Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J Nat Prod. 2020;83:770–803. [DOI] [PubMed]
Peerzada, N. Classics in Total Synthesis. By K.C. Nicolaou and E. J. Sorensen.Molecules. 1998;3:49.
Nicolaou KC, Hale CR, Nilewski C, Ioannidou HA. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance.Chem Soc Rev. 2012;41:5185–238. [DOI] [PubMed] [PMC]
Brown DG, Boström J. Where do recent small molecule clinical development candidates come from?J Med Chem. 2018;61:9442–68. [DOI] [PubMed]
Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H. Twenty years on: the impact of fragments on drug discovery.Nat Rev Drug Discov. 2016;15:605–19. [DOI] [PubMed]
Hall RJ, Mortenson PN, Murray CW. Efficient exploration of chemical space by fragment-based screening.Prog Biophys Mol Biol. 2014;116:82–91. [DOI] [PubMed]
Song M, Hwang GT. DNA-encoded library screening as core platform technology in drug discovery: its synthetic method development and applications in DEL synthesis.J Med Chem. 2020;63:6578–99. [DOI] [PubMed]
Coyne AG, Scott DE, Abell C. Drugging challenging targets using fragment-based approaches.Curr Opin Chem Biol. 2010;14:299–307. [DOI] [PubMed]
Kunig VBK, Potowski M, Klika Škopić M, Brunschweiger A. Scanning protein surfaces with DNA-encoded libraries.ChemMedChem. 2021;16:1048–62. [DOI] [PubMed] [PMC]
Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, et al. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials.Signal Transduct Target Ther. 2020;5:213. [DOI] [PubMed] [PMC]
Garner AL, Janda KD. Protein-protein interactions and cancer: targeting the central dogma.Curr Top Med Chem. 2011;11:258–80. [DOI] [PubMed]
Kim M, Park J, Bouhaddou M, Kim K, Rojc A, Modak M, et al. A protein interaction landscape of breast cancer.Science. 2021;374:eabf3066. [DOI] [PubMed] [PMC]
Ellert-Miklaszewska A, Poleszak K, Kaminska B. Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment.Future Med Chem. 2017;9:199–221. [DOI] [PubMed]
Revers L, Furczon E. An introduction to biologics and biosimilars. Part I: biologics: what are they and where do they come from?Can Pharm J / Rev des Pharm Can. 2010;143:134–9.
Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, et al. Therapeutic peptides: current applications and future directions.Signal Transduct Target Ther. 2022;7:48. [DOI] [PubMed] [PMC]
Qian Z, Rhodes CA, McCroskey LC, Wen J, Appiah-Kubi G, Wang DJ, et al. Enhancing the cell permeability and metabolic stability of peptidyl drugs by reversible bicyclization.Angew Chem Int Ed Engl. 2017;56:1525–9. [DOI] [PubMed] [PMC]
Pauletti GM, Gangwar S, Siahaan TJ, Aubé J, Borchardt RT. Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies.Adv Drug Deliv Rev. 1997;27:235–56. [DOI] [PubMed]
Lachowicz JI, Szczepski K, Scano A, Casu C, Fais S, Orrù G, et al. The best peptidomimetic strategies to undercover antibacterial peptides.Int J Mol Sci. 2020;21:7349. [DOI] [PubMed] [PMC]
Otvos L Jr, Wade JD. Current challenges in peptide-based drug discovery.Front Chem. 2014;2:62. [DOI] [PubMed] [PMC]
Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, et al. THPdb: database of FDA-approved peptide and protein therapeutics.PLoS One. 2017;12:e0181748. [DOI] [PubMed] [PMC]
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, et al. A global review on short peptides: frontiers and perspectives.Molecules. 2021;26:430. [DOI] [PubMed] [PMC]
Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions.Bioorg Med Chem. 2018;26:2700–7. [DOI] [PubMed]
Mullard A. 2022 FDA approvals.Nat Rev Drug Discov. 2023;22:83–8. [DOI] [PubMed]
Benedetto Tiz D, Bagnoli L, Rosati O, Marini F, Santi C, Sancineto L. FDA-approved small molecules in 2022: clinical uses and their synthesis.Pharmaceutics. 2022;14:2538. [DOI] [PubMed] [PMC]
Lloyd-Williams P, Albericio F, Giralt E. Chemical approaches to the synthesis of peptides and proteins. 1st ed. Boca Raton: CRC Press; 1997.
Albericio F. Developments in peptide and amide synthesis.Curr Opin Chem Biol. 2004;8:211–21. [DOI] [PubMed]
Tsai YH, Iwaï H, Pors K. Editorial: chemical biology tools for peptide and protein Research.Front Chem. 2022;10:861699. [DOI] [PubMed] [PMC]
Gui W, Davidson GA, Zhuang Z. Chemical methods for protein site-specific ubiquitination.RSC Chem Biol. 2021;2:450–67. [DOI] [PubMed] [PMC]
Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery.Nat Rev Drug Discov. 2021;20:309–25. [DOI] [PubMed]
de la Torre BG, Albericio F. Peptide Therapeutics 2.0.Molecules. 2020;25:2293. [DOI] [PubMed] [PMC]
Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market.Drug Discov Today. 2010;15:40–56. [DOI] [PubMed]
Stähelin HF. The history of cyclosporin A (Sandimmune) revisited: another point of view.Experientia. 1996;52:5–13. [DOI] [PubMed]
Pavlicevic M, Maestri E, Marmiroli M. Marine bioactive peptides-an overview of generation, structure and application with a focus on food sources.Mar Drugs. 2020;18:424. [DOI] [PubMed] [PMC]
Thundimadathil J. Cancer treatment using peptides: current therapies and future prospects.J Amino Acids. 2012;2012:967347. [DOI] [PubMed] [PMC]
Baig MH, Ahmad K, Saeed M, Alharbi AM, Barreto GE, Ashraf GM, et al. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases.Biomed Pharmacother. 2018;103:574–81. [DOI] [PubMed]
Lamers C. Overcoming the shortcomings of peptide-based therapeutics.Future Drug Discovery. 2022;4:FDD75. [DOI]
Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification.Open Biol. 2020;10:200004. [DOI] [PubMed] [PMC]
Merry TL, Chan A, Woodhead JST, Reynolds JC, Kumagai H, Kim SJ, et al. Mitochondrial-derived peptides in energy metabolism.Am J Physiol Endocrinol Metab. 2020;319:E659–66. [DOI] [PubMed] [PMC]
Kołodziejski PA, Pruszyńska-Oszmałek E, Wojciechowicz T, Sassek M, Leciejewska N, Jasaszwili M, et al. The role of peptide hormones discovered in the 21st century in the regulation of adipose tissue functions.Genes (Basel). 2021;12:756. [DOI] [PubMed] [PMC]
Grieco P, Gomez-Monterrey I. Natural and synthetic peptides in the cardiovascular diseases: an update on diagnostic and therapeutic potentials.Arch Biochem Biophys. 2019;662:15–32. [DOI] [PubMed]
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides.Microb Biotechnol. 2023;16:757–77. [DOI] [PubMed] [PMC]
Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide.J Am Chem Soc. 1963;85:2149–54. [DOI]
du Vigneaud V, Ressler C, Swan JM, Robert CW, Katsoyannis PG. The synthesis of oxytocin1.J Am Chem Soc. 1954;76:3115–21. [DOI]
Hutchinson JA, Burholt S, Hamley IW. Peptide hormones and lipopeptides: from self-assembly to therapeutic applications.J Pept Sci. 2017;23:82–94. [DOI] [PubMed] [PMC]
Conlon JM, Flatt PR, Bailey CJ. Recent advances in peptide-based therapy for type 2 diabetes and obesity.Peptides. 2021;145:170652. [DOI] [PubMed]
Wei HH, Yuan XS, Chen ZK, Chen PP, Xiang Z, Qu WM, et al. Presynaptic inputs to vasopressin neurons in the hypothalamic supraoptic nucleus and paraventricular nucleus in mice.Exp Neurol. 2021;343:113784. [DOI] [PubMed]
Glavaš M, Gitlin-Domagalska A, Dębowski D, Ptaszyńska N, Łęgowska A, Rolka K. Vasopressin and its analogues: from natural hormones to multitasking peptides.Int J Mol Sci. 2022;23:3068. [DOI] [PubMed] [PMC]
Awad A, Madla CM, Gavins FKH, Allahham N, Trenfield SJ, Basit AW. Chapter 20 - Liquid dosage forms.Adejare A, editor. Remington (Twenty-third Edition). Academic Press; 2021. pp. 359–79.
Busk TM, Bendtsen F, Møller S. Hepatorenal syndrome in cirrhosis: diagnostic, pathophysiological, and therapeutic aspects.Expert Rev Gastroenterol Hepatol. 2016;10:1153–61. [DOI] [PubMed]
Nilsson G, Lindblom P, Ohlin M, Berling R, Vernersson E. Pharmacokinetics of terlipressin after single i.v. doses to healthy volunteers.Drugs Exp Clin Res. 1990;16:307–14. [PubMed]
Al-Kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Atanu FO, Batiha GE. Arginine vasopressin and pathophysiology of COVID-19: an innovative perspective.Biomed Pharmacother. 2021;143:112193. [DOI] [PubMed] [PMC]
Lee YS. Peptidomimetics and their applications for opioid peptide drug discovery.Biomolecules. 2022;12:1241. [DOI] [PubMed] [PMC]
Zagon IS, McLaughlin PJ, editors. Multiple sclerosis: perspectives in treatment and pathogenesis [Internet]. Brisbane (AU): Codon Publications; 2017 [cited 2017 Nov 27]. Available from: https://exonpublications.com/index.php/exon/issue/view/7
Sivam SP, Ho IK. Analgesic cross-tolerance between morphine and opioid peptides.Psychopharmacology (Berl). 1984;84:64–5. [DOI] [PubMed]
Audigier Y, Mazarguil H, Gout R, Cros J. Structure-activity relationships of enkephalin analogs at opiate and enkephalin receptors: correlation with analgesia.Eur J Pharmacol. 1980;63:35–46. [DOI] [PubMed]
Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications.Nat Rev Drug Discov. 2017;16:829–42. [DOI] [PubMed] [PMC]
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents.Front Cell Infect Microbiol. 2016;6:194. [DOI] [PubMed] [PMC]
Hancock RE, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity.Nat Rev Immunol. 2016;16:321–34. [DOI] [PubMed]
Bojarska J. Advances in research of short peptides.Molecules. 2022;27:2446. [DOI] [PubMed] [PMC]
Barboiu M, Le Duc Y, Gilles A, Cazade PA, Michau M, Marie Legrand Y, et al. An artificial primitive mimic of the Gramicidin-A channel.Nat Commun. 2014;5:4142. [DOI] [PubMed]
Roberts KD, Sulaiman RM, Rybak MJ. Dalbavancin and oritavancin: an innovative approach to the treatment of gram-positive infections.Pharmacotherapy. 2015;35:935–48. [DOI] [PubMed]
Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin.Clin Infect Dis. 2006;42:S35–9. [DOI] [PubMed]
Stewart SD, Allen S. Antibiotic use in critical illness.J Vet Emerg Crit Care (San Antonio). 2019;29:227–38. [DOI] [PubMed]
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields.Front Microbiol. 2020;11:582779. [DOI] [PubMed] [PMC]
Montavon TJ, Bruner SD. Nonribosomal peptide synthetases.In: Liu HW, Mander L, editors. Comprehensive Natural Products II. Oxford: Comprehensive Natural Products II; 2010. pp. 619–55.
Corbett KM, Ford L, Warren DB, Pouton CW, Chalmers DK. Cyclosporin structure and permeability: from A to Z and beyond.J Med Chem. 2021;64:13131–51. [DOI] [PubMed]
Winn M, Fyans JK, Zhuo Y, Micklefield J. Recent advances in engineering nonribosomal peptide assembly lines.Nat Prod Rep. 2016;33:317–47. [DOI] [PubMed]
Ding Y, Ting JP, Liu J, Al-Azzam S, Pandya P, Afshar S. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics.Amino Acids. 2020;52:1207–26. [DOI] [PubMed] [PMC]
Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions.Drug Discov Today. 2015;20:122–8. [DOI] [PubMed]
Adessi C, Soto C. Converting a peptide into a drug: strategies to improve stability and bioavailability.Curr Med Chem. 2002;9:963–78. [DOI] [PubMed]
Das R, Gayakvad B, Shinde SD, Rani J, Jain A, Sahu B. Ultrashort peptides-a glimpse into the structural modifications and their applications as biomaterials.ACS Appl Bio Mater. 2020;3:5474–99. [DOI] [PubMed]
Ni M. Ultrashort peptides: minimum number in amino acid residues, maximum number in bioapplications.Bionatura. 2019;4:763–4. [DOI]
Reithofer MR, Chan KH, Lakshmanan A, Lam DH, Mishra A, Gopalan B, et al. Ligation of anti-cancer drugs to self-assembling ultrashort peptides by click chemistry for localized therapy.Chem Sci. 2014;5:625–30. [DOI]
Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser CA. Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures.Nano Lett. 2015;15:6919–25. [DOI] [PubMed]
Ni M, Zhuo S. Applications of self-assembling ultrashort peptides in bionanotechnology.RSC Adv. 2019;9:844–52. [DOI] [PubMed] [PMC]
Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials.Biopolymers. 2010;94:1–18. [DOI] [PubMed] [PMC]
Henninot A, Collins JC, Nuss JM. The current state of peptide drug discovery: back to the future?J Med Chem. 2018;61:1382–414. [DOI] [PubMed]
Lai X, Tang J, ElSayed MEH. Recent advances in proteolytic stability for peptide, protein, and antibody drug discovery.Expert Opin Drug Discov. 2021;16:1467–82. [DOI] [PubMed]
Rawlings ND. A large and accurate collection of peptidase cleavages in the MEROPS database.Database (Oxford). 2009;2009:bap015. [DOI] [PubMed] [PMC]
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic cleavage-mechanisms, function, and “omic” approaches for a near-ubiquitous posttranslational modification.Chem Rev. 2018;118:1137–68. [DOI] [PubMed]
Mathur D, Prakash S, Anand P, Kaur H, Agrawal P, Mehta A, et al. PEPlife: a repository of the half-life of peptides.Sci Rep. 2016;6:36617. [DOI] [PubMed] [PMC]
Gentilucci L, De Marco R, Cerisoli L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization.Curr Pharm Des. 2010;16:3185–203. [DOI] [PubMed]
Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Methods to enhance the metabolic stability of peptide-based PET radiopharmaceuticals.Molecules. 2020;25:2314. [DOI] [PubMed] [PMC]
Bech EM, Pedersen SL, Jensen KJ. Chemical strategies for half-life extension of biopharmaceuticals: lipidation and its alternatives.ACS Med Chem Lett. 2018;9:577–80. [DOI] [PubMed] [PMC]
Lau J, Bloch P, Schäffer L, Pettersson I, Spetzler J, Kofoed J, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide.J Med Chem. 2015;58:7370–80. [DOI] [PubMed]
Lindgren M, Hällbrink M, Prochiantz A, Langel U. Cell-penetrating peptides.Trends Pharmacol Sci. 2000;21:99–103. [DOI] [PubMed]
Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides.Biochim Biophys Acta. 1999;1462:55–70. [DOI] [PubMed]
Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes.Biochemistry. 1992;31:12416–23. [DOI] [PubMed]
Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation.Biochemistry. 1996;35:11361–8. [DOI] [PubMed]
Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical Application.Front Pharmacol. 2020;11:697. [DOI] [PubMed] [PMC]
Yang ST, Zaitseva E, Chernomordik LV, Melikov K. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid.Biophys J. 2010;99:2525–33. [DOI] [PubMed] [PMC]
Kang C, Sun Y, Zhu J, Li W, Zhang A, Kuang T, et al. Delivery of nanoparticles for treatment of brain tumor.Curr Drug Metab. 2016;17:745–54. [DOI] [PubMed]
Swain S, Sahu PK, Beg S, Babu SM. Nanoparticles for cancer targeting: current and future directions.Curr Drug Deliv. 2016;13:1290–302. [DOI] [PubMed]
Kauffman WB, Fuselier T, He J, Wimley WC. Mechanism matters: a taxonomy of cell penetrating peptides.Trends Biochem Sci. 2015;40:749–64. [DOI] [PubMed] [PMC]
de Figueiredo IR, Freire JM, Flores L, Veiga AS, Castanho MARB. Cell-penetrating peptides: a tool for effective delivery in gene-targeted therapies.IUBMB Life. 2014;66:182–94. [DOI] [PubMed]
Sebbage V. Cell-penetrating peptides and their therapeutic applications.Biosci Horiz: Int J Stud Res. 2009;2:64–72. [DOI]
Yuan H, Liu Y, Fales AM, Li YL, Liu J, Vo-Dinh T. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection.Anal Chem. 2013;85:208–12. [DOI] [PubMed] [PMC]
Aroui S, Brahim S, De Waard M, Bréard J, Kenani A. Efficient induction of apoptosis by doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the human breast cancer cell line MDA-MB 231.Cancer Lett. 2009;285:28–38. [DOI] [PubMed]
Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the atennapedia homeodomain translocates through biological membranes.J Biol Chem. 1994;269:10444–50. [PubMed]
Zeiders SM, Chmielewski J. Antibiotic-cell-penetrating peptide conjugates targeting challenging drug-resistant and intracellular pathogenic bacteria.Chem Biol Drug Des. 2021;98:762–78. [DOI] [PubMed]
Rehmani S, Dixon JE. Oral delivery of anti-diabetes therapeutics using cell penetrating and transcytosing peptide strategies.Peptides. 2018;100:24–35. [DOI] [PubMed]
Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, et al. Arginine-rich peptides: an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery*.J Biol Chem. 2023;276:5836–40. [DOI] [PubMed]
Tian Y, Zhou M, Shi H, Gao S, Xie G, Zhu M, et al. Integration of cell-penetrating peptides with rod-like bionanoparticles: virus-inspired gene-silencing technology.Nano Lett. 2018;18:5453–60. [DOI] [PubMed]
Matijass M, Neundorf I. Cell-penetrating peptides as part of therapeutics used in cancer research.Med Drug Discovery. 2021;10:100092. [DOI]
Elmquist A, Langel U. In vitro uptake and stability study of pVEC and its all-D analog.Biol Chem. 2003;384:387–93. [DOI] [PubMed]
Peraro L, Kritzer JA. Emerging methods and design principles for cell-penetrant peptides.Angew Chem Int Ed Engl. 2018;57:11868–81. [DOI] [PubMed] [PMC]
Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers.J Am Chem Soc. 2006;128:2510–1. [DOI] [PubMed]
Scholar E. Cyclosporin.In: Enna SJ, Bylund DB, editors. xPharm: the comprehensive pharmacology reference. New York: Elsevier; 2007. pp. 1–8.
Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, et al. Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues.Angew Chem Int Ed Engl. 2008;47:2595–9. [DOI] [PubMed]
Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy.J Nucl Med. 2000;41:1704–13. [PubMed]
Krenning EP, de Jong M, Kooij PP, Breeman WA, Bakker WH, de Herder WW, et al. Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy.Ann Oncol. 1999;10:S23–9. [DOI] [PubMed]
De Jong M, Valkema R, Jamar F, Kvols LK, Kwekkeboom DJ, Breeman WA, et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings.Semin Nucl Med. 2002;32:133–40. [DOI] [PubMed]
Nicolas G, Giovacchini G, Müller-Brand J, Forrer F. Targeted radiotherapy with radiolabeled somatostatin analogs.Endocrinol Metab Clin North Am. 2011;40:187–204. [DOI] [PubMed]
Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors.Proc Natl Acad Sci U S A. 2006;103:16436–41. [DOI] [PubMed] [PMC]
Oren Z, Shai Y. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study.Biochemistry. 1997;36:1826–35. [DOI]
Hong J, Lu X, Deng Z, Xiao S, Yuan B, Yang K. How melittin inserts into cell membrane: conformational changes, inter-peptide cooperation, and disturbance on the membrane.Molecules. 2019;24:1775. [DOI] [PubMed] [PMC]
Lee H, Lim SI, Shin SH, Lim Y, Koh JW, Yang S. Conjugation of cell-penetrating peptides to antimicrobial peptides enhances antibacterial activity.ACS Omega. 2019;4:15694–701. [DOI] [PubMed] [PMC]
Antonoplis A, Zang X, Huttner MA, Chong KKL, Lee YB, Co JY, et al. A dual-function antibiotic-transporter conjugate exhibits superior activity in sterilizing MRSA biofilms and killing persister cells.J Am Chem Soc. 2018;140:16140–51. [DOI] [PubMed] [PMC]
Wexselblatt E, Oppenheimer-Shaanan Y, Kaspy I, London N, Schueler-Furman O, Yavin E, et al. Relacin, a novel antibacterial agent targeting the Stringent Response.PLoS Pathog. 2012;8:e1002925. [DOI] [PubMed] [PMC]
Wexselblatt E, Kaspy I, Glaser G, Katzhendler J, Yavin E. Design, synthesis and structure-activity relationship of novel Relacin analogs as inhibitors of Rel proteins.Eur J Med Chem. 2013;70:497–504. [DOI] [PubMed]
Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life.PLoS One. 2011;6:e23479. [DOI] [PubMed] [PMC]
Civera M, Sattin S. Homology model of a catalytically competent bifunctional Rel protein.Front Mol Biosci. 2021;8:628596. [DOI] [PubMed] [PMC]
Conti G, Minneci M, Sattin S. Optimised synthesis of the bacterial magic spot (p)ppGpp chemosensor PyDPA.Chembiochem. 2019;20:1717–21. [DOI] [PubMed] [PMC]
Coppa C, Sorrentino L, Civera M, Minneci M, Vasile F, Sattin S. New chemotypes for the inhibition of (p)ppGpp synthesis in the quest for new antimicrobial compounds.Molecules. 2022;27:3097. [DOI] [PubMed] [PMC]
Antonoplis A, Zang X, Wegner T, Wender PA, Cegelski L. Vancomycin-arginine conjugate inhibits growth of carbapenem-resistant E. coli and targets cell-wall synthesis.ACS Chem Biol. 2019;14:2065–70. [DOI] [PubMed] [PMC]
Fominaya J, Bravo J, Rebollo A. Strategies to stabilize cell penetrating peptides for in vivo applications.Ther Deliv. 2015;6:1171–94. [DOI] [PubMed]
Sclip A, Tozzi A, Abaza A, Cardinetti D, Colombo I, Calabresi P, et al. c-Jun N-terminal kinase has a key role in Alzheimer disease synaptic dysfunction in vivo.Cell Death Dis. 2014;5:e1019. [DOI] [PubMed] [PMC]
Linares J, Varese M, Sallent-Aragay A, Méndez A, Palomo-Ponce S, et al. Peptide-platinum(IV) conjugation minimizes the negative impact of current anticancer chemotherapy on nonmalignant cells.J Med Chem. 2023;66:3348–55. [DOI] [PubMed]
Shah VP, Amidon GL. G.L. Amidon, H. Lennernas, V.P. Shah, and J.R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm Res 12, 413–420, 1995—backstory of BCS.AAPS J. 2014;16:894–8. [DOI] [PubMed] [PMC]
Kessler H. Conformation and biological activity of cyclic peptides.Angew Chem Int Ed Engl. 1982;21:512–23. [DOI]
Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs.Amino Acids. 2006;30:351–67. [DOI] [PubMed]
Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation.Adv Drug Deliv Rev. 2002;54:459–76. [DOI] [PubMed]
Flinn N, Hussain I, ShawAArtursson P, Gibbons WA, Toth I. Oral absorption studies of lipid-polylysine conjugates of thyrotropin releasing hormone (TRH1) and luteinizing hormone releasing hormone (LHRH1).Int J Pharm. 1996;138:127–47. [DOI]
Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability.J Pharmacol Toxicol Methods. 2000;44:235–49. [DOI] [PubMed]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv Drug Deliv Rev. 2001;46:3–26. [DOI] [PubMed]
Aguirre TA, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials.Adv Drug Deliv Rev. 2016;106:223–41. [DOI] [PubMed]
Veber DF, Saperstein R, Nutt RF, Freidinger RM, Brady SF, Curley P, et al. A super active cyclic hexapeptide analog of somatostatin.Life Sci. 1984;34:1371–8. [DOI] [PubMed]
Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C. Opportunities in somatostatin research: biological, chemical and therapeutic aspects.Nat Rev Drug Discov. 2003;2:999–1017.Erratum in: Nat Rev Drug Discov. 2005;4:1026. [DOI] [PubMed]
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, et al. Orally active peptides: is there a magic bullet?Angew Chem Int Ed Engl. 2018;57:14414–38. [DOI] [PubMed]
Maletínská L, Nagelová V, Tichá A, Zemenová J, Pirník Z, Holubová M, et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration.Int J Obes (Lond). 2015;39:986–93. [DOI] [PubMed]
Zemenová J, Sýkora D, Maletínská L, Kuneš J. Lipopeptides as therapeutics: applications and in vivo quantitative analysis.Bioanalysis. 2017;9:215–30. [DOI] [PubMed]
Berndt P, Fields GB, Tirrell M. Synthetic lipidation of peptides and amino acids: monolayer structure and properties.J Am Chem Soc. 1995;117:9515–22. [DOI]
Ledger EVK, Sabnis A, Edwards AM. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort.Microbiology (Reading). 2022;168:001136. [DOI] [PubMed] [PMC]
Pogliano J, Pogliano N, Silverman JA. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins.J Bacteriol. 2012;194:4494–504. [DOI] [PubMed] [PMC]
Wan C, Fan X, Lou Z, Wang H, Olatunde A, Rengasamy KRR. Iturin: cyclic lipopeptide with multifunction biological potential.Crit Rev Food Sci Nutr. 2022;62:7976–88. [DOI] [PubMed]
Fira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species.J Biotechnol. 2018;285:44–55. [DOI] [PubMed]
Aranda FJ, Teruel JA, Ortiz A. Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A.Biochim Biophys Acta. 2005;1713:51–6. [DOI] [PubMed]
Madsen K, Knudsen LB, Agersoe H, Nielsen PF, Thøgersen H, Wilken M, et al. Structure-activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: importance of fatty acid length, polarity, and bulkiness.J Med Chem. 2007;50:6126–32. [DOI] [PubMed]
Havelund S, Plum A, Ribel U, Jonassen I, Vølund A, Markussen J, et al. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin.Pharm Res. 2004;21:1498–504. [DOI] [PubMed]
Kojima M, Kangawa K. Drug insight: the functions of ghrelin and its potential as a multitherapeutic hormone.Nat Clin Pract Endocrinol Metab. 2006;2:80–8. [DOI] [PubMed]
Chandrudu S, Simerska P, Toth I. Chemical methods for peptide and protein production.Molecules. 2013;18:4373–88. [DOI] [PubMed] [PMC]
Stawikowski M, Fields GB. Introduction to peptide synthesis.Curr Protoc Protein Sci. 2012;69:18.1.1–13. [DOI] [PubMed]
Tymecka D, Misicka A. Solution phase peptide synthesis: the case of biphalin.Methods Mol Biol. 2020;2103:1–11. [DOI] [PubMed]
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JM, Melnyk O. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations.Chem Rev. 2019;119:7328–443. [DOI] [PubMed]
Dawson PE, Muir TW, Clark-Lewis I, Kent SB. Synthesis of proteins by native chemical ligation.Science. 1994;266:776–9. [DOI] [PubMed]
Pattabiraman VR, Ogunkoya AO, Bode JW. Chemical protein synthesis by chemoselective α-ketoacid-hydroxylamine (KAHA) ligations with 5-oxaproline.Angew Chem Int Ed Engl. 2012;51:5114–8.Erratum in: Angew Chem Int Ed Engl. 2014;53:12005 [DOI] [PubMed]
de Araújo AD, Palomo JM, Cramer J, Seitz O, Alexandrov K, Waldmann H. Diels-Alder ligation of peptides and proteins.Chemistry. 2006;12:6095–109. [DOI] [PubMed]
Ingale S, Dawson PE. On resin side-chain cyclization of complex peptides using CuAAC.Org Lett. 2011;13:2822–5. [DOI] [PubMed]
Saxon E, Armstrong JI, Bertozzi CR. A “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds.Org Lett. 2000;2:2141–3. [DOI] [PubMed]
Isidro-Llobet A, Alvarez M, Albericio F. Amino acid-protecting groups.Chem Rev. 2009;109:2455–504. [DOI] [PubMed]
Palasek SA, Cox ZJ, Collins JM. Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis.J Pept Sci. 2007;13:143–8. [DOI] [PubMed]
Tian J, Li Y, Ma B, Tan Z, Shang S. Automated peptide synthesizers and glycoprotein synthesis.Front Chem. 2022;10:896098. [DOI] [PubMed] [PMC]
Carpino L, Han G. The 9-fluorenylmethoxycarbonyl amino-protecting group.J Org Chem. 1979;44:3739.
El-Faham A, Albericio F. Peptide coupling reagents, more than a letter soup.Chem Rev. 2011;111:6557–602. [DOI] [PubMed]
Al Musaimi O, Lombardi L, Williams DR, Albericio F. Strategies for improving peptide stability and delivery.Pharmaceuticals (Basel). 2022;15:1283. [DOI] [PubMed] [PMC]
Coin I, Beyermann M, Bienert M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences.Nat Protoc. 2007;2:3247–56. [DOI] [PubMed]
Schnölzer M, Alewood P, Jones A, Alewood D, Kent SB. In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences.Int J Pept Protein Res. 1992;40:180–93. [DOI] [PubMed]
Subirós-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F. Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion [1].Chemistry. 2009;15:9394–403. [DOI] [PubMed]
Ciulla MG, Pugliese R, Gelain F. Boosted cross-linking and characterization of high-performing self-assembling peptides.Nanomaterials (Basel). 2022;12:320. [DOI] [PubMed] [PMC]
Jiang L, Davison A, Tennant G, Ramage R. Synthesis and application of a novel coupling reagent, ethyl 1-hydroxy-1H -1,2,3-triazole-4-carboxylate.Tetrahedron. 1998;54:14233–54.
Dourtoglou V, Gross B, Lambropoulou V, Zioudrou C. O-Benzotriazolyl-N,N,N’,N’-tetramethyluronium hexafluorophosphate as coupling reagent for the synthesis of peptides of biological interest.Synthesis. 1984;1984:572–4. [DOI]
König W, Geiger R. A new method for synthesis of peptides: activation of the carboxyl group with dicyclohexylcarbodiimide using 1-hydroxybenzotriazoles as additives.Chem Ber. 1970;103:788–98. German. [DOI] [PubMed]
Varanda LM, Miranda MT. Solid-phase peptide synthesis at elevated temperatures: a search for and optimized synthesis condition of unsulfated cholecystokinin-12.J Pept Res. 1997;50:102–8. [DOI] [PubMed]
Luna OF, Gomez J, Cárdenas C, Albericio F, Marshall SH, Guzmán F. Deprotection reagents in Fmoc solid phase peptide synthesis: moving away from piperidine?Molecules. 2016;21:1542. [DOI] [PubMed] [PMC]
Ferrazzano L, Catani M, Cavazzini A, Martelli G, Corbisiero D, Cantelmi P, et al. Sustainability in peptide chemistry: current synthesis and purification technologies and future challenges.Green Chem. 2022;24:975–1020. [DOI]
Kent SB. Total chemical synthesis of proteins.Chem Soc Rev. 2009;38:338–51. [DOI] [PubMed]
Saxon E, Bertozzi CR. Cell surface engineering by a modified Staudinger reaction.Science. 2000;287:2007–10. [DOI] [PubMed]
Szymański W, Wu B, Poloni C, Janssen DB, Feringa BL. Azobenzene photoswitches for Staudinger-Bertozzi ligation.Angew Chem Int Ed Engl. 2013;52:2068–72. [DOI] [PubMed]
Bednarek C, Wehl I, Jung N, Schepers U, Bräse S. The staudinger ligation.Chem Rev. 2020;120:4301–54. [DOI] [PubMed]
Köhn M, Breinbauer R. The Staudinger ligation-a gift to chemical biology.Angew Chem Int Ed Engl. 2004;43:3106–16. [DOI] [PubMed]
Nilsson BL, Kiessling LL, Raines RT. High-yielding staudinger ligation of a phosphinothioester and azide to form a peptide.Org Lett. 2001;3:9–12. [DOI] [PubMed]
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes.Angew Chem Int Ed Engl. 2002;41:2596–9. [DOI] [PubMed]
Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery.Drug Discov Today. 2003;8:1128–37. [DOI] [PubMed]
Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems.J Am Chem Soc. 2004;126:15046–7.Erratum in: J Am Chem Soc. 200510;127:11196. [DOI] [PubMed]
Rose K. Facile synthesis of homogeneous artificial proteins.J Am Chem Soc. 1994;116:30–3. [DOI]
Kölmel DK, Kool ET. Oximes and hydrazones in bioconjugation: mechanism and catalysis.Chem Rev. 2017;117:10358–76. [DOI] [PubMed] [PMC]
Tam JP, Yu Q, Miao Z. Orthogonal ligation strategies for peptide and protein.Biopolymers. 1999;51:311–32. [PubMed]
Muir TW, Dawson PE, Fitzgerald MC, Kent SB. Probing the chemical basis of binding activity in an SH3 domain by protein signature analysis.Chem Biol. 1996;3:817–25. [DOI] [PubMed]
Zhang Y, Xu C, Lam HY, Lee CL, Li X. Protein chemical synthesis by serine and threonine ligation.Proc Natl Acad Sci U S A. 2013;110:6657–62. [DOI] [PubMed] [PMC]
Liu H, Li X. Serine/threonine ligation: origin, mechanistic aspects, and applications.Acc Chem Res. 2018;51:1643–55. [DOI] [PubMed]
Tan Y, Li J, Jin K, Liu J, Chen Z, Yang J, et al. Cysteine/penicillamine ligation independent of terminal steric demands for chemical protein synthesis.Angew Chem Int Ed Engl. 2020;59:12741–5. [DOI] [PubMed]
Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs.Angew Chem Int Ed Engl. 2014;53:13020–41. [DOI] [PubMed]
Góngora-Benítez M, Tulla-Puche J, Albericio F. Multifaceted roles of disulfide bonds. Peptides as therapeutics.Chem Rev. 2014;114:901–26. [DOI] [PubMed]
Jackson DY, Burnier JP, Wells JA. Enzymic cyclization of linear peptide esters using subtiligase.J Am Chem Soc. 1995;117:819–20.
Hayes HC, Luk LYP, Tsai YH. Approaches for peptide and protein cyclisation.Org Biomol Chem. 2021;19:3983–4001. [DOI] [PubMed] [PMC]
Li Y, Li X, Zheng X, Tang L, Xu W, Gong M. Disulfide bond prolongs the half-life of therapeutic peptide-GLP-1.Peptides. 2011;32:1400–7. [DOI] [PubMed]
Luckett S, Garcia RS, Barker JJ, Konarev AV, Shewry PR, Clarke AR, et al. High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds.J Mol Biol. 1999;290:525–33. [DOI] [PubMed]
Furman JL, Chiu M, Hunter MJ. Early engineering approaches to improve peptide developability and manufacturability.AAPS J. 2015;17:111–20. [DOI] [PubMed] [PMC]
Qi RF, Song ZW, Chi CW. Structural features and molecular evolution of Bowman-Birk protease inhibitors and their potential application.Acta Biochim Biophys Sin (Shanghai). 2005;37:283–92. [DOI] [PubMed]
Marx UC, Korsinczky ML, Schirra HJ, Jones A, Condie B, Otvos L Jr, et al. Enzymatic cyclization of a potent bowman-birk protease inhibitor, sunflower trypsin inhibitor-1, and solution structure of an acyclic precursor peptide.J Biol Chem. 2003;278:21782–9. [DOI] [PubMed]
ChenYQChen CC, He Y, Yu M, Xu L, Tian C, et al. Efficient synthesis of trypsin inhibitor SFTI-1 via intramolecular ligation of peptide hydrazide.Tetrahedron Lett. 2014;55:2883–6. [DOI]
Kluskens LD, Nelemans SA, Rink R, de Vries L, Meter-Arkema A, Wang Y, et al. Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog.J Pharmacol Exp Ther. 2009;328:849–54. [DOI] [PubMed]
Meldal M, Diness F. Recent fascinating aspects of the CuAAC click reaction.Trends Chem. 2020;2:569–84. [DOI]
Banerji U, Cook N, Evans TRJ, Moreno Candilejo I, Roxburgh P, Kelly CLS, et al. A Cancer Research UK phase I/IIa trial of BT1718 (a first in class Bicycle Drug Conjugate) given intravenously in patients with advanced solid tumours.J Clin Oncol. 2018;36:TPS2610. [DOI]
Haubner R, Gratias R, Diefenbach B, Goodman SL, Jonczyk A, Kessler H. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αVβ3 antagonists.J Am Chem Soc. 1996;118:7461–72. [DOI]
Hatley RJD, Macdonald SJF, Slack RJ, Le J, Ludbrook SB, Lukey PT. An αv-RGD integrin inhibitor toolbox: drug discovery insight, challenges and opportunities.Angew Chem Int Ed Engl. 2018;57:3298–321. [DOI] [PubMed]
Mas-Moruno C, Rechenmacher F, Kessler H. Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation.Anticancer Agents Med Chem. 2010;10:753–68. [DOI] [PubMed] [PMC]
Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities.Nat Rev Drug Discov. 2010;9:804–20. [DOI] [PubMed]
Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand.Science. 2002;296:151–5. [DOI]
Zhao J, Santino F, Giacomini D, Gentilucci L. Integrin-targeting peptides for the design of functional cell-responsive biomaterials.Biomedicines. 2020;8:307. [DOI] [PubMed] [PMC]
Panzeri S, Arosio D, Gazzola S, Belvisi L, Civera M, Potenza D, et al. Cyclic RGD and isoDGR integrin ligands containing cis-2-amino-1-cyclopentanecarboxylic (cis-β-ACPC) scaffolds.Molecules. 2020;25:5966. [DOI] [PubMed] [PMC]
De Marco R, Tolomelli A, Juaristi E, Gentilucci L. Integrin ligands with α/β-hybrid peptide structure: design, bioactivity, and conformational aspects.Med Res Rev. 2016;36:389–424. [DOI] [PubMed]
Civera M, Arosio D, Bonato F, Manzoni L, Pignataro L, Zanella S, et al. Investigating the interaction of cyclic RGD peptidomimetics with αVβ₆ integrin by biochemical and molecular docking studies.Cancers (Basel). 2017;9:128. [DOI] [PubMed] [PMC]
Mas-Moruno C, Beck JG, Doedens L, Frank AO, Marinelli L, Cosconati S, et al. Increasing αvβ3 selectivity of the anti-angiogenic drug cilengitide by N-methylation.Angew Chem Int Ed Engl. 2011;50:9496–500. [DOI] [PubMed]
Aumailley M, Gurrath M, Müller G, Calvete J, Timpl R, Kessler H. Arg-Gly-Asp constrained within cyclic pentapeptides strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1.FEBS Lett. 1991;291:50–4. [DOI] [PubMed]
Silva A, Xiao W, Wang Y, Wang W, Chang HW, Ames JB, et al. Structure-activity relationship of RGD-containing cyclic octapeptide and αvβ3 integrin allows for rapid identification of a new peptide antagonist.Int J Mol Sci. 2020;21:3076. [DOI] [PubMed] [PMC]
van den Kerkhof DL, van der Meijden PEJ, Hackeng TM, Dijkgraaf I. Exogenous integrin αIIbβ3 inhibitors revisited: past, present and future applications.Int J Mol Sci. 2021;22:3366. [DOI] [PubMed] [PMC]
Li Petri G, Di Martino S, De Rosa M. Peptidomimetics: an overview of rrecent medicinal chemistry efforts toward the discovery of novel small molecule inhibitors.J Med Chem. 2022;65:7438–75. [DOI] [PubMed]
Ding D, Xu S, da Silva-Júnior EF, Liu X, Zhan P. Medicinal chemistry insights into antiviral peptidomimetics.Drug Discov Today. 2023;28:103468. [DOI] [PubMed]
Cabri W, Cantelmi P, Corbisiero D, Fantoni T, Ferrazzano L, Martelli G, et al. Therapeutic peptides targeting PPI in clinical development: overview, mechanism of action and perspectives.Front Mol Biosci. 2021;8:697586. [DOI] [PubMed] [PMC]
Svenson J, Molchanova N, Schroeder CI. Antimicrobial peptide mimics for clinical use: does size matter?Front Immunol. 2022;13:915368. [DOI] [PubMed] [PMC]
Lenci E, Trabocchi A. Peptidomimetic toolbox for drug discovery.Chem Soc Rev. 2020;49:3262–77. [DOI] [PubMed]
Doro F, Colombo C, Alberti C, Arosio D, Belvisi L, Casagrande C, et al. Computational design of novel peptidomimetic inhibitors of cadherin homophilic interactions.Org Biomol Chem. 2015;13:2570–3. [DOI] [PubMed]
Vasile F, Lavore F, Gazzola S, Vettraino C, Parisini E, Piarulli U, et al. A combined fragment-based virtual screening and STD-NMR approach for the identification of E-cadherin ligands.Front Chem. 2022;10:946087. [DOI] [PubMed] [PMC]
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-based design of inhibitors of protein-protein interactions: mimicking peptide binding epitopes.Angew Chem Int Ed Engl. 2015;54:8896–927. [DOI] [PubMed] [PMC]
Moiola M, Memeo MG, Quadrelli P. Stapled peptides-a useful improvement for peptide-based drugs.Molecules. 2019;24:3654. [DOI] [PubMed] [PMC]
Kim YW, Kutchukian PS, Verdine GL. Introduction of all-hydrocarbon i,i+3 staples into alpha-helices via ring-closing olefin metathesis.Org Lett. 2010;12:3046–9. [DOI] [PubMed]
Walensky LD, Bird GH. Hydrocarbon-stapled peptides: principles, practice, and progress.J Med Chem. 2014;57:6275–88. [DOI]
Phillips C, Roberts LR, Schade M, Bazin R, Bent A, Davies NL, et al. Design and structure of stapled peptides binding to estrogen receptors.J Am Chem Soc. 2011;133:9696–9. [DOI]
Cromm PM, Spiegel J, Grossmann TN. Hydrocarbon stapled peptides as modulators of biological function.ACS Chem Biol. 2015;10:1362–75. [DOI] [PubMed]
Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix.Science. 2004;305:1466–70. [DOI] [PubMed] [PMC]
Lau YH, de Andrade P, Wu Y, Spring DR. Peptide stapling techniques based on different macrocyclisation chemistries.Chem Soc Rev. 2015;44:91–102. [DOI] [PubMed]
Azzarito V, Long K, Murphy NS, Wilson AJ. Inhibition of α-helix-mediated protein-protein interactions using designed molecules.Nat Chem. 2013;5:161–73. [DOI] [PubMed]