Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Huang Z, Xie N, Illes P, Virgilio FD, Ulrich H, Semyanov A, et al. From purines to purinergic signalling: molecular functions and human diseases.Signal Transduct Target Ther. 2021;6:162. [DOI] [PubMed] [PMC]
Virgilio FD, Vuerich M. Purinergic signaling in the immune system.Auton Neurosci. 2015;191:117–23. [DOI] [PubMed]
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development.Signal Transduct Target Ther. 2023;8:267. [DOI] [PubMed] [PMC]
Zhang Y, Qi Y, Gao Y, Chen W, Zhou T, Zang Y, et al. Astrocyte metabolism and signaling pathways in the CNS.Front Neurosci. 2023;17:1217451. [DOI] [PubMed] [PMC]
Puerto AD, Wandosell F, Garrido JJ. Neuronal and glial purinergic receptors functions in neuron development and brain disease.Front Cell Neurosci. 2013;7:197. [DOI] [PubMed] [PMC]
Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, Carvalho K. Glial Purinergic Signaling in Neurodegeneration.Front Neurol. 2021;12:654850. [DOI] [PubMed] [PMC]
Fields RD, Burnstock G. Purinergic signalling in neuron-glia interactions.Nat Rev Neurosci. 2006;7:423–36. [DOI] [PubMed] [PMC]
Debom GN, Rubenich DS, Braganhol E. Adenosinergic Signaling as a Key Modulator of the Glioma Microenvironment and Reactive Astrocytes.Front Neurosci. 2022;15:648476. [DOI] [PubMed] [PMC]
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy.J Inflamm Res. 2021;14:3367–92. [DOI] [PubMed] [PMC]
Farhy-Tselnicker I, Allen NJ. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development.Neural Dev. 2018;13:7. [DOI] [PubMed] [PMC]
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, et al. Cell-cell communication: new insights and clinical implications.Signal Transduct Target Ther. 2024;9:196. [DOI] [PubMed] [PMC]
Eberhardt N, Bergero G, Mariotta YLM, Aoki MP. Purinergic modulation of the immune response to infections.Purinergic Signal. 2022;18:93–113. [DOI] [PubMed] [PMC]
Jacob F, Novo CP, Bachert C, Crombruggen KV. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses.Purinergic Signal. 2013;9:285–306. [DOI] [PubMed] [PMC]
Nobili P, Shen W, Milicevic K, Pristov JB, Audinat E, Nikolic L. Therapeutic Potential of Astrocyte Purinergic Signalling in Epilepsy and Multiple Sclerosis.Front Pharmacol. 2022;13:900337. [DOI] [PubMed] [PMC]
Boué-Grabot E, Pankratov Y. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors.Neural Plast. 2017;2017:9454275. [DOI] [PubMed] [PMC]
Shigetomi E, Sakai K, Koizumi S. Extracellular ATP/adenosine dynamics in the brain and its role in health and disease.Front Cell Dev Biol. 2024;11:1343653. [DOI] [PubMed] [PMC]
Chen J, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets--what are the challenges?Nat Rev Drug Discov. 2013;12:265–86. [DOI] [PubMed] [PMC]
Pedata F, Melani A, Pugliese AM, Coppi E, Cipriani S, Traini C. The role of ATP and adenosine in the brain under normoxic and ischemic conditions.Purinergic Signal. 2007;3:299–310. [DOI] [PubMed] [PMC]
Fountain SJ. Primitive ATP-activated P2X receptors: discovery, function and pharmacology.Front Cell Neurosci. 2013;7:247. [DOI] [PubMed] [PMC]
Burnstock G, Verkhratsky A. Evolutionary origins of the purinergic signalling system.Acta Physiol (Oxf). 2009;195:415–47. [DOI] [PubMed]
Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction.J Adv Res. 2024;66:251–65. [DOI] [PubMed] [PMC]
Akcay E, Karatas H. P2X7 receptors from the perspective of NLRP3 inflammasome pathway in depression: Potential role of cannabidiol.Brain Behav Immun Health. 2024;41:100853. [DOI] [PubMed] [PMC]
Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications.Mol Imaging. 2020;19:1536012120927609. [DOI] [PubMed] [PMC]
Puchałowicz K, Tarnowski M, Baranowska-Bosiacka I, Chlubek D, Dziedziejko V. P2X and P2Y receptors—role in the pathophysiology of the nervous system.Int J Mol Sci. 2014;15:23672–704. [DOI] [PubMed] [PMC]
Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD. Evidence for functional P2X4/P2X7 heteromeric receptors.Mol Pharmacol. 2007;72:1447–56. [DOI] [PubMed]
Casas-Pruneda G, Reyes JP, Pérez-Flores G, Pérez-Cornejo P, Arreola J. Functional interactions between P2X4 and P2X7 receptors from mouse salivary epithelia.J Physiol. 2009;587:2887–901. [DOI] [PubMed] [PMC]
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer.Front Oncol. 2023;13:1058371. [DOI] [PubMed] [PMC]
Molcak H, Jiang K, Campbell CJ, Matsubara JA. Purinergic signaling via P2X receptors and mechanisms of unregulated ATP release in the outer retina and age-related macular degeneration.Front Neurosci. 2023;17:1216489. [DOI] [PubMed] [PMC]
Erb L, Weisman GA. Coupling of P2Y receptors to G proteins and other signaling pathways.Wiley Interdiscip Rev Membr Transp Signal. 2012;1:789–803. [DOI] [PubMed] [PMC]
Woods LT, Forti KM, Shanbhag VC, Camden JM, Weisman GA. P2Y receptors for extracellular nucleotides: Contributions to cancer progression and therapeutic implications.Biochem Pharmacol. 2021;187:114406. [DOI] [PubMed] [PMC]
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases.Pharmacol Rev. 2019;71:345–82. [DOI] [PubMed] [PMC]
Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation.Trends Mol Med. 2013;19:355–67. [DOI] [PubMed] [PMC]
Rimbert S, Moreira JB, Xapelli S, Lévi S. Role of purines in brain development, from neuronal proliferation to synaptic refinement.Neuropharmacology. 2023;237:109640. [DOI] [PubMed]
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets.Immunol Rev. 2017;276:121–44. [DOI] [PubMed] [PMC]
Allard D, Cormery J, Bricha S, Fuselier C, Aghababazadeh FA, Giraud L, et al. Adenosine Uptake through the Nucleoside Transporter ENT1 Suppresses Antitumor Immunity and T-cell Pyrimidine Synthesis.Cancer Res. 2025;85:692–703. [DOI] [PubMed]
Sun M, You H, Hu X, Luo Y, Zhang Z, Song Y, et al. Microglia-Astrocyte Interaction in Neural Development and Neural Pathogenesis.Cells. 2023;12:1942. [DOI] [PubMed] [PMC]
Khakh BS, North RA. Neuromodulation by extracellular ATP and P2X receptors in the CNS.Neuron. 2012;76:51–69. [DOI] [PubMed] [PMC]
Pougnet J, Toulme E, Martinez A, Choquet D, Hosy E, Boué-Grabot E. ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons.Neuron. 2014;83:417–30. [DOI] [PubMed]
Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A. P2X receptors and synaptic plasticity.Neuroscience. 2009;158:137–48. [DOI] [PubMed]
Lopes CR, Gonçalves FQ, Olaio S, Tomé AR, Cunha RA, Lopes JP. Adenosine A2A Receptors Shut Down Adenosine A1 Receptor-Mediated Presynaptic Inhibition to Promote Implementation of Hippocampal Long-Term Potentiation.Biomolecules. 2023;13:715. [DOI] [PubMed] [PMC]
Sebastião AM, Ribeiro JA. Adjusting the brakes to adjust neuronal activity: Adenosinergic modulation of GABAergic transmission.Neuropharmacology. 2023;236:109600. [DOI] [PubMed]
Wang Y, Fu AKY, Ip NY. Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activity-dependent regulatory mechanisms.FEBS J. 2022;289:2202–18. [DOI] [PubMed] [PMC]
Lezmy J. How astrocytic ATP shapes neuronal activity and brain circuits.Curr Opin Neurobiol. 2023;79:102685. [DOI] [PubMed]
Chu K, Yin B, Wang J, Peng G, Liang H, Xu Z, et al. Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus.J Neuroinflammation. 2012;9:69. [DOI] [PubMed] [PMC]
Yu Q, Guo Z, Liu X, Ouyang Q, He C, Burnstock G, et al. Block of P2X7 receptors could partly reverse the delayed neuronal death in area CA1 of the hippocampus after transient global cerebral ischemia.Purinergic Signal. 2013;9:663–75. [DOI] [PubMed] [PMC]
Weisman GA, Ajit D, Garrad R, Peterson TS, Woods LT, Thebeau C, et al. Neuroprotective roles of the P2Y2 receptor.Purinergic Signal. 2012;8:559–78. [DOI] [PubMed] [PMC]
Weisman GA, Woods LT, Erb L, Seye CI. P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential.CNS Neurol Disord Drug Targets. 2012;11:722–38. [DOI] [PubMed] [PMC]
Sancho L, Contreras M, Allen NJ. Glia as sculptors of synaptic plasticity.Neurosci Res. 2021;167:17–29. [DOI] [PubMed] [PMC]
Dzyubenko E, Hermann DM. Role of glia and extracellular matrix in controlling neuroplasticity in the central nervous system.Semin Immunopathol. 2023;45:377–87. [DOI] [PubMed] [PMC]
Cornell J, Salinas S, Huang H, Zhou M. Microglia regulation of synaptic plasticity and learning and memory.Neural Regen Res. 2022;17:705–16. [DOI] [PubMed] [PMC]
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets.Signal Transduct Target Ther. 2023;8:359. [DOI] [PubMed] [PMC]
Gaudet AD, Fonken LK. Glial Cells Shape Pathology and Repair After Spinal Cord Injury.Neurotherapeutics. 2018;15:554–77. [DOI] [PubMed] [PMC]
Illes P, Ulrich H, Chen J, Tang Y. Purinergic receptors in cognitive disturbances.Neurobiol Dis. 2023;185:106229. [DOI] [PubMed]
Ota Y, Zanetti AT, Hallock RM. The role of astrocytes in the regulation of synaptic plasticity and memory formation.Neural Plast. 2013;2013:185463. [DOI] [PubMed] [PMC]
Liu J, Liu S, Hu S, Lu J, Wu C, Hu D, et al. ATP ion channel P2X purinergic receptors in inflammation response.Biomed Pharmacother. 2023;158:114205. [DOI] [PubMed]
Virgilio FD, Ben DD, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in Infection and Inflammation.Immunity. 2017;47:15–31. [DOI] [PubMed]
Haskó G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases.Nat Rev Drug Discov. 2008;7:759–70. [DOI] [PubMed] [PMC]
Bernal-Chico A, Manterola A, Cipriani R, Katona I, Matute C, Mato S. P2x7 receptors control demyelination and inflammation in the cuprizone model.Brain Behav Immun Health. 2020;4:100062.Erratum in: Brain Behav Immun Health. 2021;19:100408. [DOI] [PubMed] [PMC]
Sharp AJ, Polak PE, Simonini V, Lin SX, Richardson JC, Bongarzone ER, et al. P2x7 deficiency suppresses development of experimental autoimmune encephalomyelitis.J Neuroinflammation. 2008;5:33. [DOI] [PubMed] [PMC]
Almolda B, Gonzalez B, Castellano B. Antigen presentation in EAE: role of microglia, macrophages and dendritic cells.Front Biosci (Landmark Ed). 2011;16:1157–71. [DOI] [PubMed]
Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation.Annu Rev Immunol. 1996;14:233–58. [DOI] [PubMed]
Coquet JM, Rausch L, Borst J. The importance of co-stimulation in the orchestration of T helper cell differentiation.Immunol Cell Biol. 2015;93:780–8. [DOI] [PubMed]
Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, et al. Autocrine regulation of T-cell activation by ATP release and P2X7 receptors.FASEB J. 2009;23:1685–93. [DOI] [PubMed] [PMC]
de Salles ÉM, Raeder PL, Angeli CB, Santiago VF, Souza CNd, Ramalho T, et al. P2RX7 signaling drives the differentiation of Th1 cells through metabolic reprogramming for aerobic glycolysis.Front Immunol. 2023;14:1140426. [DOI] [PubMed] [PMC]
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases.Front Immunol. 2024;15:1345625. [DOI] [PubMed] [PMC]
Cheng R, Ren W, Luo B, Ye X. The role of purinergic receptors in neural repair and regeneration after spinal cord injury.Neural Regen Res. 2023;18:1684–90. [DOI] [PubMed] [PMC]
Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, et al. Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury.Proc Natl Acad Sci U S A. 2009;106:12489–93. [DOI] [PubMed] [PMC]
Jassam YN, Izzy S, Whalen M, McGavern DB, Khoury JE. Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift.Neuron. 2017;95:1246–65. [DOI] [PubMed] [PMC]
Burnstock G. Physiology and pathophysiology of purinergic neurotransmission.Physiol Rev. 2007;87:659–797. [DOI] [PubMed]
Burnstock G. Introduction to Purinergic Signaling.Methods Mol Biol. 2020;2041:1–15. [DOI] [PubMed]
Burnstock G, Verkhratsky A. Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death.Cell Death Dis. 2010;1:e9. [DOI] [PubMed] [PMC]
Burnstock G. Short- and long-term (trophic) purinergic signalling.Philos Trans R Soc Lond B Biol Sci. 2016;371:20150422. [DOI] [PubMed] [PMC]
Liu Y, Shen X, Zhang Y, Zheng X, Cepeda C, Wang Y, et al. Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells.Glia. 2023;71:1383–401. [DOI] [PubMed]
Illes P, Rubini P, Ulrich H, Zhao Y, Tang Y. Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS.Cells. 2020;9:1108. [DOI] [PubMed] [PMC]
Carracedo S, Launay A, Dechelle-Marquet P, Faivre E, Blum D, Delarasse C, et al. Purinergic-associated immune responses in neurodegenerative diseases.Prog Neurobiol. 2024;243:102693. [DOI] [PubMed]
Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, et al. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy.Front Pharmacol. 2018;9:325. [DOI] [PubMed] [PMC]
Franke H, Verkhratsky A, Burnstock G, Illes P. Pathophysiology of astroglial purinergic signalling.Purinergic Signal. 2012;8:629–57. [DOI] [PubMed] [PMC]
Brockie S, Zhou C, Fehlings MG. Resident immune responses to spinal cord injury: role of astrocytes and microglia.Neural Regen Res. 2024;19:1678–85. [DOI] [PubMed] [PMC]
Matejuk A, Ransohoff RM. Crosstalk Between Astrocytes and Microglia: An Overview.Front Immunol. 2020;11:1416. [DOI] [PubMed] [PMC]
Glaser T, Cappellari AR, Pillat MM, Iser IC, Wink MR, Battastini AMO, et al. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration.Purinergic Signal. 2012;8:523–37. [DOI] [PubMed] [PMC]
Glaser T, Resende RR, Ulrich H. Implications of purinergic receptor-mediated intracellular calcium transients in neural differentiation.Cell Commun Signal. 2013;11:12. [DOI] [PubMed] [PMC]
Morillas AG, Besson VC, Lerouet D. Microglia and Neuroinflammation: What Place for P2RY12?Int J Mol Sci. 2021;22:1636. [DOI] [PubMed] [PMC]
Andoh M, Koyama R. Microglia regulate synaptic development and plasticity.Dev Neurobiol. 2021;81:568–90. [DOI] [PubMed] [PMC]
Sidoryk-Węgrzynowicz M, Strużyńska L. Astroglial and Microglial Purinergic P2X7 Receptor as a Major Contributor to Neuroinflammation during the Course of Multiple Sclerosis.Int J Mol Sci. 2021;22:8404. [DOI] [PubMed] [PMC]
Campagno KE, Mitchell CH. The P2X7 Receptor in Microglial Cells Modulates the Endolysosomal Axis, Autophagy, and Phagocytosis.Front Cell Neurosci. 2021;15:645244. [DOI] [PubMed] [PMC]
Liu L, Liu J, Bao J, Bai Q, Wang G. Interaction of Microglia and Astrocytes in the Neurovascular Unit.Front Immunol. 2020;11:1024. [DOI] [PubMed] [PMC]
Shan L, Zhang T, Fan K, Cai W, Liu H. Astrocyte-Neuron Signaling in Synaptogenesis.Front Cell Dev Biol. 2021;9:680301. [DOI] [PubMed] [PMC]
Pacholko AG, Wotton CA, Bekar LK. Astrocytes—The Ultimate Effectors of Long-Range Neuromodulatory Networks?Front Cell Neurosci. 2020;14:581075. [DOI] [PubMed] [PMC]
Montero TD, Orellana JA. Hemichannels: new pathways for gliotransmitter release.Neuroscience. 2015;286:45–59. [DOI] [PubMed]
Bernardinelli Y, Muller D, Nikonenko I. Astrocyte-synapse structural plasticity.Neural Plast. 2014;2014:232105. [DOI] [PubMed] [PMC]
Südhof TC. Towards an Understanding of Synapse Formation.Neuron. 2018;100:276–93. [DOI] [PubMed] [PMC]
Lovinger DM. Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol.Alcohol Res Health. 2008;31:196–214. [PubMed] [PMC]
Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling.Physiol Rev. 2006;86:1009–31. [DOI] [PubMed]
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner.Trends Neurosci. 1999;22:208–15. [DOI] [PubMed]
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons.Eur J Neurosci. 1998;10:2129–42. [DOI] [PubMed]
Marín-Teva JL, Dusart I, Colin C, Gervais A, Rooijen Nv, Mallat M. Microglia promote the death of developing Purkinje cells.Neuron. 2004;41:535–47. [DOI] [PubMed]
Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions.Science. 2020;367:528–37. [DOI] [PubMed]
Schafer DP, Lehrman EK, Stevens B. The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS.Glia. 2013;61:24–36. [DOI] [PubMed] [PMC]
Cserép C, Pósfai B, Dénes Á. Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions.Neuron. 2021;109:222–40. [DOI] [PubMed]
Jha MK, Jo M, Kim J, Suk K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation.Neuroscientist. 2019;25:227–40. [DOI] [PubMed]
Sochocka M, Diniz BS, Leszek J. Inflammatory Response in the CNS: Friend or Foe?Mol Neurobiol. 2017;54:8071–89. [DOI] [PubMed] [PMC]
Lacagnina MJ, Rivera PD, Bilbo SD. Glial and Neuroimmune Mechanisms as Critical Modulators of Drug Use and Abuse.Neuropsychopharmacology. 2017;42:156–77. [DOI] [PubMed] [PMC]
Thergarajan P, O’Brien TJ, Jones NC, Ali I. Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy.Epilepsy Behav. 2025;163:110219. [DOI] [PubMed]
Henstridge CM, Tzioras M, Paolicelli RC. Glial Contribution to Excitatory and Inhibitory Synapse Loss in Neurodegeneration.Front Cell Neurosci. 2019;13:63. [DOI] [PubMed] [PMC]
Guedes JR, Ferreira PA, Costa JM, Cardoso AL, Peça J. Microglia-dependent remodeling of neuronal circuits.J Neurochem. 2022;163:74–93. [DOI] [PubMed] [PMC]
Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay M. The implication of a diversity of non-neuronal cells in disorders affecting brain networks.Front Cell Neurosci. 2022;16:1015556. [DOI] [PubMed] [PMC]
Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of Microglia and Astrocytes during Brain Development.Front Hum Neurosci. 2016;10:566. [DOI] [PubMed] [PMC]
Garré JM, Silva HM, Lafaille JJ, Yang G. CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α.Nat Med. 2017;23:714–22. [DOI] [PubMed] [PMC]
Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.Cell. 2013;155:1596–609. [DOI] [PubMed] [PMC]
Werneburg S, Jung J, Kunjamma RB, Ha S, Luciano NJ, Willis CM, et al. Targeted Complement Inhibition at Synapses Prevents Microglial Synaptic Engulfment and Synapse Loss in Demyelinating Disease.Immunity. 2020;52:167–82.e7. [DOI] [PubMed] [PMC]
Chakraborty R, Nonaka T, Hasegawa M, Zurzolo C. Tunnelling nanotubes between neuronal and microglial cells allow bi-directional transfer of α-Synuclein and mitochondria.Cell Death Dis. 2023;14:329. [DOI] [PubMed] [PMC]
Scheiblich H, Eikens F, Wischhof L, Opitz S, Jüngling K, Cserép C, et al. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes.Neuron. 2024;112:3106–25.e8. [DOI] [PubMed]
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.Neuron. 2012;74:691–705. [DOI] [PubMed] [PMC]
Sipe GO, Lowery RL, Tremblay M, Kelly EA, Lamantia CE, Majewska AK. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex.Nat Commun. 2016;7:10905. [DOI] [PubMed] [PMC]
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development.Science. 2011;333:1456–8. [DOI] [PubMed]
Weinhard L, Bartolomei Gd, Bolasco G, Machado P, Schieber NL, Neniskyte U, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction.Nat Commun. 2018;9:1228. [DOI] [PubMed] [PMC]
Umpierre AD, Wu L. How microglia sense and regulate neuronal activity.Glia. 2021;69:1637–53. [DOI] [PubMed] [PMC]
Pascual O, Achour SB, Rostaing P, Triller A, Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission.Proc Natl Acad Sci U S A. 2012;109:E197–205. [DOI] [PubMed] [PMC]
Miyamoto A, Wake H, Moorhouse AJ, Nabekura J. Microglia and synapse interactions: fine tuning neural circuits and candidate molecules.Front Cell Neurosci. 2013;7:70. [DOI] [PubMed] [PMC]
Eyo UB, Peng J, Swiatkowski P, Mukherjee A, Bispo A, Wu L. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus.J Neurosci. 2014;34:10528–40. [DOI] [PubMed] [PMC]
Béchade C, Cantaut-Belarif Y, Bessis A. Microglial control of neuronal activity.Front Cell Neurosci. 2013;7:32. [DOI] [PubMed] [PMC]
Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper.Neuron. 2013;77:10–8. [DOI] [PubMed]
Cheung G, Chever O, Rouach N. Connexons and pannexons: newcomers in neurophysiology.Front Cell Neurosci. 2014;8:348. [DOI] [PubMed] [PMC]
Gajardo-Gómez R, Labra VC, Orellana JA. Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions.Front Mol Neurosci. 2016;9:86. [DOI] [PubMed] [PMC]
Leybaert L, Sanderson MJ. Intercellular Ca2+ waves: mechanisms and function.Physiol Rev. 2012;92:1359–92. [DOI] [PubMed] [PMC]
Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury.Br J Pharmacol. 2016;173:692–702. [DOI] [PubMed] [PMC]
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MKR, Herrera AJ, Espinosa-Oliva AM, et al. Microglia: Agents of the CNS Pro-Inflammatory Response.Cells. 2020;9:1717. [DOI] [PubMed] [PMC]
Kwon HS, Koh S. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes.Transl Neurodegener. 2020;9:42. [DOI] [PubMed] [PMC]
Noguchi Y, Shinozaki Y, Fujishita K, Shibata K, Imura Y, Morizawa Y, et al. Astrocytes protect neurons against methylmercury via ATP/P2Y1 receptor-mediated pathways in astrocytes.PLoS One. 2013;8:e57898. [DOI] [PubMed] [PMC]
Tjalkens RB, Popichak KA, Kirkley KA. Inflammatory Activation of Microglia and Astrocytes in Manganese Neurotoxicity.Adv Neurobiol. 2017;18:159–81. [DOI] [PubMed] [PMC]
Wetherington J, Serrano G, Dingledine R. Astrocytes in the epileptic brain.Neuron. 2008;58:168–78. [DOI] [PubMed] [PMC]
Hatch K, Lischka F, Wang M, Xu X, Stimpson CD, Barvir T, et al. The role of microglia in neuronal and cognitive function during high altitude acclimatization.Sci Rep. 2024;14:18981. [DOI] [PubMed] [PMC]
Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner.J Biol Chem. 2006;281:21362–8. [DOI] [PubMed]
Martorell A, Wellmann M, Guiffa F, Fuenzalida M, Bonansco C. P2Y1 receptor inhibition rescues impaired synaptic plasticity and astroglial Ca2+-dependent activity in the epileptic hippocampus.Neurobiol Dis. 2020;146:105132. [DOI] [PubMed]
Yu Y, Chen R, Mao K, Deng M, Li Z. The Role of Glial Cells in Synaptic Dysfunction: Insights into Alzheimer’s Disease Mechanisms.Aging Dis. 2024;15:459–79. [DOI] [PubMed] [PMC]
Amro Z, Yool AJ, Collins-Praino LE. The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies.Brain Behav Immun Health. 2021;14:100242. [DOI] [PubMed] [PMC]
Illes P, Burnstock G, Tang Y. Astroglia-Derived ATP Modulates CNS Neuronal Circuits.Trends Neurosci. 2019;42:885–98. [DOI] [PubMed]
Purines 2018 Basic and Translational Science on Purinergic Signaling and its Components for a Healthy and Better World.Purinergic Signal. 2018;14:1–122. [DOI] [PubMed] [PMC]
Durkee CA, Araque A. Diversity and Specificity of Astrocyte-neuron Communication.Neuroscience. 2019;396:73–8. [DOI] [PubMed] [PMC]
Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release.Cells. 2019;8:184. [DOI] [PubMed] [PMC]
Lalo U, Palygin O, Verkhratsky A, Grant SGN, Pankratov Y. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex.Sci Rep. 2016;6:33609. [DOI] [PubMed] [PMC]
Liu X, Ying J, Wang X, Zheng Q, Zhao T, Yoon S, et al. Astrocytes in Neural Circuits: Key Factors in Synaptic Regulation and Potential Targets for Neurodevelopmental Disorders.Front Mol Neurosci. 2021;14:729273. [DOI] [PubMed] [PMC]
Dias RB, Rombo DM, Ribeiro JA, Henley JM, Sebastião AM. Adenosine: setting the stage for plasticity.Trends Neurosci. 2013;36:248–57. [DOI] [PubMed]
Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex.PLoS Biol. 2014;12:e1001747.Erratum in: PLoS Biol. 2014;12:e1001857. [DOI] [PubMed] [PMC]
Nam HW, McIver SR, Hinton DJ, Thakkar MM, Sari Y, Parkinson FE, et al. Adenosine and glutamate signaling in neuron-glial interactions: implications in alcoholism and sleep disorders.Alcohol Clin Exp Res. 2012;36:1117–25. [DOI] [PubMed] [PMC]
Szopa A, Bogatko K, Herbet M, Serefko A, Ostrowska M, Wośko S, et al. The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies.Int J Mol Sci. 2021;22:1840. [DOI] [PubMed] [PMC]
James G, Butt AM. P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system.Eur J Pharmacol. 2002;447:247–60. [DOI] [PubMed]
Jacob PF, Vaz SH, Ribeiro JA, Sebastião AM. P2Y1 receptor inhibits GABA transport through a calcium signalling-dependent mechanism in rat cortical astrocytes.Glia. 2014;62:1211–26. [DOI] [PubMed]
Abbracchio MP, Ceruti S. Roles of P2 receptors in glial cells: focus on astrocytes.Purinergic Signal. 2006;2:595–604. [DOI] [PubMed] [PMC]
Zhao Y, Wang S, Song X, Yuan J, Qi D, Gu X, et al. Glial Cell-Based Vascular Mechanisms and Transplantation Therapies in Brain Vessel and Neurodegenerative Diseases.Front Cell Neurosci. 2021;15:627682. [DOI] [PubMed] [PMC]
Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone.Neuroscience. 2016;323:96–109. [DOI] [PubMed] [PMC]
Boison D, Chen J, Fredholm BB. Adenosine signaling and function in glial cells.Cell Death Differ. 2010;17:1071–82. [DOI] [PubMed] [PMC]
Yu G, Zhang Y, Ning B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy.Front Cell Neurosci. 2021;15:792764. [DOI] [PubMed] [PMC]
Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K. P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain.J Neurosci. 2008;28:2892–902. [DOI] [PubMed] [PMC]
Zabala A, Vazquez-Villoldo N, Rissiek B, Gejo J, Martin A, Palomino A, et al. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis.EMBO Mol Med. 2018;10:e8743. [DOI] [PubMed] [PMC]
Orr AG, Orr AL, Li X, Gross RE, Traynelis SF. Adenosine A2A receptor mediates microglial process retraction.Nat Neurosci. 2009;12:872–8. [DOI] [PubMed] [PMC]
Madeira MH, Elvas F, Boia R, Gonçalves FQ, Cunha RA, Ambrósio AF, et al. Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure.J Neuroinflammation. 2015;12:115. [DOI] [PubMed] [PMC]
Colella M, Zinni M, Pansiot J, Cassanello M, Mairesse J, Ramenghi L, et al. Modulation of Microglial Activation by Adenosine A2a Receptor in Animal Models of Perinatal Brain Injury.Front Neurol. 2018;9:605. [DOI] [PubMed] [PMC]
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, et al. Pharmacology of Adenosine Receptors: Recent Advancements.Biomolecules. 2023;13:1387. [DOI] [PubMed] [PMC]
Inoue K. Overview for the study of P2 receptors: From P2 receptor history to neuropathic pain studies.J Pharmacol Sci. 2022;149:73–80. [DOI] [PubMed]
Roux CM, Lecouflet P, Billard J, Esneault E, Leger M, Schumann-Bard P, et al. Genetic Background Influence on Hippocampal Synaptic Plasticity: Frequency-Dependent Variations between an Inbred and an Outbred Mice Strain.Int J Mol Sci. 2023;24:4304. [DOI] [PubMed] [PMC]
Pankratov YV, Lalo UV, Krishtal OA. Role for P2X receptors in long-term potentiation.J Neurosci. 2002;22:8363–9. [DOI] [PubMed] [PMC]
Bell PD, Lapointe J, Sabirov R, Hayashi S, Peti-Peterdi J, Manabe K, et al. Macula densa cell signaling involves ATP release through a maxi anion channel.Proc Natl Acad Sci U S A. 2003;100:4322–7. [DOI] [PubMed] [PMC]
Zhang P, Bannon NM, Ilin V, Volgushev M, Chistiakova M. Adenosine effects on inhibitory synaptic transmission and excitation-inhibition balance in the rat neocortex.J Physiol. 2015;593:825–41. [DOI] [PubMed] [PMC]
Stockwell J, Jakova E, Cayabyab FS. Adenosine A1 and A2A Receptors in the Brain: Current Research and Their Role in Neurodegeneration.Molecules. 2017;22:676. [DOI] [PubMed] [PMC]
Deuchars SA, Brooke RE, Deuchars J. Adenosine A1 receptors reduce release from excitatory but not inhibitory synaptic inputs onto lateral horn neurons.J Neurosci. 2001;21:6308–20. [DOI] [PubMed] [PMC]
Wei CJ, Li W, Chen J. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies.Biochim Biophys Acta. 2011;1808:1358–79. [DOI] [PubMed]
Scemes E, Giaume C. Astrocyte calcium waves: what they are and what they do.Glia. 2006;54:716–25. [DOI] [PubMed] [PMC]
Goenaga J, Araque A, Kofuji P, Chao DHM. Calcium signaling in astrocytes and gliotransmitter release.Front Synaptic Neurosci. 2023;15:1138577. [DOI] [PubMed] [PMC]
Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury.Exp Neurol. 2016;275:305–15. [DOI] [PubMed] [PMC]
Theparambil SM, Kopach O, Braga A, Nizari S, Hosford PS, Sagi-Kiss V, et al. Adenosine signalling to astrocytes coordinates brain metabolism and function.Nature. 2024;632:139–46. [DOI] [PubMed] [PMC]
Covelo A, Araque A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte.Elife. 2018;7:e32237. [DOI] [PubMed] [PMC]
Allen NJ, Eroglu C. Cell Biology of Astrocyte-Synapse Interactions.Neuron. 2017;96:697–708. [DOI] [PubMed] [PMC]
Sichardt K, Nieber K. Adenosine A1 receptor: Functional receptor-receptor interactions in the brain.Purinergic Signal. 2007;3:285–98. [DOI] [PubMed] [PMC]
Sousa-Soares C, Noronha-Matos JB, Correia-de-Sá P. Purinergic Tuning of the Tripartite Neuromuscular Synapse.Mol Neurobiol. 2023;60:4084–104. [DOI] [PubMed] [PMC]
Rodrigues RJ, Marques JM, Cunha RA. Purinergic signalling and brain development.Semin Cell Dev Biol. 2019;95:34–41. [DOI] [PubMed]
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human.Cells. 2024;13:161. [DOI] [PubMed] [PMC]
Kohno K, Tsuda M. Role of microglia and P2X4 receptors in chronic pain.Pain Rep. 2021;6:e864. [DOI] [PubMed] [PMC]
Tsuda M, Masuda T, Tozaki-Saitoh H, Inoue K. P2X4 receptors and neuropathic pain.Front Cell Neurosci. 2013;7:191. [DOI] [PubMed] [PMC]
Haskó G, Cronstein B. Regulation of inflammation by adenosine.Front Immunol. 2013;4:85. [DOI] [PubMed] [PMC]
Fukumoto Y, Tanaka KF, Parajuli B, Shibata K, Yoshioka H, Kanemaru K, et al. Neuroprotective effects of microglial P2Y1 receptors against ischemic neuronal injury.J Cereb Blood Flow Metab. 2019;39:2144–56. [DOI] [PubMed] [PMC]
Shigetomi E, Suzuki H, Hirayama YJ, Sano F, Nagai Y, Yoshihara K, et al. Disease-relevant upregulation of P2Y1 receptor in astrocytes enhances neuronal excitability via IGFBP2.Nat Commun. 2024;15:6525. [DOI] [PubMed] [PMC]
Rotondo JC, Mazziotta C, Lanzillotti C, Stefani C, Badiale G, Campione G, et al. The Role of Purinergic P2X7 Receptor in Inflammation and Cancer: Novel Molecular Insights and Clinical Applications.Cancers (Basel). 2022;14:1116. [DOI] [PubMed] [PMC]
Alves VS, Leite-Aguiar R, Silva JPd, Coutinho-Silva R, Savio LEB. Purinergic signaling in infectious diseases of the central nervous system.Brain Behav Immun. 2020;89:480–90. [DOI] [PubMed] [PMC]
Gombault A, Baron L, Couillin I. ATP release and purinergic signaling in NLRP3 inflammasome activation.Front Immunol. 2013;3:414. [DOI] [PubMed] [PMC]
Barberà-Cremades M, Gómez AI, Baroja-Mazo A, Martínez-Alarcón L, Martínez CM, Torre-Minguela Cd, et al. P2X7 Receptor Induces Tumor Necrosis Factor-α Converting Enzyme Activation and Release to Boost TNF-α Production.Front Immunol. 2017;8:862. [DOI] [PubMed] [PMC]
Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, et al. The role of the purinergic P2X7 receptor in inflammation.J Inflamm (Lond). 2007;4:5. [DOI] [PubMed] [PMC]
Regateiro FS, Cobbold SP, Waldmann H. CD73 and adenosine generation in the creation of regulatory microenvironments.Clin Exp Immunol. 2013;171:1–7. [DOI] [PubMed] [PMC]
Xu S, Shao Q, Sun J, Yang N, Xie Q, Wang D, et al. Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas.Neuro Oncol. 2013;15:1160–72. [DOI] [PubMed] [PMC]
Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade.Biochim Biophys Acta. 2008;1783:673–94. [DOI] [PubMed]
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art.Physiol Rev. 2018;98:1591–625. [DOI] [PubMed]
Gao Z. Adenosine A2A receptor and glia.Int Rev Neurobiol. 2023;170:29–48. [DOI] [PubMed]
Cekanaviciute E, Buckwalter MS. Astrocytes: Integrative Regulators of Neuroinflammation in Stroke and Other Neurological Diseases.Neurotherapeutics. 2016;13:685–701. [DOI] [PubMed] [PMC]
Gandelman M, Peluffo H, Beckman JS, Cassina P, Barbeito L. Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis.J Neuroinflammation. 2010;7:33. [DOI] [PubMed] [PMC]
Muzio L, Viotti A, Martino G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy.Front Neurosci. 2021;15:742065. [DOI] [PubMed] [PMC]
Mirarchi A, Albi E, Arcuri C. Microglia Signatures: A Cause or Consequence of Microglia-Related Brain Disorders?Int J Mol Sci. 2024;25:10951. [DOI] [PubMed] [PMC]
Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, et al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway.J Exp Med. 2010;207:2561–8. [DOI] [PubMed] [PMC]
Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, et al. NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor.Immunity. 2003;19:571–82. [DOI] [PubMed]
Rissiek B, Stabernack J, Cordes M, Duan Y, Behr S, Menzel S, et al. Astrocytes and Microglia Are Resistant to NAD+-Mediated Cell Death Along the ARTC2/P2X7 Axis.Front Mol Neurosci. 2020;12:330. [DOI] [PubMed] [PMC]
Oliveira-Giacomelli Á, Petiz LL, Andrejew R, Turrini N, Silva JB, Sack U, et al. Role of P2X7 Receptors in Immune Responses During Neurodegeneration.Front Cell Neurosci. 2021;15:662935. [DOI] [PubMed] [PMC]
Johns AE, Taga A, Charalampopoulou A, Gross SK, Rust K, McCray BA, et al. Exploring P2X7 receptor antagonism as a therapeutic target for neuroprotection in an hiPSC motor neuron model.Stem Cells Transl Med. 2024;13:1198–212. [DOI] [PubMed] [PMC]
Zhou T, Wu J, Chen Z, Liu Z, Miao B. Effects of dexmedetomidine on P2X4Rs, p38-MAPK and BDNF in spinal microglia in rats with spared nerve injury.Brain Res. 2014;1568:21–30. [DOI] [PubMed]
Tsuda M, Tozaki-Saitoh H, Masuda T, Toyomitsu E, Tezuka T, Yamamoto T, et al. Lyn tyrosine kinase is required for P2X4 receptor upregulation and neuropathic pain after peripheral nerve injury.Glia. 2008;56:50–8. [DOI] [PubMed]
Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain.J Neurosci. 2008;28:11263–8. [DOI] [PubMed] [PMC]
Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 Receptor Function in the Nervous System and Current Breakthroughs in Pharmacology.Front Pharmacol. 2017;8:291. [DOI] [PubMed] [PMC]
Ahn YH, Tang Y, Illes P. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer’s disease, ischemic brain injury, and epileptic state.Expert Opin Ther Targets. 2023;27:763–78. [DOI] [PubMed]
Yue N, Huang H, Zhu X, Han Q, Wang Y, Li B, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors.J Neuroinflammation. 2017;14:102. [DOI] [PubMed] [PMC]
Zhang Y, Huang R, Cheng M, Wang L, Chao J, Li J, et al. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2.Microbiome. 2019;7:116. [DOI] [PubMed] [PMC]
Rodrigues RJ, Figueira AS, Marques JM. P2Y1 Receptor as a Catalyst of Brain Neurodegeneration.NeuroSci. 2022;3:604–15. [DOI] [PubMed] [PMC]
Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY, et al. P2Y2 nucleotide receptor-mediated responses in brain cells.Mol Neurobiol. 2010;41:356–66. [DOI] [PubMed] [PMC]
Fumagalli M, Brambilla R, D’Ambrosi N, Volonté C, Matteoli M, Verderio C, et al. Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors.Glia. 2003;43:218–03. [DOI] [PubMed]
Kreft M, Bak LK, Waagepetersen HS, Schousboe A. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation.ASN Neuro. 2012;4:e00086. [DOI] [PubMed] [PMC]
Kirdajova DB, Kriska J, Tureckova J, Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells.Front Cell Neurosci. 2020;14:51. [DOI] [PubMed] [PMC]
Edison P. Astroglial activation: Current concepts and future directions.Alzheimers Dement. 2024;20:3034–53. [DOI] [PubMed] [PMC]
Dai S, Zhou Y, Li W, An J, Li P, Yang N, et al. Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury.J Neurosci. 2010;30:5802–10. [DOI] [PubMed] [PMC]
Shin J, Fang Z, Yu Z, Wang C, Li S, Li X. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity.J Cell Biol. 2005;171:1001–12.Erratum in: J Cell Biol. 2006;172:953. [DOI] [PubMed] [PMC]
Janes K, Esposito E, Doyle T, Cuzzocrea S, Tosh DK, Jacobson KA, et al. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways.Pain. 2014;155:2560–7. [DOI] [PubMed] [PMC]
Bozdemir E, Vigil FA, Chun SH, Espinoza L, Bugay V, Khoury SM, et al. Neuroprotective Roles of the Adenosine A3 Receptor Agonist AST-004 in Mouse Model of Traumatic Brain Injury.Neurotherapeutics. 2021;18:2707–21. [DOI] [PubMed] [PMC]
Carvalho K, Martin E, Ces A, Sarrazin N, Lagouge-Roussey P, Nous C, et al. P2X7-deficiency improves plasticity and cognitive abilities in a mouse model of Tauopathy.Prog Neurobiol. 2021;206:102139. [DOI] [PubMed]
Martin E, Amar M, Dalle C, Youssef I, Boucher C, Duigou CL, et al. New role of P2X7 receptor in an Alzheimer’s disease mouse model.Mol Psychiatry. 2019;24:108–25. [DOI] [PubMed] [PMC]
Förster D, Reiser G. Supportive or detrimental roles of P2Y receptors in brain pathology?—The two faces of P2Y receptors in stroke and neurodegeneration detected in neural cell and in animal model studies.Purinergic Signal. 2015;11:441–54. [DOI] [PubMed] [PMC]
Tonazzini I, Trincavelli ML, Montali M, Martini C. Regulation of A1 adenosine receptor functioning induced by P2Y1 purinergic receptor activation in human astroglial cells.J Neurosci Res. 2008;86:2857–66. [DOI] [PubMed]
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy.Nat Rev Neurol. 2022;18:707–22. [DOI] [PubMed] [PMC]
Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration.Annu Rev Immunol. 2017;35:441–68. [DOI] [PubMed] [PMC]
Laprell L, Schulze C, Brehme M, Oertner TG. The role of microglia membrane potential in chemotaxis.J Neuroinflammation. 2021;18:21.Erratum in: J Neuroinflammation. 2021;18:33. [DOI] [PubMed] [PMC]
Franke H, Schepper C, Illes P, Krügel U. Involvement of P2X and P2Y receptors in microglial activation in vivo.Purinergic Signal. 2007;3:435–45. [DOI] [PubMed] [PMC]
Calovi S, Mut-Arbona P, Sperlágh B. Microglia and the Purinergic Signaling System.Neuroscience. 2019;405:137–47. [DOI] [PubMed]
Sophocleous RA, Ooi L, Sluyter R. The P2X4 Receptor: Cellular and Molecular Characteristics of a Promising Neuroinflammatory Target.Int J Mol Sci. 2022;23:5739. [DOI] [PubMed] [PMC]
Suurväli J, Boudinot P, Kanellopoulos J, Boudinot SR. P2X4: A fast and sensitive purinergic receptor.Biomed J. 2017;40:245–56. [DOI] [PubMed] [PMC]
Zhang W, Luo H, Zhu Z. The role of P2X4 receptors in chronic pain: A potential pharmacological target.Biomed Pharmacother. 2020;129:110447. [DOI] [PubMed]
Montilla A, Mata GP, Matute C, Domercq M. Contribution of P2X4 Receptors to CNS Function and Pathophysiology.Int J Mol Sci. 2020;21:5562. [DOI] [PubMed] [PMC]
Trang T, Beggs S, Wan X, Salter MW. P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation.J Neurosci. 2009;29:3518–28. [DOI] [PubMed] [PMC]
Aby F, Whitestone S, Landry M, Ulmann L, Fossat P. Inflammatory-induced spinal dorsal horn neurons hyperexcitability is mediated by P2X4 receptors.Pain Rep. 2018;3:e660. [DOI] [PubMed] [PMC]
Inoue K. Role of the P2X4 receptor in neuropathic pain.Curr Opin Pharmacol. 2019;47:33–9. [DOI] [PubMed]
Garré JM, Silva HM, Lafaille JJ, Yang G. P2X7 receptor inhibition ameliorates dendritic spine pathology and social behavioral deficits in Rett syndrome mice.Nat Commun. 2020;11:1784. [DOI] [PubMed] [PMC]
Hove HV, Martens L, Scheyltjens I, Vlaminck KD, Antunes ARP, Prijck SD, et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment.Nat Neurosci. 2019;22:1021–35. [DOI] [PubMed]
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, et al. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders.Front Pharmacol. 2024;15:1450704. [DOI] [PubMed] [PMC]
Janks L, Sprague RS, Egan TM. ATP-Gated P2X7 Receptors Require Chloride Channels To Promote Inflammation in Human Macrophages.J Immunol. 2019;202:883–98. [DOI] [PubMed] [PMC]
Pelegrín P. Many ways to dilate the P2X7 receptor pore.Br J Pharmacol. 2011;163:908–11. [DOI] [PubMed] [PMC]
Karasawa A, Michalski K, Mikhelzon P, Kawate T. The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition.Elife. 2017;6:e31186. [DOI] [PubMed] [PMC]
Riedel T, Lozinsky I, Schmalzing G, Markwardt F. Kinetics of P2X7 receptor-operated single channels currents.Biophys J. 2007;92:2377–91. [DOI] [PubMed] [PMC]
Li M, Toombes GES, Silberberg SD, Swartz KJ. Physical basis of apparent pore dilation of ATP-activated P2X receptor channels.Nat Neurosci. 2015;18:1577–83. [DOI] [PubMed] [PMC]
Garré JM, Bukauskas FF, Bennett MVL. Single channel properties of pannexin-1 and connexin-43 hemichannels and P2X7 receptors in astrocytes cultured from rodent spinal cords.Glia. 2022;70:2260–75. [DOI] [PubMed] [PMC]
Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan W, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides.Nat Neurosci. 2006;9:1512–9. [DOI] [PubMed]
Granzotto A, McQuade A, Chadarevian JP, Davtyan H, Sensi SL, Parker I, et al. ER and SOCE Ca2+ signals are not required for directed cell migration in human iPSC-derived microglia.Cell Calcium. 2024;123:102923. [DOI] [PubMed]
Das R, Chinnathambi S. Microglial remodeling of actin network by Tau oligomers, via G protein-coupled purinergic receptor, P2Y12R-driven chemotaxis.Traffic. 2021;22:153–70. [DOI] [PubMed]
Fekete R, Cserép C, Lénárt N, Tóth K, Orsolits B, Martinecz B, et al. Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms.Acta Neuropathol. 2018;136:461–82. [DOI] [PubMed] [PMC]
Entsie P, Kang Y, Amoafo EB, Schöneberg T, Liverani E. The Signaling Pathway of the ADP Receptor P2Y12 in the Immune System: Recent Discoveries and New Challenges.Int J Mol Sci. 2023;24:6709. [DOI] [PubMed] [PMC]
Fan Y, Xie L, Chung CY. Signaling Pathways Controlling Microglia Chemotaxis.Mol Cells. 2017;40:163–8. [DOI] [PubMed] [PMC]
Ohsawa K, Irino Y, Sanagi T, Nakamura Y, Suzuki E, Inoue K, et al. P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP.Glia. 2010;58:790–801. [DOI] [PubMed]
Ma C, Li B, Silverman D, Ding X, Li A, Xiao C, et al. Microglia regulate sleep through calcium-dependent modulation of norepinephrine transmission.Nat Neurosci. 2024;27:249–58. [DOI] [PubMed] [PMC]
Rifat A, Ossola B, Bürli RW, Dawson LA, Brice NL, Rowland A, et al. Differential contribution of THIK-1 K+ channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia.J Neuroinflammation. 2024;21:58. [DOI] [PubMed] [PMC]
Suzuki T, Kohyama K, Moriyama K, Ozaki M, Hasegawa S, Ueno T, et al. Extracellular ADP augments microglial inflammasome and NF-κB activation via the P2Y12 receptor.Eur J Immunol. 2020;50:205–19. [DOI] [PubMed]
Berki P, Cserép C, Környei Z, Pósfai B, Szabadits E, Domonkos A, et al. Microglia contribute to neuronal synchrony despite endogenous ATP-related phenotypic transformation in acute mouse brain slices.Nat Commun. 2024;15:5402. [DOI] [PubMed] [PMC]
Chen X, Wang Q, Yang J, Zhang L, Liu T, Liu J, et al. Diagnostic and therapeutic value of P2Y12R in epilepsy.Front Pharmacol. 2023;14:1179028. [DOI] [PubMed] [PMC]
Kyrargyri V, Madry C, Rifat A, Arancibia-Carcamo IL, Jones SP, Chan VTT, et al. P2Y13 receptors regulate microglial morphology, surveillance, and resting levels of interleukin 1β release.Glia. 2020;68:328–44. [DOI] [PubMed] [PMC]
Swiatkowski P, Murugan M, Eyo UB, Wang Y, Rangaraju S, Oh SB, et al. Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury.Neuroscience. 2016;318:22–33. [DOI] [PubMed] [PMC]
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo.Nat Neurosci. 2005;8:752–8. [DOI] [PubMed]
Bollinger JL, Dadosky DT, Flurer JK, Rainer IL, Woodburn SC, Wohleb ES. Microglial P2Y12 mediates chronic stress-induced synapse loss in the prefrontal cortex and associated behavioral consequences.Neuropsychopharmacology. 2023;48:1347–57. [DOI] [PubMed] [PMC]
Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier.Proc Natl Acad Sci U S A. 2016;113:1074–9. [DOI] [PubMed] [PMC]
Liu P, Yue M, Zhou R, Niu J, Huang D, Xu T, et al. P2Y12 and P2Y13 receptors involved in ADPβs induced the release of IL-1β, IL-6 and TNF-α from cultured dorsal horn microglia.J Pain Res. 2017;10:1755–67. [DOI] [PubMed] [PMC]
Stefani J, Tschesnokowa O, Parrilla M, Robaye B, Boeynaems J, Acker-Palmer A, et al. Disruption of the Microglial ADP Receptor P2Y13 Enhances Adult Hippocampal Neurogenesis.Front Cell Neurosci. 2018;12:134. [DOI] [PubMed] [PMC]
Mut-Arbona P, Sperlágh B. P2 receptor-mediated signaling in the physiological and pathological brain: From development to aging and disease.Neuropharmacology. 2023;233:109541. [DOI] [PubMed]
Milior G, Morin-Brureau M, Chali F, Duigou CL, Savary E, Huberfeld G, et al. Distinct P2Y Receptors Mediate Extension and Retraction of Microglial Processes in Epileptic and Peritumoral Human Tissue.J Neurosci. 2020;40:1373–88. [DOI] [PubMed] [PMC]
Anwar S, Pons V, Rivest S. Microglia Purinoceptor P2Y6: An Emerging Therapeutic Target in CNS Diseases.Cells. 2020;9:1595. [DOI] [PubMed] [PMC]
Puigdellívol M, Milde S, Vilalta A, Cockram TOJ, Allendorf DH, Lee JY, et al. The microglial P2Y6 receptor mediates neuronal loss and memory deficits in neurodegeneration.Cell Rep. 2021;37:110148. [DOI] [PubMed] [PMC]
Al-Ewaidat OA, Gogia S, Begiashvili V, Naffaa MM. The multifaceted role of calcium signaling dynamics in neural cell proliferation and gliomagenesis.AIMS Biophys. 2024;11:296–328. [DOI]
Xu Y, Hu W, Liu Y, Xu P, Li Z, Wu R, et al. P2Y6 Receptor-Mediated Microglial Phagocytosis in Radiation-Induced Brain Injury.Mol Neurobiol. 2016;53:3552–64. [DOI] [PubMed] [PMC]
Zhang Y, Tang Y, Illes P. Modification of Neural Circuit Functions by Microglial P2Y6 Receptors in Health and Neurodegeneration.Mol Neurobiol. 2024;[Epub ahead of print]. [DOI] [PubMed]
Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis.Nature. 2007;446:1091–5. [DOI] [PubMed] [PMC]
Micklewright JJ, Layhadi JA, Fountain SJ. P2Y12 receptor modulation of ADP-evoked intracellular Ca2+ signalling in THP-1 human monocytic cells.Br J Pharmacol. 2018;175:2483–91. [DOI] [PubMed] [PMC]
Simone RD, Niturad CE, Nuccio CD, Ajmone-Cat MA, Visentin S, Minghetti L. TGF-β and LPS modulate ADP-induced migration of microglial cells through P2Y1 and P2Y12 receptor expression.J Neurochem. 2010;115:450–9. [DOI] [PubMed]
Luongo L, Guida F, Imperatore R, Napolitano F, Gatta L, Cristino L, et al. The A1 adenosine receptor as a new player in microglia physiology.Glia. 2014;62:122–32. [DOI] [PubMed]
Navia AM, Ben DD, Lambertucci C, Spinaci A, Volpini R, Marques-Morgado I, et al. Adenosine Receptors as Neuroinflammation Modulators: Role of A1 Agonists and A2A Antagonists.Cells. 2020;9:1739. [DOI] [PubMed] [PMC]
Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated.Exp Neurol. 2016;275:316–27. [DOI] [PubMed] [PMC]
Dinet V, Petry KG, Badaut J. Brain-Immune Interactions and Neuroinflammation After Traumatic Brain Injury.Front Neurosci. 2019;13:1178. [DOI] [PubMed] [PMC]
Ohsawa K, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S. Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration.J Neurochem. 2012;121:217–27. [DOI] [PubMed]
Jakovljevic M, Lavrnja I, Bozic I, Milosevic A, Bjelobaba I, Savic D, et al. Induction of NTPDase1/CD39 by Reactive Microglia and Macrophages Is Associated With the Functional State During EAE.Front Neurosci. 2019;13:410. [DOI] [PubMed] [PMC]
Matyash M, Zabiegalov O, Wendt S, Matyash V, Kettenmann H. The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain.PLoS One. 2017;12:e0175012. [DOI] [PubMed] [PMC]
Lanser AJ, Rezende RM, Rubino S, Lorello PJ, Donnelly DJ, Xu H, et al. Disruption of the ATP/adenosine balance in CD39-/- mice is associated with handling-induced seizures.Immunology. 2017;152:589–601. [DOI] [PubMed] [PMC]
Chun BJ, Aryal SP, Varughese P, Sun B, Bruno JA, Richards CI, et al. Purinoreceptors and ectonucleotidases control ATP-induced calcium waveforms and calcium-dependent responses in microglia: Roles of P2 receptors and CD39 in ATP-stimulated microglia.Front Physiol. 2023;13:1037417. [DOI] [PubMed] [PMC]
Meng F, Guo Z, Hu Y, Mai W, Zhang Z, Zhang B, et al. CD73-derived adenosine controls inflammation and neurodegeneration by modulating dopamine signalling.Brain. 2019;142:700–18. [DOI] [PubMed]
Guo Q, Gobbo D, Zhao N, Zhang H, Awuku N, Liu Q, et al. Adenosine triggers early astrocyte reactivity that provokes microglial responses and drives the pathogenesis of sepsis-associated encephalopathy in mice.Nat Commun. 2024;15:6340.Erratum in: Nat Commun. 2024;15:8200. [DOI] [PubMed] [PMC]
Subramaniam SR, Federoff HJ. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson’s Disease.Front Aging Neurosci. 2017;9:176. [DOI] [PubMed] [PMC]
Evilsizor MN, Ray-Jones HF, Ellis TW, Lifshitz J, Ziebell JM. Microglia in experimental brain injury: Implications on neuronal injury and circuit remodeling. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton: CRC Press; 2015. pp. 79–90. [DOI]
Bernier L, York EM, Kamyabi A, Choi HB, Weilinger NL, MacVicar BA. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma.Nat Commun. 2020;11:1559. [DOI] [PubMed] [PMC]
Vidal-Itriago A, Radford RAW, Aramideh JA, Maurel C, Scherer NM, Don EK, et al. Microglia morphophysiological diversity and its implications for the CNS.Front Immunol. 2022;13:997786. [DOI] [PubMed] [PMC]
Green TRF, Rowe RK. Quantifying microglial morphology: an insight into function.Clin Exp Immunol. 2024;216:221–9. [DOI] [PubMed] [PMC]
Ingwersen J, Wingerath B, Graf J, Lepka K, Hofrichter M, Schröter F, et al. Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation.J Neuroinflammation. 2016;13:48. [DOI] [PubMed] [PMC]
Tokano M, Matsushita S, Takagi R, Yamamoto T, Kawano M. Extracellular adenosine induces hypersecretion of IL-17A by T-helper 17 cells through the adenosine A2a receptor.Brain Behav Immun Health. 2022;26:100544. [DOI] [PubMed] [PMC]
Ferré S, Quiroz C, Orru M, Guitart X, Navarro G, Cortés A, et al. Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function.Front Neuroanat. 2011;5:36. [DOI] [PubMed] [PMC]
Borroto-Escuela DO, Hinz S, Navarro G, Franco R, Müller CE, Fuxe K. Understanding the Role of Adenosine A2AR Heteroreceptor Complexes in Neurodegeneration and Neuroinflammation.Front Neurosci. 2018;12:43. [DOI] [PubMed] [PMC]
Merighi S, Borea PA, Varani K, Vincenzi F, Jacobson KA, Gessi S. A2A Adenosine Receptor Antagonists in Neurodegenerative Diseases.Curr Med Chem. 2022;29:4138–51. [DOI] [PubMed] [PMC]
Franco R, Navarro G. Adenosine A2A Receptor Antagonists in Neurodegenerative Diseases: Huge Potential and Huge Challenges.Front Psychiatry. 2018;9:68. [DOI] [PubMed] [PMC]
Shang P, Baker M, Banks S, Hong S, Choi D. Emerging Nondopaminergic Medications for Parkinson’s Disease: Focusing on A2A Receptor Antagonists and GLP1 Receptor Agonists.J Mov Disord. 2021;14:193–203. [DOI] [PubMed] [PMC]
Jenner P. An overview of adenosine A2A receptor antagonists in Parkinson’s disease.Int Rev Neurobiol. 2014;119:71–86. [DOI] [PubMed]
Armentero MT, Pinna A, Ferré S, Lanciego JL, Müller CE, Franco R. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease.Pharmacol Ther. 2011;132:280–99. [DOI] [PubMed] [PMC]
Gyoneva S, Shapiro L, Lazo C, Garnier-Amblard E, Smith Y, Miller GW, et al. Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson’s disease.Neurobiol Dis. 2014;67:191–202. [DOI] [PubMed] [PMC]
Monif M, Reid CA, Powell KL, Smart ML, Williams DA. The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore.J Neurosci. 2009;29:3781–91. [DOI] [PubMed] [PMC]
Alves M, Gil B, Villegas-Salmerón J, Salari V, Martins-Ferreira R, Blázquez MA, et al. Opposing effects of the purinergic P2X7 receptor on seizures in neurons and microglia in male mice.Brain Behav Immun. 2024;120:121–40. [DOI] [PubMed]
Smith J, Méndez AM, Alves M, Parras A, Conte G, Bhattacharya A, et al. The P2X7 receptor contributes to seizures and inflammation-driven long-lasting brain hyperexcitability following hypoxia in neonatal mice.Br J Pharmacol. 2023;180:1710–29. [DOI] [PubMed]
Burnstock G, Knight GE. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression.Purinergic Signal. 2018;14:1–18. [DOI] [PubMed] [PMC]
Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P. P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-α and prostaglandins.J Biol Chem. 2006;281:30684–96. [DOI] [PubMed]
Simões AP, Silva CG, Marques JM, Pochmann D, Porciúncula LO, Ferreira S, et al. Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation.Cell Death Dis. 2018;9:297. [DOI] [PubMed] [PMC]
Duveau A, Bertin E, Boué-Grabot E. Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders.Neurosci Bull. 2020;36:1327–43. [DOI] [PubMed] [PMC]
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy.Neuropharmacology. 2023;222:109303. [DOI] [PubMed]
Domercq M, Zabala A, Matute C. Purinergic receptors in multiple sclerosis pathogenesis.Brain Res Bull. 2019;151:38–45. [DOI] [PubMed]
Illes P. P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases.Int J Mol Sci. 2020;21:5996. [DOI] [PubMed] [PMC]
Lassmann H. Multiple Sclerosis Pathology.Cold Spring Harb Perspect Med. 2018;8:a028936. [DOI] [PubMed] [PMC]
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis.Nat Rev Immunol. 2015;15:545–58. [DOI] [PubMed]
Chidambaram H, Das R, Chinnathambi S. G-protein coupled purinergic P2Y12 receptor interacts and internalizes TauRD-mediated by membrane-associated actin cytoskeleton remodeling in microglia.Eur J Cell Biol. 2022;101:151201. [DOI] [PubMed]
Beaino W, Janssen B, Kooij G, Pol SMAvd, Hof BvH, Horssen Jv, et al. Purinergic receptors P2Y12R and P2X7R: potential targets for PET imaging of microglia phenotypes in multiple sclerosis.J Neuroinflammation. 2017;14:259. [DOI] [PubMed] [PMC]
Hide I, Shiraki H, Masuda A, Maeda T, Kumagai M, Kunishige N, et al. P2Y2 receptor mediates dying cell removal via inflammatory activated microglia.J Pharmacol Sci. 2023;153:55–67. [DOI] [PubMed]
van Wageningen TA, Vlaar E, Kooij G, Jongenelen CAM, Geurts JJG, van Dam AM. Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment.Acta Neuropathol Commun. 2019;7:206. [DOI] [PubMed] [PMC]
Francistiová L, Bianchi C, Di Lauro C, Sebastián-Serrano Á, de Diego-García L, Kobolák J, et al. The Role of P2X7 Receptor in Alzheimer’s Disease.Front Mol Neurosci. 2020;13:94. [DOI] [PubMed] [PMC]
Hu Z, Luo Y, Zhu J, Jiang D, Luo Z, Wu L, et al. Role of the P2 × 7 receptor in neurodegenerative diseases and its pharmacological properties.Cell Biosci. 2023;13:225. [DOI] [PubMed] [PMC]
Ronning KE, Déchelle-Marquet P, Che Y, Guillonneau X, Sennlaub F, Delarasse C. The P2X7 Receptor, a Multifaceted Receptor in Alzheimer’s Disease.Int J Mol Sci. 2023;24:11747. [DOI] [PubMed] [PMC]
Jiang L, Roger S. Targeting the P2X7 receptor in microglial cells to prevent brain inflammation.Neural Regen Res. 2020;15:1245–6. [DOI] [PubMed] [PMC]
Raouf R, Chabot-Doré A, Ase AR, Blais D, Séguéla P. Differential regulation of microglial P2X4 and P2X7 ATP receptors following LPS-induced activation.Neuropharmacology. 2007;53:496–504. [DOI] [PubMed]
Territo PR, Zarrinmayeh H. P2X7 Receptors in Neurodegeneration: Potential Therapeutic Applications From Basic to Clinical Approaches.Front Cell Neurosci. 2021;15:617036. [DOI] [PubMed] [PMC]
Xiong Y, Zhou D, Zheng K, Bi W, Dong Y. Extracellular Adenosine Triphosphate Binding to P2Y1 Receptors Prevents Glutamate-Induced Excitotoxicity: Involvement of Erk1/2 Signaling Pathway to Suppress Autophagy.Front Neurosci. 2022;16:901688. [DOI] [PubMed] [PMC]
Iring A, Tóth A, Baranyi M, Otrokocsi L, Módis LV, Gölöncsér F, et al. The dualistic role of the purinergic P2Y12-receptor in an in vivo model of Parkinson’s disease: Signalling pathway and novel therapeutic targets.Pharmacol Res. 2022;176:106045. [DOI] [PubMed]
Guzman SJ, Gerevich Z. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction.Neural Plast. 2016;2016:1207393. [DOI] [PubMed] [PMC]
Apolloni S, Amadio S, Montilli C, Volonté C, D’Ambrosi N. Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis.Hum Mol Genet. 2013;22:4102–16. [DOI] [PubMed]
Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Glaser T, Arnaud-Sampaio VF, Lameu C, et al. The P2X7 Receptor: Central Hub of Brain Diseases.Front Mol Neurosci. 2020;13:124. [DOI] [PubMed] [PMC]
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity.Int J Mol Sci. 2023;24:15430. [DOI] [PubMed] [PMC]
Mckenzie ADJ, Garrett TR, Werry EL, Kassiou M. Purinergic P2X7 Receptor: A Therapeutic Target in Amyotrophic Lateral Sclerosis.ACS Chem Neurosci. 2022;13:1479–90. [DOI] [PubMed]
Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, et al. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord.BMC Neurol. 2006;6:12. [DOI] [PubMed] [PMC]
Ruiz-Ruiz C, Calzaferri F, García AG. P2X7 Receptor Antagonism as a Potential Therapy in Amyotrophic Lateral Sclerosis.Front Mol Neurosci. 2020;13:93. [DOI] [PubMed] [PMC]
Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration.Front Aging Neurosci. 2022;14:825086. [DOI] [PubMed] [PMC]
Corps KN, Roth TL, McGavern DB. Inflammation and neuroprotection in traumatic brain injury.JAMA Neurol. 2015;72:355–62. [DOI] [PubMed] [PMC]
Zheng R, Lee K, Qi Z, Wang Z, Xu Z, Wu X, et al. Neuroinflammation Following Traumatic Brain Injury: Take It Seriously or Not.Front Immunol. 2022;13:855701. [DOI] [PubMed] [PMC]
Liu X, Zhao Z, Ji R, Zhu J, Sui Q, Knight GE, et al. Inhibition of P2X7 receptors improves outcomes after traumatic brain injury in rats.Purinergic Signal. 2017;13:529–44. [DOI] [PubMed] [PMC]
Nadal-Nicolás FM, Galindo-Romero C, Valiente-Soriano FJ, Barberà-Cremades M, deTorre-Minguela C, Salinas-Navarro M, et al. Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury.Sci Rep. 2016;6:38499. [DOI] [PubMed] [PMC]
Togre NS, Mekala N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, et al. Neuroinflammatory responses and blood-brain barrier injury in chronic alcohol exposure: role of purinergic P2 × 7 Receptor signaling.J Neuroinflammation. 2024;21:244. [DOI] [PubMed] [PMC]
Castillo C, Saez-Orellana F, Godoy PA, Fuentealba J. Microglial Activation Modulated by P2X4R in Ischemia and Repercussions in Alzheimer’s Disease.Front Physiol. 2022;13:814999. [DOI] [PubMed] [PMC]
Arulkumaran N, Unwin RJ, Tam FW. A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases.Expert Opin Investig Drugs. 2011;20:897–915. [DOI] [PubMed] [PMC]
Gilabert D, Duveau A, Carracedo S, Linck N, Langla A, Muramatsu R, et al. Microglial P2X4 receptors are essential for spinal neurons hyperexcitability and tactile allodynia in male and female neuropathic mice.iScience. 2023;26:108110. [DOI] [PubMed] [PMC]
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation.Biomedicines. 2024;12:1310. [DOI] [PubMed] [PMC]
Boccazzi M, Raffaele S, Zanettin T, Abbracchio MP, Fumagalli M. Altered Purinergic Signaling in Neurodevelopmental Disorders: Focus on P2 Receptors.Biomolecules. 2023;13:856. [DOI] [PubMed] [PMC]
Babiec L, Wilkaniec A, Matuszewska M, Pałasz E, Cieślik M, Adamczyk A. Alterations of Purinergic Receptors Levels and Their Involvement in the Glial Cell Morphology in a Pre-Clinical Model of Autism Spectrum Disorders.Brain Sci. 2023;13:1088.Erratum in: Brain Sci. 2024;14:233. [DOI] [PubMed] [PMC]
Pelegrin P. P2X7 receptor and the NLRP3 inflammasome: Partners in crime.Biochem Pharmacol. 2021;187:114385. [DOI] [PubMed]
Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics.Nat Rev Immunol. 2019;19:477–89. [DOI] [PubMed] [PMC]
Pejhan S, Rastegar M. Role of DNA Methyl-CpG-Binding Protein MeCP2 in Rett Syndrome Pathobiology and Mechanism of Disease.Biomolecules. 2021;11:75. [DOI] [PubMed] [PMC]
Mut-Arbona P, Huang L, Baranyi M, Tod P, Iring A, Calzaferri F, et al. Dual Role of the P2X7 Receptor in Dendritic Outgrowth during Physiological and Pathological Brain Development.J Neurosci. 2023;43:1125–42. [DOI] [PubMed] [PMC]
Dai S, Lin J, Hou Y, Luo X, Shen Y, Ou J. Purine signaling pathway dysfunction in autism spectrum disorders: Evidence from multiple omics data.Front Mol Neurosci. 2023;16:1089871. [DOI] [PubMed] [PMC]
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration.Front Mol Neurosci. 2023;15:1072046. [DOI] [PubMed] [PMC]
Allen M, Huang BS, Notaras MJ, Lodhi A, Barrio-Alonso E, Lituma PJ, et al. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca2+ signaling.Mol Psychiatry. 2022;27:2470–84. [DOI] [PubMed] [PMC]
Harry GJ. Microglia during development and aging.Pharmacol Ther. 2013;139:313–26. [DOI] [PubMed] [PMC]
Wang W, Huang F, Jiang W, Wang W, Xiang J. Brilliant blue G attenuates neuro-inflammation via regulating MAPKs and NF-κB signaling pathways in lipopolysaccharide-induced BV2 microglia cells.Exp Ther Med. 2020;20:116. [DOI] [PubMed] [PMC]
Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA. P2X7 receptor-mediated release of excitatory amino acids from astrocytes.J Neurosci. 2003;23:1320–8. [DOI] [PubMed] [PMC]
Quan L, Uyeda A, Muramatsu R. Central nervous system regeneration: the roles of glial cells in the potential molecular mechanism underlying remyelination.Inflamm Regen. 2022;42:7. [DOI] [PubMed] [PMC]
Rasband MN. Glial Contributions to Neural Function and Disease.Mol Cell Proteomics. 2016;15:355–61. [DOI] [PubMed] [PMC]
Stackhouse TL, Mishra A. Neurovascular Coupling in Development and Disease: Focus on Astrocytes.Front Cell Dev Biol. 2021;9:702832. [DOI] [PubMed] [PMC]
Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles.Nat Neurosci. 2016;19:1619–27.Erratum in: Nat Neurosci. 2017;20:1189. Erratum in: Nat Neurosci. 2020;23:1176. [DOI] [PubMed] [PMC]
Mishra A, Gordon GR, MacVicar BA, Newman EA. Astrocyte Regulation of Cerebral Blood Flow in Health and Disease.Cold Spring Harb Perspect Biol. 2024;16:a041354. [DOI] [PubMed]
Guo W, Xu X, Gao X, Burnstock G, He C, Xiang Z. Expression of P2X5 receptors in the mouse CNS.Neuroscience. 2008;156:673–92. [DOI] [PubMed]
Jeong YH, Walsh MC, Yu J, Shen H, Wherry EJ, Choi Y. Mice Lacking the Purinergic Receptor P2X5 Exhibit Defective Inflammasome Activation and Early Susceptibility to Listeria monocytogenes.J Immunol. 2020;205:760–6. [DOI] [PubMed] [PMC]
Kim H, Walsh MC, Takegahara N, Middleton SA, Shin H, Kim J, et al. The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts.Sci Rep. 2017;7:196. [DOI] [PubMed] [PMC]
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors.Int J Mol Sci. 2023;24:8225. [DOI] [PubMed] [PMC]
Savio LEB, Mello PdA, Silva CGd, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon?Front Pharmacol. 2018;9:52. [DOI] [PubMed] [PMC]
Shinozaki Y, Shibata K, Yoshida K, Shigetomi E, Gachet C, Ikenaka K, et al. Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1 Receptor Downregulation.Cell Rep. 2017;19:1151–64. [DOI] [PubMed]
Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellívol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation.J Neurochem. 2021;158:621–39. [DOI] [PubMed]
Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central nervous system diseases.Mol Neurobiol. 2014;49:1422–34. [DOI] [PubMed] [PMC]
Dundee JM, Puigdellívol M, Butler R, Brown GC. P2Y6 Receptor-Dependent Microglial Phagocytosis of Synapses during Development Regulates Synapse Density and Memory.J Neurosci. 2023;43:8090–103. [DOI] [PubMed] [PMC]
Planas AM. Role of microglia in stroke.Glia. 2024;72:1016–53. [DOI] [PubMed]
Webster CM, Hokari M, McManus A, Tang XN, Ma H, Kacimi R, et al. Microglial P2Y12 deficiency/inhibition protects against brain ischemia.PLoS One. 2013;8:e70927. [DOI] [PubMed] [PMC]
Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress.J Neuroinflammation. 2021;18:258. [DOI] [PubMed] [PMC]
Kobayashi K, Yamanaka H, Yanamoto F, Okubo M, Noguchi K. Multiple P2Y subtypes in spinal microglia are involved in neuropathic pain after peripheral nerve injury.Glia. 2012;60:1529–39. [DOI] [PubMed]
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration.Biochim Biophys Acta. 2011;1808:1380–99. [DOI] [PubMed]
Lauro C, Cipriani R, Catalano M, Trettel F, Chece G, Brusadin V, et al. Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death.Neuropsychopharmacology. 2010;35:1550–9. [DOI] [PubMed] [PMC]
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, et al. Astrocytes in human central nervous system diseases: a frontier for new therapies.Signal Transduct Target Ther. 2023;8:396. [DOI] [PubMed] [PMC]
Franco R, Lillo A, Rivas-Santisteban R, Reyes-Resina I, Navarro G. Microglial Adenosine Receptors: From Preconditioning to Modulating the M1/M2 Balance in Activated Cells.Cells. 2021;10:1124. [DOI] [PubMed] [PMC]
Pedata F, Pugliese AM, Coppi E, Dettori I, Maraula G, Cellai L, et al. Adenosine A2A receptors modulate acute injury and neuroinflammation in brain ischemia.Mediators Inflamm. 2014;2014:805198. [DOI] [PubMed] [PMC]
Dias L, Pochmann D, Lemos C, Silva HB, Real JI, Gonçalves FQ, et al. Increased Synaptic ATP Release and CD73-Mediated Formation of Extracellular Adenosine in the Control of Behavioral and Electrophysiological Modifications Caused by Chronic Stress.ACS Chem Neurosci. 2023;14:1299–309. [DOI] [PubMed] [PMC]
Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair.Cell Death Differ. 2007;14:1315–23. [DOI] [PubMed]
Hu Y, Yao Y, Qi H, Yang J, Zhang C, Zhang A, et al. Microglia sense and suppress epileptic neuronal hyperexcitability.Pharmacol Res. 2023;195:106881. [DOI] [PubMed]
Kim MJ, Lee D, Ryu JH, Lee S, Choi BT, Yun YJ, et al. Weisheng-tang protects against ischemic brain injury by modulating microglia activation through the P2Y12 receptor.Front Pharmacol. 2024;15:1347622. [DOI] [PubMed] [PMC]
Gao Y, Yu C, Pi S, Mao L, Hu B. The role of P2Y12 receptor in ischemic stroke of atherosclerotic origin.Cell Mol Life Sci. 2019;76:341–54. [DOI] [PubMed] [PMC]
Tescarollo FC, Rombo DM, DeLiberto LK, Fedele DE, Alharfoush E, Tomé ÂR, et al. Role of Adenosine in Epilepsy and Seizures.J Caffeine Adenosine Res. 2020;10:45–60. [DOI] [PubMed] [PMC]
Masino SA, Jr MK, Ruskin DN. Adenosine receptors and epilepsy: current evidence and future potential.Int Rev Neurobiol. 2014;119:233–55. [DOI] [PubMed] [PMC]
Amadio S, Parisi C, Piras E, Fabbrizio P, Apolloni S, Montilli C, et al. Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis.Front Immunol. 2017;8:1529. [DOI] [PubMed] [PMC]
Rusiecka OM, Tournier M, Molica F, Kwak BR. Pannexin1 channels—a potential therapeutic target in inflammation.Front Cell Dev Biol. 2022;10:1020826. [DOI] [PubMed] [PMC]
Donnelly CR, Andriessen AS, Chen G, Wang K, Jiang C, Maixner W, et al. Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain.Neurotherapeutics. 2020;17:846–60. [DOI] [PubMed] [PMC]
Santana PT, Lima ISd, Souza KCdSE, Barbosa PHS, Souza HSPd. Persistent Activation of the P2X7 Receptor Underlies Chronic Inflammation and Carcinogenic Changes in the Intestine.Int J Mol Sci. 2024;25:10874. [DOI] [PubMed] [PMC]
Donnelly-Roberts DL, Jarvis MF. Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states.Br J Pharmacol. 2007;151:571–9. [DOI] [PubMed] [PMC]
Santiago AR, Baptista FI, Santos PF, Cristóvão G, Ambrósio AF, Cunha RA, et al. Role of microglia adenosine A2A receptors in retinal and brain neurodegenerative diseases.Mediators Inflamm. 2014;2014:465694. [DOI] [PubMed] [PMC]