The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
The National Key Research and Development Program of China [2022YFC2406900] supports this work. The key subjects of nuclear medicine: Jiangsu Provincial Institute of Medical Sciences [JSDW202247]. Jiangsu Provincial Medical Key Discipline Cultivation Unit [JSDW202247]. Nanjing International/Hong Kong, Macao, and Taiwan Science and Technology Cooperation Program Project [202308005]. The National Natural Science Foundation of China [82301609], China Postdoctoral Science Foundation [2022M711666], Natural Science Foundation of Jiangsu Province [BK20220196], the International Joint Research and Development Project of Nanjing [202201030], and the International Joint Research and Development Project of Nanjing [202308005]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Zhuang Q, Yang H, Mao Y. The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities.Neurosci Bull. 2023;39:393–408. [DOI] [PubMed] [PMC]
Bush NAO, Chang SM, Berger MS. Current and future strategies for treatment of glioma.Neurosurg Rev. 2017;40:1–14. [DOI] [PubMed]
Gladson CL, Prayson RA, Liu WM. The pathobiology of glioma tumors.Annu Rev Pathol. 2010;5:33–50. [DOI] [PubMed] [PMC]
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.Neuro Oncol. 2021;23:1231–51. [DOI] [PubMed] [PMC]
Louis DN, Perry A, Reifenberger G, Deimling Av, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.Acta Neuropathol. 2016;131:803–20. [DOI] [PubMed]
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas.N Engl J Med. 2009;360:765–73. [DOI] [PubMed] [PMC]
Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma.Clin Cancer Res. 2013;19:764–72. [DOI] [PubMed]
Esteller M. Epigenetics in cancer.N Engl J Med. 2008;358:1148–59. [DOI] [PubMed]
Sharma P, Aaroe A, Liang J, Puduvalli VK. Tumor microenvironment in glioblastoma: Current and emerging concepts.Neurooncol Adv. 2023;5:vdad009. [DOI] [PubMed] [PMC]
Ren J, Zhai X, Yin H, Zhou F, Hu Y, Wang K, et al. Multimodality MRI Radiomics Based on Machine Learning for Identifying True Tumor Recurrence and Treatment-Related Effects in Patients with Postoperative Glioma.Neurol Ther. 2023;12:1729–43. [DOI] [PubMed] [PMC]
Wen PY, Chang SM, Van den Bent MJ, Vogelbaum MA, Macdonald DR, Lee EQ. Response Assessment in Neuro-Oncology Clinical Trials.J Clin Oncol. 2017;35:2439–49. [DOI] [PubMed] [PMC]
Ellingson BM, Wen PY, Cloughesy TF. Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials.Neurotherapeutics. 2017;14:307–20. [DOI] [PubMed] [PMC]
Pope WB, Brandal G. Conventional and advanced magnetic resonance imaging in patients with high-grade glioma.Q J Nucl Med Mol Imaging. 2018;62:239–53. [DOI] [PubMed] [PMC]
Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial.JAMA. 2017;318:2306–16.Erratum in: JAMA. 2018;319:1824. [DOI] [PubMed] [PMC]
Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging.Radiology. 2008;247:490–8. [DOI] [PubMed] [PMC]
Holland BA, Brant-Zawadzki M, Norman D, Newton TH. Magnetic resonance imaging of primary intracranial tumors: a review.Int J Radiat Oncol Biol Phys. 1985;11:315–21. [DOI] [PubMed]
Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas.Neuro Oncol. 2016;18:1199–208. [DOI] [PubMed] [PMC]
Nayak L, DeAngelis LM, Brandes AA, Peereboom DM, Galanis E, Lin NU, et al. The Neurologic Assessment in Neuro-Oncology (NANO) scale: a tool to assess neurologic function for integration into the Response Assessment in Neuro-Oncology (RANO) criteria.Neuro Oncol. 2017;19:625–35. [DOI] [PubMed] [PMC]
Jung I, Chang KW, Park SH, Moon JH, Kim EH, Jung HH, et al. Stereotactic biopsy for adult brainstem lesions: A surgical approach and its diagnostic value according to the 2016 World Health Organization Classification.Cancer Med. 2021;10:7514–24. [DOI] [PubMed] [PMC]
Essig M, Weber M, von Tengg-Kobligk H, Knopp MV, Yuh WTC, Giesel FL. Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications.Top Magn Reson Imaging. 2006;17:89–106. [DOI] [PubMed]
Oronsky B, Reid TR, Oronsky A, Sandhu N, Knox SJ. A Review of Newly Diagnosed Glioblastoma.Front Oncol. 2021;10:574012. [DOI] [PubMed] [PMC]
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, et al. Glioblastoma Therapy: Past, Present and Future.Int J Mol Sci. 2024;25:2529. [DOI] [PubMed] [PMC]
Shaikh Z, Torres A, Takeoka M. Neuroimaging in Pediatric Epilepsy.Brain Sci. 2019;9:190. [DOI] [PubMed] [PMC]
Haydar N, Alyousef K, Alanan U, Issa R, Baddour F, Al-Shehabi Z, et al. Role of Magnetic Resonance Imaging (MRI) in grading gliomas comparable with pathology: A cross-sectional study from Syria.Ann Med Surg (Lond). 2022;82:104679. [DOI] [PubMed] [PMC]
Salazar OM, VanHoutte P, Plassche Jr WM, Keller BE. The role of computed tomography in the diagnosis and management of brain tumors.J Comput Tomogr. 1981;5:256–67. [DOI] [PubMed]
Moiyadi A, Singh V, Tonse R, Jalali R. Central nervous system (CNS) tumors. In: Badwe RA, Gupta S, Shrikhande SV, Laskar S, editors. Tata Memorial Centre Textbook of Oncology. Singapore: Springer Nature Singapore; 2024. pp. 379–404.
Bonaventura RD, Montano N, Giordano M, Gessi M, Gaudino S, Izzo A, et al. Reassessing the Role of Brain Tumor Biopsy in the Era of Advanced Surgical, Molecular, and Imaging Techniques-A Single-Center Experience with Long-Term Follow-Up.J Pers Med. 2021;11:909. [DOI] [PubMed] [PMC]
Kumar A, As C, Surender S, Tj R. Stereotactic Brain Biopsy: A Review of 15 Cases with Outcomes.Asian J Pharm Clin Res. 2020;13:46–9. [DOI]
Kumar PP, Good RR, Jones EO, Skultety FM, Leibrock LG, McComb RD. Contrast-enhancing computed tomography ring in glioblastoma multiforme after intraoperative endocurietherapy.Cancer. 1988;61:1759–65. [DOI] [PubMed]
Thenuwara G, Curtin J, Tian F. Advances in Diagnostic Tools and Therapeutic Approaches for Gliomas: A Comprehensive Review.Sensors (Basel). 2023;23:9842. [DOI] [PubMed] [PMC]
Nikaki A, Angelidis G, Efthimiadou R, Tsougos I, Valotassiou V, Fountas K, et al. 18F-fluorothymidine PET imaging in gliomas: an update.Ann Nucl Med. 2017;31:495–505. [DOI] [PubMed] [PMC]
Schiepers C, Dahlbom M, Chen W, Cloughesy T, Czernin J, Phelps ME, et al. Kinetics of 3'-deoxy-3'-18F-fluorothymidine during treatment monitoring of recurrent high-grade glioma.J Nucl Med. 2010;51:720–7. [DOI] [PubMed]
Kim D, Lee S, Hwang HS, Kim SJ, Yun M. Recent Update on PET/CT Radiotracers for Imaging Cerebral Glioma.Nucl Med Mol Imaging. 2024;58:237–45.Erratum in: Nucl Med Mol Imaging. 2024;59:91. [DOI] [PubMed] [PMC]
Saif MW, Tzannou I, Makrilia N, Syrigos K. Role and cost effectiveness of PET/CT in management of patients with cancer.Yale J Biol Med. 2010;83:53–65. [PubMed] [PMC]
Chevaleyre C, Kereselidze D, Caillé F, Tournier N, Olaciregui NG, Winkeler A, et al. TSPO PET Imaging as a Potent Non-Invasive Biomarker for Diffuse Intrinsic Pontine Glioma in a Patient-Derived Orthotopic Rat Model.Int J Mol Sci. 2022;23:12476. [DOI] [PubMed] [PMC]
Filippi L, Frantellizzi V, Vincentis GD, Schillaci O, Evangelista L. Clinical Applications of TSPO PET for Glioma Imaging: Current Evidence and Future Perspective-A Systematic Review.Diagnostics (Basel). 2023;13:1813. [DOI] [PubMed] [PMC]
Simmons DA, James ML, Belichenko NP, Semaan S, Condon C, Kuan J, et al. TSPO-PET imaging using [18F]PBR06 is a potential translatable biomarker for treatment response in Huntington’s disease: preclinical evidence with the p75NTR ligand LM11A-31.Hum Mol Genet. 2018;27:2893–912. [DOI] [PubMed] [PMC]
Verger A, Langen KJ. PET Imaging in glioblastoma: Use in clinical practice. In: De Vleeschouwer S, editor. Glioblastoma. Brisbane (AU): Codon Publication; 2017.
Langen K, Stoffels G, Filss C, Heinzel A, Stegmayr C, Lohmann P, et al. Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[18F]fluoroethyl)-L-tyrosine (FET).Methods. 2017;130:124–34. [DOI] [PubMed]
Galldiks N, Langen K. Use of amino acid PET in the Diagnostic and Treatment Management of cerebral gliomas.Fortschr Neurol Psychiatr. 2012;80:17–23. [DOI] [PubMed]
Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU, et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging.Clin Cancer Res. 2004;10:2245–52. [DOI] [PubMed]
Sipos D, Raposa BL, Freihat O, Simon M, Mekis N, Cornacchione P, et al. Glioblastoma: Clinical Presentation, Multidisciplinary Management, and Long-Term Outcomes.Cancers (Basel). 2025;17:146. [DOI] [PubMed] [PMC]
Kirchner MA, Holzgreve A, Brendel M, Orth M, Ruf VC, Steiger K, et al. PSMA PET Imaging in Glioblastoma: A Preclinical Evaluation and Theranostic Outlook.Front Oncol. 2021;11:774017. [DOI] [PubMed] [PMC]
Keidar Z, Israel O, Krausz Y. SPECT/CT in tumor imaging: technical aspects and clinical applications.Semin Nucl Med. 2003;33:205–18. [DOI] [PubMed]
Grosu AL, Weber WA, Franz M, Stärk S, Piert M, Thamm R, et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy.Int J Radiat Oncol Biol Phys. 2005;63:511–9. [DOI] [PubMed]
Shibata Y, Yamamoto T, Takano S, Katayama W, Takeda T, Matsumura A. Direct comparison of thallium-201 and technetium-99m MIBI SPECT of a glioma by receiver operating characteristic analysis.J Clin Neurosci. 2009;16:264–9. [DOI] [PubMed]
Vos MJ, Tony BN, Hoekstra OS, Postma TJ, Heimans JJ, Hooft L. Systematic review of the diagnostic accuracy of 201Tl single photon emission computed tomography in the detection of recurrent glioma.Nucl Med Commun. 2007;28:431–9. [DOI] [PubMed]
Weckesser M, Schmidt D, Matheja P, Coenen HH, Langen KJ. The role of L-3-I-123-iodine-alpha-methyltyrosine SPECT in cerebral gliomas.Nuklearmedizin. 2000;39:233–40. [DOI] [PubMed]
Oriuchi N, Tomiyoshi K, Inoue T, Ahmad K, Sarwar M, Tokunaga M, et al. Independent thallium-201 accumulation and fluorine-18-fluorodeoxyglucose metabolism in glioma.J Nucl Med. 1996;37:457–62. [PubMed]
Sharma A, Kumar R. Metabolic Imaging of Brain Tumor Recurrence.AJR Am J Roentgenol. 2020;215:1199–207. [DOI] [PubMed]
Ammer L, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, et al. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma.Cancers (Basel). 2020;12:2973. [DOI] [PubMed] [PMC]
Tamura K, Nishii R, Tani K, Hashimoto H, Kawamura K, Zhang M, et al. A first-in-man study of [18F] FEDAC: a novel PET tracer for the 18-kDa translocator protein.Ann Nucl Med. 2024;38:264–71. [DOI] [PubMed] [PMC]
Nutma E, Ceyzériat K, Amor S, Tsartsalis S, Millet P, Owen DR, et al. Cellular sources of TSPO expression in healthy and diseased brain.Eur J Nucl Med Mol Imaging. 2021;49:146–63. [DOI] [PubMed] [PMC]
Li F, Liu J, Garavito RM, Ferguson-Miller S. Evolving understanding of translocator protein 18 kDa (TSPO).Pharmacol Res. 2015;99:404–9. [DOI] [PubMed] [PMC]
Liu G, Middleton RJ, Hatty CR, Kam WW, Chan R, Pham T, et al. The 18 kDa translocator protein, microglia and neuroinflammation.Brain Pathol. 2014;24:631–53. [DOI] [PubMed] [PMC]
Lee Y, Park Y, Nam H, Lee J, Yu S. Translocator protein (TSPO): the new story of the old protein in neuroinflammation.BMB Rep. 2020;53:20–27. [DOI] [PubMed] [PMC]
Kawamura K, Kumata K, Takei M, Furutsuka K, Hashimoto H, Ito T, et al. Efficient radiosynthesis and non-clinical safety tests of the TSPO radioprobe [(18)F]FEDAC: Prerequisites for clinical application.Nucl Med Biol. 2016;43:445–53. [DOI] [PubMed]
Roncaroli F, Su Z, Herholz K, Gerhard A, Turkheimer FE. TSPO expression in brain tumours: is TSPO a target for brain tumour imaging?Clin Transl Imaging. 2016;4:145–56. [DOI] [PubMed] [PMC]
Betlazar C, Middleton RJ, Banati R, Liu G. The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes.Cells. 2020;9:512. [DOI] [PubMed] [PMC]
Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging.Aging (Albany NY). 2011;3:192–222. [DOI] [PubMed] [PMC]
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer.Mol Cancer. 2023;22:138. [DOI] [PubMed] [PMC]
Bonsack F, Sukumari-Ramesh S. TSPO: An Evolutionarily Conserved Protein with Elusive Functions.Int J Mol Sci. 2018;19:1694. [DOI] [PubMed] [PMC]
Wei J, Barr J, Kong L, Wang Y, Wu A, Sharma AK, et al. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway.Mol Cancer Ther. 2010;9:67–78. [DOI] [PubMed] [PMC]
Firth W, Robb JL, Stewart D, Pye KR, Bamford R, Oguro-Ando A, et al. Regulation of astrocyte metabolism by mitochondrial translocator protein 18 kDa.J Neurochem. 2024;168:1374–401. [DOI] [PubMed]
Wongso H, Kurniawan A, Setiadi Y, Kusumaningrum CE, Widyasari EM, Wibawa THA, et al. Translocator Protein 18 kDa (TSPO): A Promising Molecular Target for Image-Guided Surgery of Solid Cancers.Adv Pharm Bull. 2024;14:86–104. [DOI] [PubMed] [PMC]
Albert NL, Unterrainer M, Fleischmann DF, Lindner S, Vettermann F, Brunegraf A, et al. TSPO PET for glioma imaging using the novel ligand 18F-GE-180: first results in patients with glioblastoma.Eur J Nucl Med Mol Imaging. 2017;44:2230–8. [DOI] [PubMed]
Troike KM, Acanda de la Rocha AM, Alban TJ, Grabowski MM, Otvos B, Cioffi G, et al. The Translocator Protein (TSPO) Genetic Polymorphism A147T Is Associated with Worse Survival in Male Glioblastoma Patients.Cancers (Basel). 2021;13:4525. [DOI] [PubMed] [PMC]
Neophytou CM, Trougakos IP, Erin N, Papageorgis P. Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance.Cancers (Basel). 2021;13:4363. [DOI] [PubMed] [PMC]
Rechichi M, Salvetti A, Chelli B, Costa B, Pozzo ED, Spinetti F, et al. TSPO over-expression increases motility, transmigration and proliferation properties of C6 rat glioma cells.Biochim Biophys Acta. 2008;1782:118–25. [DOI] [PubMed]
Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention.Signal Transduct Target Ther. 2021;6:263. [DOI] [PubMed] [PMC]
Fernandes RT, Teixeira GR, Mamere EC, Bandeira GA, Mamere AE. The 2021 World Health Organization classification of gliomas: an imaging approach.Radiol Bras. 2023;56:157–61. [DOI] [PubMed] [PMC]
Seetharaman S, Etienne-Manneville S. Cytoskeletal Crosstalk in Cell Migration.Trends Cell Biol. 2020;30:720–35. [DOI] [PubMed]
Niland S, Riscanevo AX, Eble JA. Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression.Int J Mol Sci. 2021;23:146. [DOI] [PubMed] [PMC]
Fu Y, Wang D, Wang H, Cai M, Li C, Zhang X, et al. TSPO deficiency induces mitochondrial dysfunction, leading to hypoxia, angiogenesis, and a growth-promoting metabolic shift toward glycolysis in glioblastoma.Neuro Oncol. 2020;22:240–52.Erratum in: Neuro Oncol. 2024;26:777. [DOI] [PubMed] [PMC]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.Physiol Rev. 2014;94:909–50. [DOI] [PubMed] [PMC]
Liu Y, Ali H, Khan F, Pang L, Chen P. Epigenetic regulation of tumor-immune symbiosis in glioma.Trends Mol Med. 2024;30:429–42. [DOI] [PubMed]
Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation.Nat Rev Mol Cell Biol. 2019;20:436–50. [DOI] [PubMed] [PMC]
Roy S, Kumaravel S, Sharma A, Duran CL, Bayless KJ, Chakraborty S. Hypoxic tumor microenvironment: Implications for cancer therapy.Exp Biol Med (Maywood). 2020;245:1073–86. [DOI] [PubMed] [PMC]
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress.Semin Cancer Biol. 2022;83:452–71. [DOI] [PubMed]
Batarseh A, Papadopoulos V. Regulation of translocator protein 18 kDa (TSPO) expression in health and disease states.Mol Cell Endocrinol. 2010;327:1–12. [DOI] [PubMed] [PMC]
Song L, Luo Z. Post-translational regulation of ubiquitin signaling.J Cell Biol. 2019;218:1776–86. [DOI] [PubMed] [PMC]
Nunno VD, Aprile M, Gatto L, Tosoni A, Ranieri L, Bartolini S, et al. Tumor Microenvironment in Gliomas: A Treatment Hurdle or an Opportunity to Grab?Cancers (Basel). 2023;15:1042. [DOI] [PubMed] [PMC]
Rusjan PM, Wilson AA, Bloomfield PM, Vitcu I, Meyer JH, Houle S, et al. Quantitation of translocator protein binding in human brain with the novel radioligand [18F]-FEPPA and positron emission tomography.J Cereb Blood Flow Metab. 2011;31:1807–16. [DOI] [PubMed] [PMC]
Luu TG, Kim H. 18F-Radiolabeled Translocator Protein (TSPO) PET Tracers: Recent Development of TSPO Radioligands and Their Application to PET Study.Pharmaceutics. 2022;14:2545. [DOI] [PubMed] [PMC]
van den Ameele J, Hong YT, Manavaki R, Kouli A, Biggs H, MacIntyre Z, et al. [11C]PK11195-PET Brain Imaging of the Mitochondrial Translocator Protein in Mitochondrial Disease.Neurology. 2021;96:e2761–73.Erratum in: Neurology. 2021;97:1096. [DOI] [PubMed] [PMC]
Vignal N, Cisternino S, Rizzo-Padoin N, San C, Hontonnou F, Gelé T, et al. [18F]FEPPA a TSPO Radioligand: Optimized Radiosynthesis and Evaluation as a PET Radiotracer for Brain Inflammation in a Peripheral LPS-Injected Mouse Model.Molecules. 2018;23:1375. [DOI] [PubMed] [PMC]
Menevse AN, Ammer L, Vollmann-Zwerenz A, Kupczyk M, Lorenz J, Weidner L, et al. TSPO acts as an immune resistance gene involved in the T cell mediated immune control of glioblastoma.Acta Neuropathol Commun. 2023;11:75. [DOI] [PubMed] [PMC]
Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B. Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas.PLoS One. 2011;6:e23902. [DOI] [PubMed] [PMC]
Fridman WH, Remark R, Goc J, Giraldo NA, Becht E, Hammond SA, et al. The immune microenvironment: a major player in human cancers.Int Arch Allergy Immunol. 2014;164:13–26. [DOI] [PubMed]
Khan SU, Khan MU, Azhar Ud Din M, Khan IM, Khan MI, Bungau S, et al. Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy.Front Immunol. 2023;14:1166487. [DOI] [PubMed] [PMC]
Ma K, Hu P. Chimeric Antigen Receptor T-Cell Therapy for Glioblastoma.Cancers (Basel). 2023;15:5652. [DOI] [PubMed] [PMC]
Kesari S, Babic I, Mukthavaram R, Jiang P, Nomura N, Pingle SC, et al. Pritumumab binding to glioma cells induces ADCC and inhibits tumor growth.J Clin Oncol. 2017;35:e14004. [DOI]
Gong G, Jiang L, Zhou J, Su Y. Advancements in targeted and immunotherapy strategies for glioma: toward precision treatment.Front Immunol. 2025;15:1537013. [DOI] [PubMed] [PMC]
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, et al. Advances in NK cell therapy for brain tumors.NPJ Precis Oncol. 2023;7:17. [DOI] [PubMed] [PMC]
Weidner L, Lorenz J, Quach S, Braun FK, Rothhammer-Hampl T, Ammer L, et al. Translocator protein (18kDA) (TSPO) marks mesenchymal glioblastoma cell populations characterized by elevated numbers of tumor-associated macrophages.Acta Neuropathol Commun. 2023;11:147. [DOI] [PubMed] [PMC]
Parakh S, Nicolazzo J, Scott AM, Gan HK. Antibody Drug Conjugates in Glioblastoma - Is There a Future for Them?Front Oncol. 2021;11:718590. [DOI] [PubMed] [PMC]
Zhang S, Yang L, Ling X, Shao P, Wang X, Edwards WB, et al. Tumor mitochondria-targeted photodynamic therapy with a translocator protein (TSPO)-specific photosensitizer.Acta Biomater. 2015;28:160–70. [DOI] [PubMed] [PMC]
Su Z, Roncaroli F, Durrenberger PF, Coope DJ, Karabatsou K, Hinz R, et al. The 18-kDa mitochondrial translocator protein in human gliomas: an 11C-(R)PK11195 PET imaging and neuropathology study.J Nucl Med. 2015;56:512–7. [DOI] [PubMed]
Awde AR, Boisgard R, Thézé B, Dubois A, Zheng J, Dollé F, et al. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model.J Nucl Med. 2013;54:2125–31. [DOI] [PubMed]
Winkeler A, Boisgard R, Awde AR, Dubois A, Thézé B, Zheng J, et al. The translocator protein ligand [¹⁸F]DPA-714 images glioma and activated microglia in vivo.Eur J Nucl Med Mol Imaging. 2012;39:811–23. [DOI] [PubMed] [PMC]
Wilson AA, Garcia A, Parkes J, McCormick P, Stephenson KA, Houle S, et al. Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors.Nucl Med Biol. 2008;35:305–14. [DOI] [PubMed]
Zammit M, Tao Y, Olsen ME, Metzger J, Vermilyea SC, Bjornson K, et al. [18F]FEPPA PET imaging for monitoring CD68-positive microglia/macrophage neuroinflammation in nonhuman primates.EJNMMI Res. 2020;10:93. [DOI] [PubMed] [PMC]
Kuhnast B, Damont A, Hinnen F, Catarina T, Demphel S, Helleix SL, et al. [18F]DPA-714, [18F]PBR111 and [18F]FEDAA1106-selective radioligands for imaging TSPO 18 kDa with PET: automated radiosynthesis on a TRACERLAb FX-FN synthesizer and quality controls.Appl Radiat Isot. 2012;70:489–97. [DOI] [PubMed]
Tran TT, Gallezot J, Jilaveanu LB, Zito C, Turcu G, Lim K, et al. [11C]Methionine and [11C]PBR28 as PET Imaging Tracers to Differentiate Metastatic Tumor Recurrence or Radiation Necrosis.Mol Imaging. 2020;19:1536012120968669. [DOI] [PubMed] [PMC]
Zhou J, Zhang X, Peng J, Xie Y, Du F, Guo K, et al. TSPO ligand Ro5-4864 modulates microglia/macrophages polarization after subarachnoid hemorrhage in mice.Neurosci Lett. 2020;729:134977. [DOI] [PubMed]
Holzgreve A, Pötter D, Brendel M, Orth M, Weidner L, Gold L, et al. Longitudinal [18F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model.Biomedicines. 2022;10:738. [DOI] [PubMed] [PMC]
Werry EL, Barron ML, Kassiou M. TSPO as a target for glioblastoma therapeutics.Biochem Soc Trans. 2015;43:531–6. [DOI] [PubMed]
Haddad AF, Young JS, Aghi MK. Using viral vectors to deliver local immunotherapy to glioblastoma.Neurosurg Focus. 2021;50:E4. [DOI] [PubMed] [PMC]
Avci NG, Ebrahimzadeh-Pustchi S, Akay YM, Esquenazi Y, Tandon N, Zhu J, et al. NF-κB inhibitor with Temozolomide results in significant apoptosis in glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways.Sci Rep. 2020;10:13352. [DOI] [PubMed] [PMC]
Friedmann-Morvinski D, Narasimamurthy R, Xia Y, Myskiw C, Soda Y, Verma IM. Targeting NF-κB in glioblastoma: A therapeutic approach.Sci Adv. 2016;2:e1501292. [DOI] [PubMed] [PMC]
Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors.Biochim Biophys Acta. 2014;1845:136–54. [DOI] [PubMed]
Arrieta VA, Dmello C, McGrail DJ, Brat DJ, Lee-Chang C, Heimberger AB, et al. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment.J Clin Invest. 2023;133:e163447. [DOI] [PubMed] [PMC]
Yan X, Li J, Zhang Y, Liang C, Liang P, Li T, et al. Alterations in cellular metabolism under different grades of glioma staging identified based on a multi-omics analysis strategy.Front Endocrinol (Lausanne). 2023;14:1292944. [DOI] [PubMed] [PMC]
Bai R, Staedtke V, Riggins GJ. Molecular targeting of glioblastoma: Drug discovery and therapies.Trends Mol Med. 2011;17:301–12. [DOI] [PubMed] [PMC]
Puliyappadamba VT, Hatanpaa KJ, Chakraborty S, Habib AA. The role of NF-κB in the pathogenesis of glioma.Mol Cell Oncol. 2014;1:e963478. [DOI] [PubMed] [PMC]
Aboelella NS, Brandle C, Kim T, Ding Z, Zhou G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy.Cancers (Basel). 2021;13:986. [DOI] [PubMed] [PMC]
Rana R, Huirem RS, Kant R, Chauhan K, Sharma S, Yashavarddhan MH, et al. Cytochrome C as a potential clinical marker for diagnosis and treatment of glioma.Front Oncol. 2022;12:960787. [DOI] [PubMed] [PMC]
Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Kebir S, et al. NI-29 diagnosis of pseudoprogression in patients with glioblastoma using amino acid pet.Neuro Oncol. 2014;16:v144. [DOI] [PMC]
Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H, et al.; ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial.Lancet Oncol. 2006;7:392–401. [DOI] [PubMed]
John F, Bosnyák E, Robinette NL, Amit-Yousif AJ, Barger GR, Shah KD, et al. Multimodal imaging-defined subregions in newly diagnosed glioblastoma: impact on overall survival.Neuro Oncol. 2019;21:264–73. [DOI] [PubMed] [PMC]
Buck JR, McKinley ET, Fu A, Abel TW, Thompson RC, Chambless L, et al. Preclinical TSPO Ligand PET to Visualize Human Glioma Xenotransplants: A Preliminary Study.PLoS One. 2015;10:e0141659. [DOI] [PubMed] [PMC]
Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, et al. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging.Acta Pharm Sin B. 2021;11:373–93. [DOI] [PubMed] [PMC]
Denora N, Laquintana V, Lopalco A, Iacobazzi RM, Lopedota A, Cutrignelli A, et al. In vitro targeting and imaging the translocator protein TSPO 18-kDa through G(4)-PAMAM-FITC labeled dendrimer.J Control Release. 2013;172:1111–25. [DOI] [PubMed]
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, et al. Glioma targeted therapy: insight into future of molecular approaches.Mol Cancer. 2022;21:39. [DOI] [PubMed] [PMC]
Joo HK, Lee YR, Kang G, Choi S, Kim C, Ryoo S, et al. The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species.Mol Cells. 2015;38:1064–70. [DOI] [PubMed] [PMC]
Yasin N, Veenman L, Singh S, Azrad M, Bode J, Vainshtein A, et al. Classical and Novel TSPO Ligands for the Mitochondrial TSPO Can Modulate Nuclear Gene Expression: Implications for Mitochondrial Retrograde Signaling.Int J Mol Sci. 2017;18:786. [DOI] [PubMed] [PMC]
Ma Y, Wang Y, Nie C, Lin Y. The efficacy of targeted therapy combined with radiotherapy and temozolomide-based chemotherapy in the treatment of glioma: A systemic review and meta-analysis of phase II/III randomized controlled trials.Front Oncol. 2023;13:1082539. [DOI] [PubMed] [PMC]
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, et al. Glioblastoma: Current Status, Emerging Targets, and Recent Advances.J Med Chem. 2022;65:8596–685. [DOI] [PubMed] [PMC]
Gao Z, Huang Y, Zhang J, Rong J, Qiao G, Chen N, et al. Paeoniflorin elicits the anti-proliferative effects on glioma cell via targeting translocator protein 18 KDa.J Pharmacol Sci. 2021;145:115–21. [DOI] [PubMed]
Wang J, Ren P, Zeng Z, Ma L, Li Y, Zhang H, et al. Inhibition of translocator protein 18 kDa suppressed the progression of glioma via the ELAV-like RNA-binding protein 1/MAPK-activated protein kinase 3 axis.Bioengineered. 2022;13:7457–70. [DOI] [PubMed] [PMC]
Li J, Zhang Z, Lv L, Qiao H, Chen X, Zou C. A bispecific antibody (ScBsAbAgn-2/TSPO) target for Ang-2 and TSPO resulted in therapeutic effects against glioblastomas.Biochem Biophys Res Commun. 2016;472:384–91. [DOI] [PubMed]
Gut P, Zweckstetter M, Banati RB. Lost in translocation: the functions of the 18-kD translocator protein.Trends Endocrinol Metab. 2015;26:349–56. [DOI] [PubMed] [PMC]
Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders.Nat Rev Drug Discov. 2010;9:971–88. [DOI] [PubMed]
Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed.J Neuroinflammation. 2014;11:98. [DOI] [PubMed] [PMC]
Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy.N Engl J Med. 2016;375:2561–9. [DOI] [PubMed] [PMC]
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system.Adv Drug Deliv Rev. 2012;64:701–5. [DOI] [PubMed] [PMC]
Lu L, Chen H, Wang L, Zhao L, Cheng Y, Wang A, et al. A Dual Receptor Targeting- and BBB Penetrating- Peptide Functionalized Polyethyleneimine Nanocomplex for Secretory Endostatin Gene Delivery to Malignant Glioma.Int J Nanomedicine. 2020;15:8875–92. [DOI] [PubMed] [PMC]
Huang Z, Dewanjee S, Chakraborty P, Jha NK, Dey A, Gangopadhyay M, et al. CAR T cells: engineered immune cells to treat brain cancers and beyond.Mol Cancer. 2023;22:22. [DOI] [PubMed] [PMC]
Zhang D, Man D, Lu J, Jiang Y, Ding B, Su R, et al. Mitochondrial TSPO Promotes Hepatocellular Carcinoma Progression through Ferroptosis Inhibition and Immune Evasion.Adv Sci (Weinh). 2023;10:e2206669. [DOI] [PubMed] [PMC]
Austin CJD, Kahlert J, Kassiou M, Rendina LM. The translocator protein (TSPO): a novel target for cancer chemotherapy.Int J Biochem Cell Biol. 2013;45:1212–6. [DOI] [PubMed]
Liu H, Qiu W, Sun T, Wang L, Du C, Hu Y, et al. Therapeutic strategies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds.Acta Pharm Sin B. 2022;12:1781–804. [DOI] [PubMed] [PMC]
Bergholz JS, Wang Q, Kabraji S, Zhao JJ. Integrating Immunotherapy and Targeted Therapy in Cancer Treatment: Mechanistic Insights and Clinical Implications.Clin Cancer Res. 2020;26:5557–66. [DOI] [PubMed] [PMC]
Varghese AP, Naik S, Asrar Up Haq Andrabi S, Luharia A, Tivaskar S. Enhancing Radiological Diagnosis: A Comprehensive Review of Image Quality Assessment and Optimization Strategies.Cureus. 2024;16:e63016. [DOI] [PubMed] [PMC]
Werry EL, Bright FM, Piguet O, Ittner LM, Halliday GM, Hodges JR, et al. Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders.Int J Mol Sci. 2019;20:3161. [DOI] [PubMed] [PMC]
Lalu MM, Montroy J, Begley CG, Bubela T, Hunniford V, Ripsman D, et al. Identifying and understanding factors that affect the translation of therapies from the laboratory to patients: a study protocol.F1000Res. 2020;9:485. [DOI] [PubMed] [PMC]