Munk P, Brinch C, Møller FD, Petersen TN, Hendriksen RS, Seyfarth AM, et al.; Global Sewage Surveillance Consortium; Larsson DGJ, Koopmans M, Woolhouse M, Aarestrup FM. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance.Nat Commun. 2022;13:7251.Erratum in: Nat Commun. 2023;14:178. [DOI] [PubMed] [PMC]
Brinch C, Leekitcharoenphon P, Duarte ASR, Svendsen CA, Jensen JD, Aarestrup FM. Long-term temporal stability of the resistome in sewage from Copenhagen.mSystems. 2020;5:e00841-20. [DOI] [PubMed] [PMC]
Voser TM, Campbell MD, Carroll AR. How different are marine microbial natural products compared to their terrestrial counterparts?Nat Prod Rep. 2022;39:7–19. [DOI] [PubMed]
Sigwart JD, Blasiak R, Jaspars M, Jouffray JB, Tasdemir D. Unlocking the potential of marine biodiscovery.Nat Prod Rep. 2021;38:1235–42. [DOI] [PubMed]
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products.Nat Prod Rep. 2022;39:1122–71. [DOI] [PubMed] [PMC]
Siro G, Pipite A, Christi K, Srinivasan S, Subramani R. Marine actinomycetes associated with stony corals: a potential hotspot for specialized metabolites.Microorganisms. 2022;10:1349. [DOI] [PubMed] [PMC]
Siro G, Donald L, Pipite A. The diversity of deep-sea actinobacteria and their natural products: an epitome of curiosity and drug discovery.Diversity. 2023;15:30. [DOI]
Khan N, Yılmaz S, Aksoy S, Uzel A, Tosun Ç, Kirmizibayrak PB, et al. Polyethers isolated from the marine actinobacterium Streptomyces cacaoi inhibit autophagy and induce apoptosis in cancer cells.Chem Biol Interact. 2019;307:167–78. [DOI] [PubMed]
Borowitzka MA, Lavery PS, Keulen M. Epiphytes of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM, editors. Seagrasses: biology, ecology and conservation. Dordrecht: Springer Netherlands; 2006. pp. 441–61.
Mast Y, Stegmann E. Actinomycetes: the antibiotics producers.Antibiotics. 2019;8:105. [DOI]
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, et al. Taxonomy, physiology, and natural products of actinobacteria.Microbiol Mol Biol Rev. 2015;80:1–43.Erratum in: Microbiol Mol Biol Rev. 2016;80:iii. [DOI] [PubMed] [PMC]
Anandan R, Dharumadurai D, Manogaran GP. An introduction to actinobacteria. In: Dhanasekaran D, Jiang Y, editors. Actinobacteria. Rijeka: IntechOpen; 2016. [DOI]
Watve MG, Tickoo R, Jog MM, Bhole BD. How many antibiotics are produced by the genus Streptomyces?Arch Microbiol. 2001;176:386–90. [DOI] [PubMed]
Donald L, Pipite A, Subramani R, Owen J, Keyzers RA, Taufa T. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective.Microbiol Res. 2022;13:418–65. [DOI]
Verma S, Kuila A. Bioremediation of heavy metals by microbial process.Environ Technol Innov. 2019;14:100369. [DOI]
Sharma M, Dangi P, Choudhary M. Actinomycetes: source, identification, and their applications.Int J Curr Microbiol Appl Sci. 2014;3:801–32.
Singh R, Dubey AK. Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches.Front Microbiol. 2018;9:1767. [DOI] [PubMed] [PMC]
Jagannathan SV, Manemann EM, Rowe SE, Callender MC, Soto W. Marine actinomycetes, new sources of biotechnological products.Mar Drugs. 2021;19:365. [DOI] [PubMed] [PMC]
Lam KS. Discovery of novel metabolites from marine actinomycetes.Curr Opin Microbiol. 2006;9:245–51. [DOI] [PubMed]
Rengasamy RRK, Radjassegarin A, Perumal A. Seagrasses as potential source of medicinal food ingredients: nutritional analysis and multivariate approach.Biomed Prev Nutr. 2013;3:375–80. [DOI]
Unsworth RKF, Nordlund LM, Cullen-Unsworth LC. Seagrass meadows support global fisheries production.Conserv Lett. 2019;12:e12566. [DOI]
Duffy JE. Biodiversity and the functioning of seagrass ecosystems.Mar Ecol Prog Ser. 2006;311:233–50. [DOI]
Papenbrock J. Highlights in seagrasses’ phylogeny, physiology, and metabolism: What makes them special?Int Sch Res Not. 2012;2012:103892. [DOI]
Orth RJ, Carruthers TJB, Dennison W, Duarte CM, Fourqurean JW, Heck KL, et al. A global crisis for seagrass ecosystems.Bioscience. 2006;56:987–96. [DOI]
Jeyapragash D, Saravanakumar A, Yosuva M. Seagrass metabolomics: a new insight towards marine based drug discovery. In: Zhan X, editor. Metabolomics. Rijeka: IntechOpen; 2021.
Ugarelli K, Chakrabarti S, Laas P, Stingl U. The seagrass holobiont and its microbiome.Microorganisms. 2017;5:81. [DOI] [PubMed] [PMC]
Sandoval-Gil JM, Ruiz JM, Marín-Guirao L. Advances in understanding multilevel responses of seagrasses to hypersalinity.Mar Environ Res. 2023;183:105809. [DOI] [PubMed]
Short F, Carruthers T, Dennison W, Waycott M. Global seagrass distribution and diversity: a bioregional model.J Exp Mar Bio Ecol. 2007;350:3–20. [DOI]
Ondiviela B, Losada IJ, Lara JL, Maza M, Galván C, Bouma TJ, et al. The role of seagrasses in coastal protection in a changing climate.Coast Eng. 2014;87:158–68. [DOI]
Rengasamy KRR, Sadeer NB, Zengin G, Mahomoodally MF, Cziáky Z, Jekő J, et al. Biopharmaceutical potential, chemical profile and in silico study of the seagrass– Syringodium isoetifolium (Asch.) Dandy.S Afr J Bot. 2019;127:167–75. [DOI]
McKenzie LJ, Nordlund LM, Jones BL, Cullen-Unsworth LC, Roelfsema C, Unsworth RKF. The global distribution of seagrass meadows.Environ Res Lett. 2020;15:074041. [DOI]
Henrickson SE, Wong T, Allen P, Ford T, Epstein PR. Marine swimming-related illness: implications for monitoring and environmental policy.Environ Health Perspect. 2001;109:645–50. [DOI] [PubMed] [PMC]
Lamb JB, van de Water JA, Bourne DG, Altier C, Hein MY, Fiorenza EA, et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates.Science. 2017;355:731–3. [DOI] [PubMed]
Ascioti FA, Mangano MC, Marcianò C, Sarà G. The sanitation service of seagrasses – dependencies and implications for the estimation of avoided costs.Ecosyst Serv. 2022;54:101418. [DOI]
Zhao L, Ru S, He J, Zhang Z, Song X, Wang D, et al. Eelgrass (Zostera marina) and its epiphytic bacteria facilitate the sinking of microplastics in the seawater.Environ Pollut. 2022;292:118337. [DOI] [PubMed]
Reusch TBH, Schubert PR, Marten SM, Gill D, Karez R, Busch K, et al. Lower Vibrio spp. abundances in Zostera marina leaf canopies suggest a novel ecosystem function for temperate seagrass beds.Mar Biol. 2021;168:149. [DOI]
Alsaffar Z, Pearman JK, Cúrdia J, Ellis J, Calleja ML, Ruiz-Compean P, et al. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon.Sci Rep. 2020;10:13550. [DOI] [PubMed] [PMC]
Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning.FEMS Microbiol Lett. 2019;366:fnz057. [DOI] [PubMed]
Conte C, Rotini A, Manfra L, D’Andrea MM, Winters G, Migliore L. The seagrass holobiont: What we know and what we still need to disclose for its possible use as an ecological indicator.Water. 2021;13:406. [DOI]
Mohr W, Lehnen N, Ahmerkamp S, Marchant HK, Graf JS, Tschitschko B, et al. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium.Nature. 2021;600:105–9. [DOI] [PubMed] [PMC]
Iqbal MM, Nishimura M, Haider MN, Sano M, Ijichi M, Kogure K, et al. Diversity and composition of microbial communities in an eelgrass (Zostera marina) bed in Tokyo Bay, Japan.Microbes Environ. 2021;36:ME21037. [DOI] [PubMed] [PMC]
Trevathan-Tackett SM, Lane AL, Bishop N, Ross C. Metabolites derived from the tropical seagrass Thalassia testudinum are bioactive against pathogenic Labyrinthula sp.Aquat Bot. 2015;122:1–8. [DOI]
Tarquinio F, Attlan O, Vanderklift MA, Berry O, Bissett A. Distinct endophytic bacterial communities inhabiting seagrass seeds.Front Microbiol. 2021;12:703014. [DOI] [PubMed] [PMC]
Hurtado-McCormick V, Kahlke T, Petrou K, Jeffries T, Ralph PJ, Seymour JR. Regional and microenvironmental scale characterization of the Zostera muelleri seagrass Microbiome.Front Microbiol. 2019;10:1011.Erratum in: Front Microbiol. 2021;12:642964. [DOI] [PubMed] [PMC]
Conte C, Apostolaki ET, Vizzini S, Migliore L. A tight interaction between the native seagrass Cymodocea nodosa and the exotic Halophila stipulacea in the Aegean Sea highlights seagrass holobiont variations.Plants (Basel). 2023;12:350. [DOI] [PubMed] [PMC]
Mohapatra M, Manu S, Dash SP, Rastogi G. Seagrasses and local environment control the bacterial community structure and carbon substrate utilization in brackish sediments.J Environ Manage. 2022;314:115013. [DOI] [PubMed]
Banister RB, Schwarz MT, Fine M, Ritchie KB, Muller EM. Instability and stasis among the microbiome of seagrass leaves, roots and rhizomes, and nearby sediments within a natural pH gradient.Microb Ecol. 2022;84:703–16.Erratum in: Microb Ecol. 2023;85:1634. [DOI] [PubMed] [PMC]
Vasarri M, De Biasi AM, Barletta E, Pretti C, Degl’Innocenti D. An overview of new insights into the benefits of the seagrass Posidonia oceanica for human health.Mar Drugs. 2021;19:476. [DOI] [PubMed] [PMC]
Terrados J, Borum J. Why are seagrasses important? - Goods and services provided by seagrass meadows. In: Borum J, Duarte CM, Krause-Jensen D, Greve TM, editors. European seagrasses: an introduction to monitoring and management. The M&MS project; 2004. pp. 8–10.
Zidorn C. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): chemical diversity, bioactivity, and ecological function.Phytochemistry. 2016;124:5–28. [DOI] [PubMed]
Jiang Y, Li Q, Chen X, Jiang C. Isolation and cultivation methods of actinobacteria. In: Dhanasekaran D, Jiang Y, editors. Actinobacteria. Rijeka: IntechOpen; 2016. [DOI]
Wu H, Chen W, Wang G, Dai S, Zhou D, Zhao H, et al. Culture-dependent diversity of actinobacteria associated with seagrass (Thalassia hemprichii).Afr J Microbiol Res. 2012;6:87–94. [DOI]
Ravikumar S, Gnanadesigan M, Saravanan A, Monisha N, Brindha V, Muthumari S. Antagonistic properties of seagrass associated Streptomyces sp. RAUACT-1: a source for anthraquinone rich compound.Asian Pac J Trop Med. 2012;5:887–90. [DOI] [PubMed]
Jose PA, sundari IS, Sivakala KK, Jebakumar SRD. Molecular phylogeny and plant growth promoting traits of endophytic bacteria isolated from roots of seagrass Cymodocea serrulata.Indian J Geo-Mar Sci. 2014;43:571–9.
Bibi F, Naseer MI, Hassan AM, Yasir M, Al-Ghamdi AAK, Azhar EI. Diversity and antagonistic potential of bacteria isolated from marine grass Halodule uninervis.3 Biotech. 2018;8:48. [DOI] [PubMed] [PMC]
Ettinger CL, Eisen JA. Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina.PLoS One. 2020;15:e0236135.Erratum in: PLoS One. 2021;16:e0251536. [DOI] [PubMed] [PMC]
Cristianawati O, Sibero MT, Ayuningrum D, Nuryadi H, Syafitri E, Riniarsih I, et al. Screening of antibacterial activity of seagrass-associated bacteria from the North Java Sea, Indonesia against multidrug-resistant bacteria.Aquac Aquarium Conserv Legis. 2019;12:1054–64.
Hamdy AHA, El-Fiky NM, El-Beih AA, Mohammed MM, Mettwally WS. Egyptian red sea seagrass as a source of biologically active secondary metabolites.Egypt Pharm J. 2020;19:224–37. [DOI]
Ragupathi Raja Kannan R, Arumugam R, Anantharaman P. Chemical composition and antibacterial activity of Indian seagrasses against urinary tract pathogens.Food Chem. 2012;135:2470–3. [DOI] [PubMed]
Engel S, Puglisi MP, Jensen PR, Fenical W. Antimicrobial activities of extracts from tropical Atlantic marine plants against marine pathogens and saprophytes.Mar Biol. 2006;149:991–1002. [DOI]
Kim DH, Mahomoodally MF, Sadeer NB, Seok PG, Zengin G, Palaniveloo K, et al. Nutritional and bioactive potential of seagrasses: a review.S Afr J Bot. 2021;137:216–27. [DOI]
Gono CMP, Ahmadi P, Hertiani T, Septiana E, Putra MY, Chianese G. A comprehensive update on the bioactive compounds from seagrasses.Mar Drugs. 2022;20:406. [DOI] [PubMed] [PMC]
Jafriati J, Hatta M, Yuniar N, Ade RJ, Dwiyanti R, Sabir M, et al. Thalassia hemprichii seagrass extract as antimicrobial and antioxidant potential on human: a mini review of the benefits of seagrass.J Biol Sci. 2019;19:363–71. [DOI]
Nur RM, Nurafni, Koroy K, Alwi D, Wahab I, Sulistiawati S, et al. The antibacterial activity of seagrass Enhalus acoroides against Staphylococcus aureus.IOP Conf Ser: Earth Environ Sci. 2021;890:012013. [DOI]
De Vincenti L, Glasenapp Y, Cattò C, Villa F, Cappitelli F, Papenbrock J. Hindering the formation and promoting the dispersion of medical biofilms: non-lethal effects of seagrass extracts.BMC Complement Altern Med. 2018;18:168. [DOI] [PubMed] [PMC]
Sun Y, Song Z, Zhang H, Liu P, Hu X. Seagrass vegetation affect the vertical organization of microbial communities in sediment.Mar Environ Res. 2020;162:105174. [DOI] [PubMed]
Crump BC, Wojahn JM, Tomas F, Mueller RS. Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes.Front Microbiol. 2018;9:388. [DOI] [PubMed] [PMC]
Rotini A, Conte C, Seveso D, Montano S, Galli P, Vai M, et al. Daily variation of the associated microbial community and the Hsp60 expression in the Maldivian seagrass Thalassia hemprichii.J Sea Res. 2020;156:101835. [DOI]
Ugarelli K, Laas P, Stingl U. The microbial communities of leaves and roots associated with turtle grass (Thalassia testudinum) and manatee grass (Syringodium filliforme) are distinct from seawater and sediment communities, but are similar between species and sampling sites.Microorganisms. 2018;7:4. [DOI] [PubMed] [PMC]
Jensen SI, Kühl M, Priemé A. Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina.FEMS Microbiol Ecol. 2007;62:108–17. [DOI] [PubMed]
Damayanti V, Rachma RN, Santoso I, Yasman Y, Maryanto AE. Fermentation of antimicrobial substances of Streptomyces sp. BCy isolated from seagrass Cymodocearotundata using two different media.AIP Conf Proc. 2018;2023:020143. [DOI]
Almaary KS, Alharbi NS, Kadaikunnan S, Khaled JM, Rajivgandhi G, Ramachandran G, et al. Anti-bacterial effect of marine sea grasses mediated endophytic actinomycetes against K. pneumoniae.J King Saud Univ Sci. 2021;33:101528. [DOI]
Inaba N, Trainer VL, Onishi Y, Ishii KI, Wyllie-Echeverria S, Imai I. Algicidal and growth-inhibiting bacteria associated with seagrass and macroalgae beds in Puget Sound, WA, USA.Harmful Algae. 2017;62:136–47. [DOI] [PubMed]
Martin BC, Gleeson D, Statton J, Siebers AR, Grierson P, Ryan MH, et al. Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots.Front Microbiol. 2018;8:2667. [DOI] [PubMed] [PMC]