SCN.J Biosci. 2020;45:140. [PubMed]
Ono D, Honma K, Honma S. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm.J Neurochem. 2021;157:31–41. [DOI] [PubMed]
Ono D, Honma K, Honma S. Roles of Neuropeptides, VIP and AVP, in the Mammalian Central Circadian Clock.Front Neurosci. 2021;15:650154. [DOI] [PubMed] [PMC]
Varadarajan S, Tajiri M, Jain R, Holt R, Ahmed Q, LeSauter J, et al. Connectome of the Suprachiasmatic Nucleus: New Evidence of the Core-Shell Relationship.eNeuro. 2018;5:ENEURO.0205–18.2018. [DOI] [PubMed] [PMC]
LeSauter J, Kriegsfeld LJ, Hon J, Silver R. Calbindin-D28K cells selectively contact intra-SCN neurons.Neuroscience. 2002;111:575–85. [DOI] [PubMed] [PMC]
Hegazi S, Lowden C, Garcia JR, Cheng AH, Obrietan K, Levine JD, et al. A Symphony of Signals: Intercellular and Intracellular Signaling Mechanisms Underlying Circadian Timekeeping in Mice and Flies.Int J Mol Sci. 2019;20:2363. [DOI] [PubMed] [PMC]
Morin LP, Allen CN. The circadian visual system, 2005.Brain Res Rev. 2006;51:1–60. [DOI] [PubMed]
Morin LP. Serotonin and the regulation of mammalian circadian rhythmicity.Ann Med. 1999;31:12–33. [DOI] [PubMed]
Decker MJ, Rye DB, Lee S, Strohl KP. Paradoxical sleep suppresses immediate early gene expression in the rodent suprachiasmatic nuclei.Front Neurol. 2010;1:122. [DOI] [PubMed] [PMC]
Starnes AN, Jones JR. Inputs and Outputs of the Mammalian Circadian Clock.Biology (Basel). 2023;12:508. [DOI] [PubMed] [PMC]
Hussein LEC, Mollard P, Bonnefont X. Molecular and Cellular Networks in The Suprachiasmatic Nuclei.Int J Mol Sci. 2019;20:2052. [DOI] [PubMed] [PMC]
Hirata Y, Enoki R, Kuribayashi-Shigetomi K, Oda Y, Honma S, Honma K. Circadian rhythms in Per1, PER2 and Ca2+ of a solitary SCN neuron cultured on a microisland.Sci Rep. 2019;9:18271. [DOI] [PubMed] [PMC]
Evans JA. Collective timekeeping among cells of the master circadian clock.J Endocrinol. 2016;230:R27–49. [DOI] [PubMed] [PMC]
Belle MDC. Circadian Tick-Talking Across the Neuroendocrine System and Suprachiasmatic Nuclei Circuits: The Enigmatic Communication Between the Molecular and Electrical Membrane Clocks.J Neuroendocrinol. 2015;27:567–76. [DOI] [PubMed] [PMC]
Otalora BB, Hagenauer MH, Rol MA, Madrid JA, Lee TM. Period gene expression in the brain of a dual-phasing rodent, the Octodon degus.J Biol Rhythms. 2013;28:249–61. [DOI] [PubMed]
Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H. The Concept of Coupling in the Mammalian Circadian Clock Network.J Mol Biol. 2020;432:3618–38. [DOI] [PubMed]
Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S, et al. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm.Neuron. 2015;85:1103–16. [DOI] [PubMed]
Yao Y, Taub AB, LeSauter J, Silver R. Identification of the suprachiasmatic nucleus venous portal system in the mammalian brain.Nat Commun. 2021;12:5643. [DOI] [PubMed] [PMC]
Albus H, Vansteensel MJ, Michel S, Block GD, Meijer JH. A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock.Curr Biol. 2005;15:886–93. [DOI] [PubMed]
Gu CG, Wang P, Weng TF, Yang HJ, Rohling J. Heterogeneity of neuronal properties determines the collective behavior of the neurons in the suprachiasmatic nucleus.Math Biosci Eng. 2019;16:1893–913. [DOI] [PubMed]
Rohling JHT, vanderLeest HT, Michel S, Vansteensel MJ, Meijer JH. Phase resetting of the mammalian circadian clock relies on a rapid shift of a small population of pacemaker neurons.PLoS One. 2011;6:e25437. [DOI] [PubMed] [PMC]
Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ. Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons.Neuron. 2013;80:973–83. [DOI] [PubMed] [PMC]
Taylor SR, Wang TJ, Granados-Fuentes D, Herzog ED. Resynchronization Dynamics Reveal that the Ventral Entrains the Dorsal Suprachiasmatic Nucleus.J Biol Rhythms. 2017;32:35–47. [DOI] [PubMed] [PMC]
Gu C, Gu X, Wang P, Ren H, Weng T, Yang H, et al. Disassortative Network Structure Improves the Synchronization between Neurons in the Suprachiasmatic Nucleus.J Biol Rhythms. 2019;34:515–24. [DOI] [PubMed]
Mohawk JA, Takahashi JS. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators.Trends Neurosci. 2011;34:349–58. [DOI] [PubMed] [PMC]
Wang M, Chen N, Wang J. The coupling features of electrical synapses modulate neuronal synchrony in hypothalamic superachiasmatic nucleus.Brain Res. 2014;1550:9–17. [DOI] [PubMed]
Yoshikawa T, Nakajima Y, Yamada Y, Enoki R, Watanabe K, Yamazaki M, et al. Spatiotemporal profiles of arginine vasopressin transcription in cultured suprachiasmatic nucleus.Eur J Neurosci. 2015;42:2678–89. [DOI] [PubMed]
Li J, Burton KJ, Zhang C, Hu S, Zhou Q. Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei.Am J Physiol Regul Integr Comp Physiol. 2009;296:R824–30. [DOI] [PubMed] [PMC]
Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF. Microglia inflammatory responses are controlled by an intrinsic circadian clock.Brain Behav Immun. 2015;45:171–9. [DOI] [PubMed] [PMC]
Ng FS, Tangredi MM, Jackson FR. Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner.Curr Biol. 2011;21:625–34. [DOI] [PubMed] [PMC]
Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. Astrocytes Regulate Daily Rhythms in the Suprachiasmatic Nucleus and Behavior.Curr Biol. 2017;27:1055–61. [DOI] [PubMed] [PMC]
Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, Tonelli DDP. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling.Nat Commun. 2017;8:14336. [DOI] [PubMed] [PMC]
Meijer JH, Michel S, Vanderleest HT, Rohling JHT. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network.Eur J Neurosci. 2010;32:2143–51. [DOI] [PubMed]
Evans JA, Gorman MR. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms.Neuroscience. 2016;320:259–80. [DOI] [PubMed] [PMC]
Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues.Science. 2018;359:eaao0318. [DOI] [PubMed] [PMC]
Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, et al. Coordinated transcription of key pathways in the mouse by the circadian clock.Cell. 2002;109:307–20. [DOI] [PubMed]
Deery MJ, Maywood ES, Chesham JE, Sládek M, Karp NA, Green EW, et al. Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock.Curr Biol. 2009;19:2031–6. [DOI] [PubMed]
Schantz Mv, Archer SN. Clocks, genes and sleep.J R Soc Med. 2003;96:486–9. [DOI] [PubMed] [PMC]
Noguchi T, Leise TL, Kingsbury NJ, Diemer T, Wang LL, Henson MA, et al. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.eNeuro. 2017;4:e0160-17. [DOI] [PubMed] [PMC]
Kornhauser JM, Mayo KE, Takahashi JS. Light, immediate-early genes, and circadian rhythms.Behav Genet. 1996;26:221–40. [DOI] [PubMed]
Field MD, Maywood ES, O'Brien JA, Weaver DR, Reppert SM, Hastings MH. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms.Neuron. 2000;25:437–47. [DOI] [PubMed]
Yan L, Takekida S, Shigeyoshi Y, Okamura H. Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light.Neuroscience. 1999;94:141–50. [DOI] [PubMed]
Nielsen HS, Hannibal J, Fahrenkrug J. Vasoactive intestinal polypeptide induces per1 and per2 gene expression in the rat suprachiasmatic nucleus late at night.Eur J Neurosci. 2002;15:570–4. [DOI] [PubMed]
Hannibal J. Roles of PACAP-containing retinal ganglion cells in circadian timing.Int Rev Cytol. 2006;251:1–39. [DOI] [PubMed]
Hannibal J, Jamen F, Nielsen HS, Journot L, Brabet P, Fahrenkrug J. Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor.J Neurosci. 2001;21:4883–90. [DOI] [PubMed] [PMC]
Nielsen HS, Hannibal J, Knudsen SM, Fahrenkrug J. Pituitary adenylate cyclase-activating polypeptide induces period1 and period2 gene expression in the rat suprachiasmatic nucleus during late night.Neuroscience. 2001;103:433–41. [DOI] [PubMed]
Hannibal J, Brabet P, Fahrenkrug J. Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking.Am J Physiol Regul Integr Comp Physiol. 2008;295:R2050–8. [DOI] [PubMed]
Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelièvre V, et al. Selective deficits in the circadian light response in mice lacking PACAP.Am J Physiol Regul Integr Comp Physiol. 2004;287:R1194–201. [DOI] [PubMed]
Kawaguchi C, Isojima Y, Shintani N, Hatanaka M, Guo X, Okumura N, et al. PACAP-Deficient Mice Exhibit Light Parameter–Dependent Abnormalities on Nonvisual Photoreception and Early Activity Onset.PLoS One. 2010;5:e9286. [DOI] [PubMed] [PMC]
Riedel CS, Georg B, Fahrenkrug J, Hannibal J. Altered light induced EGR1 expression in the SCN of PACAP deficient mice.PLoS One. 2020;15:e0232748. [DOI] [PubMed] [PMC]
Kim M, Peña JBdl, Cheong JH, Kim HJ. Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2.Biomol Ther (Seoul). 2018;26:358–67. [DOI] [PubMed] [PMC]
Arjona A, Sarkar DK. The Circadian Gene mPer2 Regulates the Daily Rhythm of IFN-γ.J Interferon Cytokine Res. 2006;26:645–9. [DOI] [PubMed]
Sujino M, Nagano M, Fujioka A, Shigeyoshi Y, Inouye ST. Temporal profile of circadian clock gene expression in a transplanted suprachiasmatic nucleus and peripheral tissues.Eur J Neurosci. 2007;26:2731–8. [DOI] [PubMed]
Castañeda TR, Prado BMd, Prieto D, Mora F. Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light.J Pineal Res. 2004;36:177–85. [DOI] [PubMed]
Hood S, Cassidy P, Cossette M, Weigl Y, Verwey M, Robinson B, et al. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors.J Neurosci. 2010;30:14046–58. [DOI] [PubMed] [PMC]
Gravotta L, Gavrila AM, Hood S, Amir S. Global depletion of dopamine using intracerebroventricular 6-hydroxydopamine injection disrupts normal circadian wheel-running patterns and PERIOD2 expression in the rat forebrain.J Mol Neurosci. 2011;45:162–71. [DOI] [PubMed]
Shumay E, Fowler JS, Wang G, Logan J, Alia-Klein N, Goldstein RZ, et al. Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability.Transl Psychiatry. 2012;2:e86. [DOI] [PubMed] [PMC]
McClung CA. Circadian genes, rhythms and the biology of mood disorders.Pharmacol Ther. 2007;114:222–32. [DOI] [PubMed] [PMC]
Sleipness EP, Sorg BA, Jansen HT. Diurnal differences in dopamine transporter and tyrosine hydroxylase levels in rat brain: dependence on the suprachiasmatic nucleus.Brain Res. 2007;1129:34–42. [DOI] [PubMed]
Chung S, Lee EJ, Yun S, Choe HK, Park S, Son HJ, et al. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation.Cell. 2014;157:858–68. [DOI] [PubMed]
Beaulé C, Swanstrom A, Leone MJ, Herzog ED. Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes.PLoS One. 2009;4:e7476. [DOI] [PubMed] [PMC]
Aton SJ, Huettner JE, Straume M, Herzog ED. GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons.Proc Natl Acad Sci U S A. 2006;103:19188–93. [DOI] [PubMed] [PMC]
Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, et al. The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei.Cell. 2002;109:497–508. [DOI] [PubMed]
Shan Y, Abel JH, Li Y, Izumo M, Cox KH, Jeong B, et al. Dual-Color Single-Cell Imaging of the Suprachiasmatic Nucleus Reveals a Circadian Role in Network Synchrony.Neuron. 2020;108:164–79.e7. [DOI] [PubMed] [PMC]
Maywood ES, Reddy AB, Wong GKY, O'Neill JS, O'Brien JA, McMahon DG, et al. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling.Curr Biol. 2006;16:599–605. [DOI] [PubMed]
Parsons MJ, Brancaccio M, Sethi S, Maywood ES, Satija R, Edwards JK, et al. The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis.Cell. 2015;162:607–21. [DOI] [PubMed] [PMC]
Bano-Otalora B, Martial F, Harding C, Bechtold DA, Allen AE, Brown TM, et al. Bright daytime light enhances circadian amplitude in a diurnal mammal.Proc Natl Acad Sci U S A. 2021;118:e2100094118. [DOI] [PubMed] [PMC]
Harvey JRM, Plante AE, Meredith AL. Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability.Physiol Rev. 2020;100:1415–54. [DOI] [PubMed] [PMC]
Pennartz CM, Jeu MTD, Geurtsen AM, Sluiter AA, Hermes ML. Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus.J Physiol. 1998;506:775–93. [DOI] [PubMed] [PMC]
Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, Simon T, et al. Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons.Neuron. 2018;99:555–63.e5. [DOI] [PubMed] [PMC]
Ding JM, Faiman LE, Hurst WJ, Kuriashkina LR, Gillette MU. Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide.J Neurosci. 1997;17:667–75. [DOI] [PubMed] [PMC]
Hannibal J, Møller M, Ottersen OP, Fahrenkrug J. PACAP and glutamate are co-stored in the retinohypothalamic tract.J Comp Neurol. 2000;418:147–55. [PubMed]
Harrington ME, Hoque S, Hall A, Golombek D, Biello S. Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light.J Neurosci. 1999;19:6637–42. [DOI] [PubMed] [PMC]
Cassone VM, Warren WS, Brooks DS, Lu J. Melatonin, the pineal gland, and circadian rhythms.J Biol Rhythms. 1993;8:S73–81. [PubMed]
Reppert SM, Weaver DR. Coordination of circadian timing in mammals.Nature. 2002;418:935–41. [DOI] [PubMed]
Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock.Hum Mol Genet. 2006;15:R271–7. [DOI] [PubMed]
Okamura H, Yamaguchi S, Yagita K. Molecular machinery of the circadian clock in mammals.Cell Tissue Res. 2002;309:47–56. [DOI] [PubMed]
Salihu S, Azlan NFM, Josiah SS, Wu Z, Wang Y, Zhang J. Role of the cation-chloride-cotransporters in the circadian system.Asian J Pharm Sci. 2021;16:589–97. [DOI] [PubMed] [PMC]
Belenky MA, Sollars PJ, Mount DB, Alper SL, Yarom Y, Pickard GE. Cell-type specific distribution of chloride transporters in the rat suprachiasmatic nucleus.Neuroscience. 2010;165:1519–37. [DOI] [PubMed] [PMC]
Vinay L, Jean-Xavier C. Plasticity of spinal cord locomotor networks and contribution of cation–chloride cotransporters.Brain Res Rev. 2008;57:103–10. [DOI] [PubMed]
Tapia D, Suárez P, Arias-García MA, Garcia-Vilchis B, Serrano-Reyes M, Bargas J, et al. Localization of chloride co-transporters in striatal neurons.Neuroreport. 2019;30:457–62. [DOI] [PubMed]
Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A. Cl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1.J Physiol. 2004;557:829–41. [DOI] [PubMed] [PMC]
Tillman L, Zhang J. Crossing the Chloride Channel: The Current and Potential Therapeutic Value of the Neuronal K+-Cl- Cotransporter KCC2.Biomed Res Int. 2019;2019:8941046. [DOI] [PubMed] [PMC]
4th JKM, Walton JC, Albers HE. Functional Significance of the Excitatory Effects of GABA in the Suprachiasmatic Nucleus.J Biol Rhythms. 2018;33:376–87. [DOI] [PubMed] [PMC]
Myung J, Hong S, DeWoskin D, Schutter ED, Forger DB, Takumi T. GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time.Proc Natl Acad Sci U S A. 2015;112:E3920–9. [DOI] [PubMed] [PMC]
Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, et al. The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system.Neuroscience. 2001;104:933–46. [DOI] [PubMed]
Belenky MA, Yarom Y, Pickard GE. Heterogeneous expression of γ-aminobutyric acid and γ-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus.J Comp Neurol. 2008;506:708–32. [DOI] [PubMed]
Choi HJ, Lee CJ, Schroeder A, Kim YS, Jung SH, Kim JS, et al. Excitatory actions of GABA in the suprachiasmatic nucleus.J Neurosci. 2008;28:5450–9. [DOI] [PubMed] [PMC]
Klett NJ, Allen CN. Intracellular Chloride Regulation in AVP+ and VIP+ Neurons of the Suprachiasmatic Nucleus.Sci Rep. 2017;7:10226. [DOI] [PubMed] [PMC]
Morin LP, Johnson RF, Moore RY. Two brain nuclei controlling circadian rhythms are identified by GFAP immunoreactivity in hamsters and rats.Neurosci Lett. 1989;99:55–60. [DOI] [PubMed]
Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling.Neuron. 2017;93:1420–35.e5. [DOI] [PubMed] [PMC]
Hastings MH, Maywood ES, Brancaccio M. The Mammalian Circadian Timing System and the Suprachiasmatic Nucleus as Its Pacemaker.Biology (Basel). 2019;8:13. [DOI] [PubMed] [PMC]
Costa R, Montagnese S. The role of astrocytes in generating circadian rhythmicity in health and disease.J Neurochem. 2021;157:42–52. [DOI] [PubMed]
Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, et al. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence.Neuron. 2017;95:531–49.e9. [DOI] [PubMed] [PMC]
Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease.Trends Mol Med. 2007;13:54–63. [DOI] [PubMed]
Mieda M. The central circadian clock of the suprachiasmatic nucleus as an ensemble of multiple oscillatory neurons.Neurosci Res. 2020;156:24–31. [DOI] [PubMed]
Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, et al. Circadian regulation of ATP release in astrocytes.J Neurosci. 2011;31:8342–50. [DOI] [PubMed] [PMC]
Prolo LM, Takahashi JS, Herzog ED. Circadian rhythm generation and entrainment in astrocytes.J Neurosci. 2005;25:404–8. [DOI] [PubMed] [PMC]
Womac AD, Burkeen JF, Neuendorff N, Earnest DJ, Zoran MJ. Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes.Eur J Neurosci. 2009;30:869–76. [DOI] [PubMed] [PMC]
Santos JWQ, Araujo JF, Cunha MJB, Costa SO, Barbosa ALC, Mesquita JB, et al. Circadian variation in gfap immunoreactivity in the mouse suprachiasmatic nucleus.Biol Rhythm Res. 2005;36:141–50. [DOI]
Belle MDC, Allen CN. The circadian clock: a tale of genetic–electrical interplay and synaptic integration.Curr Opin Physiol. 2018;5:75–9. [DOI] [PubMed] [PMC]
Patton AP, Smyllie NJ, Chesham JE, Hastings MH. Astrocytes Sustain Circadian Oscillation and Bidirectionally Determine Circadian Period, But Do Not Regulate Circadian Phase in the Suprachiasmatic Nucleus.J Neurosci. 2022;42:5522–37. [DOI] [PubMed] [PMC]
Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock.Trends Cell Biol. 2014;24:90–9. [DOI] [PubMed] [PMC]
Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus.Nat Rev Neurosci. 2018;19:453–69. [DOI] [PubMed]
Patton AP, Edwards MD, Smyllie NJ, Hamnett R, Chesham JE, Brancaccio M, et al. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit.Nat Commun. 2020;11:3394. [DOI] [PubMed] [PMC]
Halassa MM, Maschio MD, Beltramo R, Haydon PG, Benfenati F, Fellin T. Integrated brain circuits: neuron-astrocyte interaction in sleep-related rhythmogenesis.ScientificWorldJournal. 2010;10:1634–45. [DOI] [PubMed] [PMC]
Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information.Trends Neurosci. 2009;32:421–31. [DOI] [PubMed]
Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks.Neuron. 2012;74:246–60. [DOI] [PubMed]
Chi-Castañeda D, Ortega A. Circadian Regulation of Glutamate Transporters.Front Endocrinol (Lausanne). 2018;9:340. [DOI] [PubMed] [PMC]
Jackson FR, You S, Crowe LB. Regulation of rhythmic behaviors by astrocytes.Wiley Interdiscip Rev Dev Biol. 2020;9:e372. [DOI] [PubMed]
Sládek M, Liška K, Houdek P, Sumová A. Modulation of single cell circadian response to NMDA by diacylglycerol lipase inhibition reveals a role of endocannabinoids in light entrainment of the suprachiasmatic nucleus.Neuropharmacology. 2021;185:108455. [DOI] [PubMed]
Sueviriyapan N, Tso CF, Herzog ED, Henson MA. Astrocytic Modulation of Neuronal Activity in the Suprachiasmatic Nucleus: Insights from Mathematical Modeling.J Biol Rhythms. 2020;35:287–301. [DOI] [PubMed] [PMC]
Becquet D, Girardet C, Guillaumond F, François-Bellan A, Bosler O. Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock entrainment.Glia. 2008;56:294–305. [DOI] [PubMed]
Carmona-Alcocer V, Rohr KE, Joye DAM, Evans JA. Circuit development in the master clock network of mammals.Eur J Neurosci. 2020;51:82–108. [DOI] [PubMed] [PMC]
Ono D, Weaver DR, Hastings MH, Honma K, Honma S, Silver R. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward.J Biol Rhythms. 2024;39:135–65. [DOI] [PubMed] [PMC]
Kalsbeek A, Fliers E, Hofman MA, Swaab DF, Buijs RM. Vasopressin and the output of the hypothalamic biological clock.J Neuroendocrinol. 2010;22:362–72. [DOI] [PubMed]
Mieda M. The Network Mechanism of the Central Circadian Pacemaker of the SCN: Do AVP Neurons Play a More Critical Role Than Expected?Front Neurosci. 2019;13:139. [DOI] [PubMed] [PMC]
Bedont JL, Rohr KE, Bathini A, Hattar S, Blackshaw S, Sehgal A, et al. Asymmetric vasopressin signaling spatially organizes the master circadian clock.J Comp Neurol. 2018;526:2048–67. [DOI] [PubMed] [PMC]
Morin LP. Neuroanatomy of the extended circadian rhythm system.Exp Neurol. 2013;243:4–20. [DOI] [PubMed] [PMC]
Groblewski TA, Nunez AA, Gold RM. Circadian rhythms in vasopressin deficient rats.Brain Res Bull. 1981;6:125–30. [DOI] [PubMed]
Lee IT, Chang AS, Manandhar M, Shan Y, Fan J, Izumo M, et al. Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms.Neuron. 2015;85:1086–102. [DOI] [PubMed] [PMC]
Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, et al. Disrupted circadian rhythms in VIP- and PHI-deficient mice.Am J Physiol Regul Integr Comp Physiol. 2003;285:R939–49. [DOI] [PubMed]
Jones JR, Simon T, Lones L, Herzog ED. SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System.J Neurosci. 2018;38:7986–95. [DOI] [PubMed] [PMC]
Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals.Annu Rev Neurosci. 2012;35:445–62. [DOI] [PubMed] [PMC]
Rohr KE, Inda T, Evans JA. Vasopressin Resets the Central Circadian Clock in a Manner Influenced by Sex and Vasoactive Intestinal Polypeptide Signaling.Neuroendocrinology. 2022;112:904–16. [DOI] [PubMed] [PMC]
Bussi IL, Sanchez REA, Iglesia HOdl. Vasopressin Neurons: Master Integrators of Time and Homeostasis.Trends Neurosci. 2020;43:839–41. [DOI] [PubMed]
Carmona-Alcocer V, Brown LS, Anchan A, Rohr KE, Evans JA. Developmental patterning of peptide transcription in the central circadian clock in both sexes.Front Neurosci. 2023;17:1177458. [DOI] [PubMed] [PMC]
Yamaguchi Y. Arginine vasopressin: Critical regulator of circadian homeostasis.Peptides. 2024;177:171229. [DOI] [PubMed]
King VM, Chahad-Ehlers S, Shen S, Harmar AJ, Maywood ES, Hastings MH. A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus.Eur J Neurosci. 2003;17:822–32. [PubMed]
Kalló I, Kalamatianos T, Wiltshire N, Shen S, Sheward WJ, Harmar AJ, et al. Transgenic approach reveals expression of the VPAC2 receptor in phenotypically defined neurons in the mouse suprachiasmatic nucleus and in its efferent target sites.Eur J Neurosci. 2004;19:2201–11. [DOI] [PubMed]
Kudo T, Tahara Y, Gamble KL, McMahon DG, Block GD, Colwell CS. Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus.J Neurophysiol. 2013;110:1097–106. [DOI] [PubMed] [PMC]
Tokuda IT, Ono D, Honma S, Honma K, Herzel H. Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors.PLoS Comput Biol. 2018;14:e1006607. [DOI] [PubMed] [PMC]
Reed HE, Meyer-Spasche A, Cutler DJ, Coen CW, Piggins HD. Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro.Eur J Neurosci. 2001;13:839–43. [DOI] [PubMed]
Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH. Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms.Cold Spring Harb Perspect Biol. 2017;9:a027706. [DOI] [PubMed] [PMC]
Brown TM, Colwell CS, Waschek JA, Piggins HD. Disrupted neuronal activity rhythms in the suprachiasmatic nuclei of vasoactive intestinal polypeptide-deficient mice.J Neurophysiol. 2007;97:2553–8. [DOI] [PubMed] [PMC]
Meyer-Spasche A, Piggins HD. Vasoactive intestinal polypeptide phase-advances the rat suprachiasmatic nuclei circadian pacemaker in vitro via protein kinase A and mitogen-activated protein kinase.Neurosci Lett. 2004;358:91–4. [DOI] [PubMed]
Hughes AT, Fahey B, Cutler DJ, Coogan AN, Piggins HD. Aberrant gating of photic input to the suprachiasmatic circadian pacemaker of mice lacking the VPAC2 receptor.J Neurosci. 2004;24:3522–6. [DOI] [PubMed] [PMC]
Mazuski C, Chen SP, Herzog ED. Different Roles for VIP Neurons in the Neonatal and Adult Suprachiasmatic Nucleus.J Biol Rhythms. 2020;35:465–75. [DOI] [PubMed] [PMC]
Maywood ES, O'Neill JS, Reddy AB, Chesham JE, Prosser HM, Kyriacou CP, et al. Genetic and molecular analysis of the central and peripheral circadian clockwork of mice.Cold Spring Harb Symp Quant Biol. 2007;72:85–94. [DOI] [PubMed]
Joye DAM, Rohr KE, Keller D, Inda T, Telega A, Pancholi H, et al. Reduced VIP Expression Affects Circadian Clock Function in VIP-IRES-CRE Mice (JAX 010908).J Biol Rhythms. 2020;35:340–52. [DOI] [PubMed] [PMC]
Park J, Zhu H, O'Sullivan S, Ogunnaike BA, Weaver DR, Schwaber JS, et al. Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock.Front Neurosci. 2016;10:481. [DOI] [PubMed] [PMC]
Todd WD, Venner A, Anaclet C, Broadhurst RY, Luca RD, Bandaru SS, et al. Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations.Nat Commun. 2020;11:4410. [DOI] [PubMed] [PMC]
Smyllie NJ, Chesham JE, Hamnett R, Maywood ES, Hastings MH. Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus.Proc Natl Acad Sci U S A. 2016;113:3657–62. [DOI] [PubMed] [PMC]
Ono D, Honma K, Yanagawa Y, Yamanaka A, Honma S. Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus.J Physiol Sci. 2018;68:333–43. [DOI] [PubMed] [PMC]
Farajnia S, Westering TLEv, Meijer JH, Michel S. Seasonal induction of GABAergic excitation in the central mammalian clock.Proc Natl Acad Sci U S A. 2014;111:9627–32. [DOI] [PubMed] [PMC]
Mason R, Biello SM, Harrington ME. The effects of GABA and benzodiazepines on neurones in the suprachiasmatic nucleus (SCN) of Syrian hamsters.Brain Res. 1991;552:53–7. [DOI] [PubMed]
Jr GMF, Krock RM, Aton SJ, Thaben P, Herzog ED. GABA networks destabilize genetic oscillations in the circadian pacemaker.Neuron. 2013;78:799–806. [DOI] [PubMed] [PMC]
Sueviriyapan N, Granados-Fuentes D, Simon T, Herzog ED, Henson MA. Modelling the functional roles of synaptic and extra-synaptic γ-aminobutyric acid receptor dynamics in circadian timekeeping.J R Soc Interface. 2021;18:20210454. [DOI] [PubMed] [PMC]
Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, et al. Resetting central and peripheral circadian oscillators in transgenic rats.Science. 2000;288:682–5. [DOI] [PubMed]
Liu C, Reppert SM. GABA synchronizes clock cells within the suprachiasmatic circadian clock.Neuron. 2000;25:123–8. [DOI] [PubMed]
Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC, Zhang EE, et al. Emergence of noise-induced oscillations in the central circadian pacemaker.PLoS Biol. 2010;8:e1000513. [DOI] [PubMed] [PMC]
Kakizaki T, Oriuchi N, Yanagawa Y. GAD65/GAD67 double knockout mice exhibit intermediate severity in both cleft palate and omphalocele compared with GAD67 knockout and VGAT knockout mice.Neuroscience. 2015;288:86–93. [DOI] [PubMed]
Saito K, Kakizaki T, Hayashi R, Nishimaru H, Furukawa T, Nakazato Y, et al. The physiological roles of vesicular GABA transporter during embryonic development: a study using knockout mice.Mol Brain. 2010;3:40. [DOI] [PubMed] [PMC]
Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture.Nat Rev Neurosci. 2002;3:728–39. [DOI] [PubMed]
Klett NJ, Cravetchi O, Allen CN. Long-Term Imaging Reveals a Circadian Rhythm of Intracellular Chloride in Neurons of the Suprachiasmatic Nucleus.J Biol Rhythms. 2022;37:110–23. [DOI] [PubMed] [PMC]
Olsen RW, Sieghart W. GABAA receptors: subtypes provide diversity of function and pharmacology.Neuropharmacology. 2009;56:141–8. [DOI] [PubMed] [PMC]
Wallner M, Lindemeyer AK, Olsen RW, Wallner M, Lindemeyer AK, Olsen RW. GABAA Receptor Physiology and Pharmacology. In: Bhattacharjee A, editor. The Oxford Handbook of Neuronal Ion Channels Oxford. UK: Oxford University Press; 2018. pp. 419–57. [DOI]
Ono D, Honma K, Yanagawa Y, Yamanaka A, Honma S. GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice.Commun Biol. 2019;2:232. [DOI] [PubMed] [PMC]
Wagner S, Sagiv N, Yarom Y. GABA-induced current and circadian regulation of chloride in neurones of the rat suprachiasmatic nucleus.J Physiol. 2001;537:853–69. [DOI] [PubMed] [PMC]
Walker MC, Semyanov A. Regulation of excitability by extrasynaptic GABAA receptors.Results Probl Cell Differ. 2008;44:29–48. [DOI] [PubMed]
Nakamura W, Honma S, Shirakawa T, Honma K. Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons.Nat Neurosci. 2002;5:399–400. [DOI] [PubMed]
Ono D, Honma S, Honma K. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus.Nat Commun. 2013;4:1666. [DOI] [PubMed]
Kononenko NI, Dudek FE. Mechanism of irregular firing of suprachiasmatic nucleus neurons in rat hypothalamic slices.J Neurophysiol. 2004;91:267–73. [DOI] [PubMed]
Blaesse P, Airaksinen MS, Rivera C, Kaila K. Cation-chloride cotransporters and neuronal function.Neuron. 2009;61:820–38. [DOI] [PubMed]
Alamilla J, Perez-Burgos A, Quinto D, Aguilar-Roblero R. Circadian modulation of the Cl– equilibrium potential in the rat suprachiasmatic nuclei.Biomed Res Int. 2014;2014:424982. [DOI] [PubMed] [PMC]
Fan J, Zeng H, Olson DP, Huber KM, Gibson JR, Takahashi JS. Vasoactive intestinal polypeptide (VIP)-expressing neurons in the suprachiasmatic nucleus provide sparse GABAergic outputs to local neurons with circadian regulation occurring distal to the opening of postsynaptic GABAA ionotropic receptors.J Neurosci. 2015;35:1905–20. [DOI] [PubMed] [PMC]
Chan RK, Sterniczuk R, Enkhbold Y, Jeffers RT, Basu P, Duong B, et al. Phase shifts to light are altered by antagonists to neuropeptide receptors.Neuroscience. 2016;327:115–24. [DOI] [PubMed]
Moldavan M, Cravetchi O, Allen CN. GABA transporters regulate tonic and synaptic GABAA receptor-mediated currents in the suprachiasmatic nucleus neurons.J Neurophysiol. 2017;118:3092–106. [DOI] [PubMed] [PMC]
Antle MC, Kriegsfeld LJ, Silver R. Signaling within the master clock of the brain: localized activation of mitogen-activated protein kinase by gastrin-releasing peptide.J Neurosci. 2005;25:2447–54. [DOI] [PubMed] [PMC]
Aida R, Moriya T, Araki M, Akiyama M, Wada K, Wada E, et al. Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice.Mol Pharmacol. 2002;61:26–34. [DOI] [PubMed]
Carmona-Alcocer V, Abel JH, Sun TC, Petzold LR, 3rd FJD, Simms CL, et al. Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.J Neurosci. 2018;38:1326–34. [DOI] [PubMed] [PMC]
Drouyer E, LeSauter J, Hernandez AL, Silver R. Specializations of gastrin-releasing peptide cells of the mouse suprachiasmatic nucleus.J Comp Neurol. 2010;518:1249–63. [DOI] [PubMed] [PMC]
Ban Y, Shigeyoshi Y, Okamura H. Development of vasoactive intestinal peptide mRNA rhythm in the rat suprachiasmatic nucleus.J Neurosci. 1997;17:3920–31. [DOI] [PubMed] [PMC]
Fernandez DC, Chang Y, Hattar S, Chen S. Architecture of retinal projections to the central circadian pacemaker.Proc Natl Acad Sci U S A. 2016;113:6047–52. [DOI] [PubMed] [PMC]
LeSauter J, Silver R, Cloues R, Witkovsky P. Light exposure induces short- and long-term changes in the excitability of retinorecipient neurons in suprachiasmatic nucleus.J Neurophysiol. 2011;106:576–88. [DOI] [PubMed] [PMC]
Gamble KL, Kudo T, Colwell CS, McMahon DG. Gastrin-releasing peptide modulates fast delayed rectifier potassium current in Per1-expressing SCN neurons.J Biol Rhythms. 2011;26:99–106. [DOI] [PubMed] [PMC]
Brown TM, Hughes AT, Piggins HD. Gastrin-releasing peptide promotes suprachiasmatic nuclei cellular rhythmicity in the absence of vasoactive intestinal polypeptide-VPAC2 receptor signaling.J Neurosci. 2005;25:11155–64. [DOI] [PubMed] [PMC]
Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting.Science. 2002;298:2213–6. [DOI] [PubMed]
Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, et al. Role of melanopsin in circadian responses to light.Science. 2002;298:2211–3. [DOI] [PubMed]
Lindberg PT, Mitchell JW, Burgoon PW, Beaulé C, Weihe E, Schäfer MK, et al. Pituitary Adenylate Cyclase-Activating Peptide (PACAP)-Glutamate Co-transmission Drives Circadian Phase-Advancing Responses to Intrinsically Photosensitive Retinal Ganglion Cell Projections by Suprachiasmatic Nucleus.Front Neurosci. 2019;13:1281. [DOI] [PubMed] [PMC]
Kawaguchi C, Tanaka K, Isojima Y, Shintani N, Hashimoto H, Baba A, et al. Changes in light-induced phase shift of circadian rhythm in mice lacking PACAP.Biochem Biophys Res Commun. 2003;310:169–75. [DOI] [PubMed]
Landgraf D, Joiner WJ, McCarthy MJ, Kiessling S, Barandas R, Young JW, et al. The mood stabilizer valproic acid opposes the effects of dopamine on circadian rhythms.Neuropharmacology. 2016;107:262–70. [DOI] [PubMed]
Ashton A, Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling.Front Neurosci. 2020;14:636. [DOI] [PubMed] [PMC]
Kim R, Nijhout HF, Reed MC. Mathematical insights into the role of dopamine signaling in circadian entrainment.Math Biosci. 2023;356:108956. [DOI] [PubMed]
Tang Q, Assali DR, Güler AD, Steele AD. Dopamine systems and biological rhythms: Let's get a move on.Front Integr Neurosci. 2022;16:957193. [DOI] [PubMed] [PMC]
Veen MMV, Kooij JJS, Boonstra AM, Gordijn MCM, Someren EJWV. Delayed circadian rhythm in adults with attention-deficit/hyperactivity disorder and chronic sleep-onset insomnia.Biol Psychiatry. 2010;67:1091–6. [DOI] [PubMed]
Jackson CR, Ruan G, Aseem F, Abey J, Gamble K, Stanwood G, et al. Retinal dopamine mediates multiple dimensions of light-adapted vision.J Neurosci. 2012;32:9359–68. [DOI] [PubMed] [PMC]
Green CB, Besharse JC. Retinal circadian clocks and control of retinal physiology.J Biol Rhythms. 2004;19:91–102. [DOI] [PubMed]
Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P. Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1.Proc Natl Acad Sci U S A. 2006;103:6386–91. [DOI] [PubMed] [PMC]
Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells.Eur J Neurosci. 2005;22:3129–36. [DOI] [PubMed]
Mendoza J, Challet E. Circadian insights into dopamine mechanisms.Neuroscience. 2014;282:230–42. [DOI] [PubMed]
Grippo RM, Purohit AM, Zhang Q, Zweifel LS, Güler AD. Direct Midbrain Dopamine Input to the Suprachiasmatic Nucleus Accelerates Circadian Entrainment.Curr Biol. 2017;27:2465–75.e3. [DOI] [PubMed] [PMC]
Korshunov KS, Blakemore LJ, Trombley PQ. Dopamine: A Modulator of Circadian Rhythms in the Central Nervous System.Front Cell Neurosci. 2017;11:91. [DOI] [PubMed] [PMC]
Witkovsky P. Dopamine and retinal function.Doc Ophthalmol. 2004;108:17–40. [DOI] [PubMed]
Popova E. Role of dopamine in distal retina.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014;200:333–58. [DOI] [PubMed]
Beaulieu J, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors.Pharmacol Rev. 2011;63:182–217. [DOI] [PubMed]
Betz H, Laube B. Glycine receptors: recent insights into their structural organization and functional diversity.J Neurochem. 2006;97:1600–10. [DOI] [PubMed]
Mordel J, Karnas D, Inyushkin A, Challet E, Pévet P, Meissl H. Activation of glycine receptor phase-shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus.J Physiol. 2011;589:2287–300. [DOI] [PubMed] [PMC]
Kawai N, Sakai N, Okuro M, Karakawa S, Tsuneyoshi Y, Kawasaki N, et al. The sleep-promoting and hypothermic effects of glycine are mediated by NMDA receptors in the suprachiasmatic nucleus.Neuropsychopharmacology. 2015;40:1405–16. [DOI] [PubMed] [PMC]
Prosser RA, Mangrum CA, Glass JD. Acute ethanol modulates glutamatergic and serotonergic phase shifts of the mouse circadian clock in vitro.Neuroscience. 2008;152:837–48. [DOI] [PubMed] [PMC]
Frenkel L, Muraro NI, González ANB, Marcora MS, Bernabó G, Hermann-Luibl C, et al. Organization of Circadian Behavior Relies on Glycinergic Transmission.Cell Rep. 2017;19:72–85. [DOI] [PubMed]
Fagiani F, Marino DD, Romagnoli A, Travelli C, Voltan D, Mannelli LDC, et al. Molecular regulations of circadian rhythm and implications for physiology and diseases.Signal Transduct Target Ther. 2022;7:41. [DOI] [PubMed] [PMC]
Cahill GM, Menaker M. Effects of excitatory amino acid receptor antagonists and agonists on suprachiasmatic nucleus responses to retinohypothalamic tract volleys.Brain Res. 1989;479:76–82. [DOI] [PubMed]
Hamada T, Yamanouchi S, Watanabe A, Shibata S, Watanabe S. Involvement of glutamate release in substance P-induced phase delays of suprachiasmatic neuron activity rhythm in vitro.Brain Res. 1999;836:190–3. [DOI] [PubMed]
Ma MA, Morrison EH. Neuroanatomy, Nucleus Suprachiasmatic.In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. [PubMed]
Belenky MA, Pickard GE. Subcellular distribution of 5-HT1B and 5-HT7 receptors in the mouse suprachiasmatic nucleus.J Comp Neurol. 2001;432:371–88. [DOI] [PubMed]
Takeuchi K, Mohammad S, Ozaki T, Morioka E, Kawaguchi K, Kim J, et al. Serotonin-2C receptor involved serotonin-induced Ca²⁺ mobilisations in neuronal progenitors and neurons in rat suprachiasmatic nucleus.Sci Rep. 2014;4:4106. [DOI] [PubMed] [PMC]
Jiang ZG, Teshima K, Yang Y, Yoshioka T, Allen CN. Pre- and postsynaptic actions of serotonin on rat suprachiasmatic nucleus neurons.Brain Res. 2000;866:247–56. [DOI] [PubMed]
Bramley JR, Sollars PJ, Pickard GE, Dudek FE. 5-HT1B receptor-mediated presynaptic inhibition of GABA release in the suprachiasmatic nucleus.J Neurophysiol. 2005;93:3157–64. [DOI] [PubMed]
Cuesta M, Clesse D, Pévet P, Challet E. New light on the serotonergic paradox in the rat circadian system.J Neurochem. 2009;110:231–43. [DOI] [PubMed]
Cohen R, Kronfeld-Schor N, Ramanathan C, Baumgras A, Smale L. The substructure of the suprachiasmatic nucleus: Similarities between nocturnal and diurnal spiny mice.Brain Behav Evol. 2010;75:9–22. [DOI] [PubMed] [PMC]
Pauly JR, Horseman ND. Anticholinergic agents do not block light-induced circadian phase shifts.Brain Res. 1985;348:163–7. [DOI] [PubMed]
Erhardt C, Galani R, Jeltsch H, Cassel J, Klosen P, Menet JS, et al. Modulation of photic resetting in rats by lesions of projections to the suprachiasmatic nuclei expressing p75 neurotrophin receptor.Eur J Neurosci. 2004;19:1773–88. [DOI] [PubMed]
Yamakawa GR, Basu P, Cortese F, MacDonnell J, Whalley D, Smith VM, et al. The cholinergic forebrain arousal system acts directly on the circadian pacemaker.Proc Natl Acad Sci U S A. 2016;113:13498–503. [DOI] [PubMed] [PMC]
Abbott SM, Arnold JM, Chang Q, Miao H, Ota N, Cecala C, et al. Signals from the brainstem sleep/wake centers regulate behavioral timing via the circadian clock.PLoS One. 2013;8:e70481. [DOI] [PubMed] [PMC]
Riljak V, Janisova K, Myslivecek J. Lack of M4 muscarinic receptors in the striatum, thalamus and intergeniculate leaflet alters the biological rhythm of locomotor activity in mice.Brain Struct Funct. 2020;225:1615–29. [DOI] [PubMed] [PMC]
Aykan U, Güvel MC, Paykal G, Uluoglu C. Neuropharmacologic modulation of the melatonergic system.Explor Neurosci. 2023;2:287–306.
Yuan X, Wei H, Xu W, Wang L, Qu W, Li R, et al. Whole-Brain Monosynaptic Afferent Projections to the Cholecystokinin Neurons of the Suprachiasmatic Nucleus.Front Neurosci. 2018;12:807. [DOI] [PubMed] [PMC]
Hannibal J, Hundahl C, Fahrenkrug J, Rehfeld JF, Friis-Hansen L. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice.Eur J Neurosci. 2010;32:1006–17. [DOI] [PubMed]
Xie L, Xiong Y, Ma D, Shi K, Chen J, Yang Q, et al. Cholecystokinin neurons in mouse suprachiasmatic nucleus regulate the robustness of circadian clock.Neuron. 2023;111:2201–17.e4. [DOI] [PubMed]
Klosen P, Lapmanee S, Schuster C, Guardiola B, Hicks D, Pevet P, et al. MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations.J Pineal Res. 2019;67:e12575. [DOI] [PubMed]
Pfeffer M, Rauch A, Korf H, Gall Cv. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors.Chronobiol Int. 2012;29:415–29. [DOI] [PubMed]
Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML. Activation of MT2 melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock.Am J Physiol Cell Physiol. 2001;280:C110–8. [DOI] [PubMed]
Drunen RV, Eckel-Mahan K. Circadian Rhythms of the Hypothalamus: From Function to Physiology.Clocks Sleep. 2021;3:189–226. [DOI] [PubMed] [PMC]
Top Mvd, Buijs RM, Ruijter JM, Delagrange P, Spanswick D, Hermes ML. Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurones in vitro independent of their circadian rhythm.Neuroscience. 2001;107:99–108. [DOI] [PubMed]
Lincoln GA, Andersson H, Loudon A. Clock genes in calendar cells as the basis of annual timekeeping in mammals--a unifying hypothesis.J Endocrinol. 2003;179:1–13. [DOI] [PubMed]
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina.J Neurosci. 2000;20:600–5. [DOI] [PubMed] [PMC]
Rollag MD, Berson DM, Provencio I. Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment.J Biol Rhythms. 2003;18:227–34. [DOI] [PubMed]
Baver SB, Pickard GE, Sollars PJ, Pickard GE. Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus.Eur J Neurosci. 2008;27:1763–70. [DOI] [PubMed]
Beaulé C, Robinson B, Lamont EW, Amir S. Melanopsin in the circadian timing system.J Mol Neurosci. 2003;21:73–89. [DOI] [PubMed]
Li J, Hu W, Zhou Q. The circadian output signals from the suprachiasmatic nuclei.Prog Brain Res. 2012;199:119–27. [DOI] [PubMed]
Li J, Hu W, Boehmer L, Cheng MY, Lee AG, Jilek A, et al. Attenuated circadian rhythms in mice lacking the prokineticin 2 gene.J Neurosci. 2006;26:11615–23. [DOI] [PubMed] [PMC]
Cheng MY, Leslie FM, Zhou Q. Expression of prokineticins and their receptors in the adult mouse brain.J Comp Neurol. 2006;498:796–809. [DOI] [PubMed] [PMC]
Prosser HM, Bradley A, Chesham JE, Ebling FJP, Hastings MH, Maywood ES. Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei.Proc Natl Acad Sci U S A. 2007;104:648–53. [DOI] [PubMed] [PMC]
Li X, Zhang C, Zhou Q. Overexpression of Prokineticin 2 in Transgenic Mice Leads to Reduced Circadian Behavioral Rhythmicity and Altered Molecular Rhythms in the Suprachiasmatic Clock.J Circadian Rhythms. 2018;16:13. [DOI] [PubMed] [PMC]
Zhou Q, Burton KJ, Neal ML, Qiao Y, Kanthasamy AG, Sun Y, et al. Differential arousal regulation by prokineticin 2 signaling in the nocturnal mouse and the diurnal monkey.Mol Brain. 2016;9:78. [DOI] [PubMed] [PMC]
Klisch C, Inyushkin A, Mordel J, Karnas D, Pévet P, Meissl H. Orexin A modulates neuronal activity of the rodent suprachiasmatic nucleus in vitro.Eur J Neurosci. 2009;30:65–75. [DOI] [PubMed]
Marston OJ, Williams RH, Canal MM, Samuels RE, Upton N, Piggins HD. Circadian and dark-pulse activation of orexin/hypocretin neurons.Mol Brain. 2008;1:19. [DOI] [PubMed] [PMC]
Chieffi S, Carotenuto M, Monda V, Valenzano A, Villano I, Precenzano F, et al. Orexin System: The Key for a Healthy Life.Front Physiol. 2017;8:357. [DOI] [PubMed] [PMC]
Belle MDC, Hughes ATL, Bechtold DA, Cunningham P, Pierucci M, Burdakov D, et al. Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock.J Neurosci. 2014;34:3607–21. [DOI] [PubMed] [PMC]
Flyer-Adams JG, Rivera-Rodriguez EJ, Yu J, Mardovin JD, Reed ML, Griffith LC. Regulation of Olfactory Associative Memory by the Circadian Clock Output Signal Pigment-Dispersing Factor (PDF).J Neurosci. 2020;40:9066–77. [DOI] [PubMed] [PMC]
Vaze KM, Helfrich-Förster C. The Neuropeptide PDF Is Crucial for Delaying the Phase of Drosophila's Evening Neurons Under Long Zeitgeber Periods.J Biol Rhythms. 2021;36:442–60. [DOI] [PubMed] [PMC]
Colizzi FS, Veenstra JA, Rezende GL, Helfrich-Förster C, Martínez-Torres D. Pigment-dispersing factor is present in circadian clock neurons of pea aphids and may mediate photoperiodic signalling to insulin-producing cells.Open Biol. 2023;13:230090. [DOI] [PubMed] [PMC]
Caillol M, Devinoy E, Lacroix MC, Schirar A. Endothelial and neuronal nitric oxide synthases are present in the suprachiasmatic nuclei of Syrian hamsters and rats.Eur J Neurosci. 2000;12:649–61. [DOI] [PubMed]
Golombek DA, Agostino PV, Plano SA, Ferreyra GA. Signaling in the mammalian circadian clock: the NO/cGMP pathway.Neurochem Int. 2004;45:929–36. [DOI] [PubMed]
Plano SA, Golombek DA, Chiesa JJ. Circadian entrainment to light–dark cycles involves extracellular nitric oxide communication within the suprachiasmatic nuclei.Eur J Neurosci. 2010;31:876–82. [DOI] [PubMed]
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu.Neurobiol Sleep Circadian Rhythms. 2018;5:15–36. [DOI] [PubMed] [PMC]
Vinod C, Jagota A. Daily NO rhythms in peripheral clocks in aging male Wistar rats: protective effects of exogenous melatonin.Biogerontology. 2016;17:859–71. [DOI] [PubMed]
Jacobs EH, Yamatodani A, Timmerman H. Is histamine the final neurotransmitter in the entrainment of circadian rhythms in mammals?Trends Pharmacol Sci. 2000;21:293–8. [DOI] [PubMed]
Biello SM. Circadian clock resetting in the mouse changes with age.Age (Dordr). 2009;31:293–303. [DOI] [PubMed] [PMC]
Murala S, Thakkar MM, Bollu PC. Neurochemistry in Clinical Practice. In: Bollu PC, editor. Cham: Springer; 2022.
Kim YS, Kim Y, Kim WB, Lee SW, Oh SB, Han H, et al. Histamine 1 receptor-Gβγ-cAMP/PKA-CFTR pathway mediates the histamine-induced resetting of the suprachiasmatic circadian clock.Mol Brain. 2016;9:49. [DOI] [PubMed] [PMC]
Boudin H, Pélaprat D, Rostène W, Beaudet A. Cellular distribution of neurotensin receptors in rat brain: immunohistochemical study using an antipeptide antibody against the cloned high affinity receptor.J Comp Neurol. 1996;373:76–89. [DOI] [PubMed]
Alexander MJ, Leeman SE. Widespread expression in adult rat forebrain of mRNA encoding high-affinity neurotensin receptor.J Comp Neurol. 1998;402:475–500. [PubMed]
Meyer-Spasche A, Reed HE, Piggins HD. Neurotensin phase-shifts the firing rate rhythm of neurons in the rat suprachiasmatic nuclei in vitro.Eur J Neurosci. 2002;16:339–44. [DOI] [PubMed]
Coogan AN, Rawlings N, Luckman SM, Piggins HD. Effects of neurotensin on discharge rates of rat suprachiasmatic nucleus neurons in vitro.Neuroscience. 2001;103:663–72. [DOI] [PubMed]
Jha PK, Bouâouda H, Kalsbeek A, Challet E. Distinct feedback actions of behavioural arousal to the master circadian clock in nocturnal and diurnal mammals.Neurosci Biobehav Rev. 2021;123:48–60. [DOI] [PubMed]
Vansteensel MJ, Deboer T, Dahan A, Meijer JH. Differential responses of circadian activity onset and offset following GABA-ergic and opioid receptor activation.J Biol Rhythms. 2003;18:297–306. [DOI] [PubMed]
Vansteensel MJ, Magnone MC, Oosterhout Fv, Baeriswyl S, Albrecht U, Albus H, et al. The opioid fentanyl affects light input, electrical activity and Per gene expression in the hamster suprachiasmatic nuclei.Eur J Neurosci. 2005;21:2958–66. [DOI] [PubMed]
Hamada T, Shibata S. The role of GABAergic neuron on NMDA- and SP-induced phase delays in the suprachiasmatic nucleus neuronal activity rhythm in vitro.Neurosci Lett. 2010;468:344–7. [DOI] [PubMed]
Sterniczuk R, Colijn MA, Nunez M, Antle MC. Investigating the role of substance P in photic responses of the circadian system: individual and combined actions with gastrin-releasing peptide.Neuropharmacology. 2010;58:277–85. [DOI] [PubMed]
Nakahara K, Hanada R, Murakami N, Teranishi H, Ohgusu H, Fukushima N, et al. The gut–brain peptide neuromedin U is involved in the mammalian circadian oscillator system.Biochem Biophys Res Commun. 2004;318:156–61. [DOI] [PubMed]
Mori K, Miyazato M, Ida T, Murakami N, Serino R, Ueta Y, et al. Identification of neuromedin S and its possible role in the mammalian circadian oscillator system.EMBO J. 2005;24:325–35. [DOI] [PubMed] [PMC]
Bussi IL, Neitz AF, Sanchez REA, Casiraghi LP, Moldavan M, Kunda D, et al. Expression of the vesicular GABA transporter within neuromedin S+ neurons sustains behavioral circadian rhythms.Proc Natl Acad Sci U S A. 2023;120:e2314857120. [DOI] [PubMed] [PMC]
Joye DAM, Rohr KE, Suenkens K, Wuorinen A, Inda T, Arzbecker M, et al. Somatostatin regulates central clock function and circadian responses to light.Proc Natl Acad Sci U S A. 2023;120:e2216820120. [DOI] [PubMed] [PMC]
Biemans BAM, Gerkema MP, Zee EAVd. Increase in somatostatin immunoreactivity in the suprachiasmatic nucleus of aged Wistar rats.Brain Res. 2002;958:463–7. [DOI] [PubMed]
Duncan MJ, Herron JM, Hill SA. Aging selectively suppresses vasoactive intestinal peptide messenger RNA expression in the suprachiasmatic nucleus of the Syrian hamster.Brain Res Mol Brain Res. 2001;87:196–203. [DOI] [PubMed]
Tackenberg MC, Hughey JJ, McMahon DG. Distinct Components of Photoperiodic Light Are Differentially Encoded by the Mammalian Circadian Clock.J Biol Rhythms. 2020;35:353–67. [DOI] [PubMed] [PMC]
Moore RY. Calretinin Neurons in the Rat Suprachiasmatic Nucleus.J Biol Rhythms. 2016;31:406–10. [DOI] [PubMed]
Bryant DN, LeSauter J, Silver R, Romero MT. Retinal innervation of calbindin-D28K cells in the hamster suprachiasmatic nucleus: ultrastructural characterization.J Biol Rhythms. 2000;15:103–11. [DOI] [PubMed] [PMC]
Jobst EE, Robinson DW, Allen CN. Potential pathways for intercellular communication within the calbindin subnucleus of the hamster suprachiasmatic nucleus.Neuroscience. 2004;123:87–99. [DOI] [PubMed]
Ikeda M, Allen CN. Developmental changes in calbindin-D28k and calretinin expression in the mouse suprachiasmatic nucleus.Eur J Neurosci. 2003;17:1111–8. [DOI] [PubMed]
Thomas MA, Fleissner G, Stöhr M, Hauptfleisch S, Lemmer B. Localization of components of the renin–angiotensin system in the suprachiasmatic nucleus of normotensive Sprague–Dawley rats: Part A. Angiotensin I/II, a light and electron microscopic study.Brain Res. 2004;1008:212–23. [DOI] [PubMed]
Brown TM, McLachlan E, Piggins HD. Angiotensin II regulates the activity of mouse suprachiasmatic nuclei neurons.Neuroscience. 2008;154:839–47. [DOI] [PubMed]
Herichová I, Šoltésová D, Szántóová K, Mravec B, Neupauerová D, Veselá A, et al. Effect of angiotensin II on rhythmic per2 expression in the suprachiasmatic nucleus and heart and daily rhythm of activity in Wistar rats.Regul Pept. 2013;186:49–56. [DOI] [PubMed]
Mitchell V, Bouret S, Howard AD, Beauvillain JC. Expression of the galanin receptor subtype Gal-R2 mRNA in the rat hypothalamus.J Chem Neuroanat. 1999;16:265–77. [DOI] [PubMed]
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour.Nat Rev Endocrinol. 2021;17:97–113. [DOI] [PubMed]
Wang P, Wang SC, Liu X, Jia S, Wang X, Li T, et al. Neural Functions of Hypothalamic Oxytocin and its Regulation.ASN Neuro. 2022;14:17590914221100706. [DOI] [PubMed] [PMC]
Santoso P, Nakata M, Ueta Y, Yada T. Suprachiasmatic vasopressin to paraventricular oxytocin neurocircuit in the hypothalamus relays light reception to inhibit feeding behavior.Am J Physiol Endocrinol Metab. 2018;315:E478–88. [DOI] [PubMed]