The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
The work was funded by the Laboratory for Synthetic Chemistry and Chemical Biology Limited under the Health@InnoHK Program by the Innovation and Technology Commission. The Funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
de Haas P, Hendriks WJAJ, Lefeber DJ, Cambi A.Biological and technical challenges in unraveling the role of N-glycans in immune receptor regulation. Front Chem. 2020;8:55. [DOI] [PubMed] [PMC]
Mathew C, Weiβ RG, Giese C, Lin CW, Losfeld ME, Glockshuber R, et al. Glycan-protein interactions determine kinetics of N-glycan remodeling. RSC Chem Biol. 2021;2:917–31. [DOI] [PubMed] [PMC]
Chen Q.Mass spectrometric investigation of biomedically important glycosylation. London: Imperial College London; 2015.
Kiessling LL, Splain RA.Chemical approaches to glycobiology. Annu Rev Biochem. 2010;79:619–53. [DOI] [PubMed]
Varki A.Biological roles of glycans. Glycobiology. 2017;27:3–49. [DOI] [PubMed] [PMC]
Wu J, Zhu J, Yin H, Buckanovich RJ, Lubman DM.Analysis of glycan variation on glycoproteins from serum by the reverse lectin-based ELISA assay. J Proteome Res. 2014;13:2197–204. [DOI] [PubMed] [PMC]
Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, et al. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun. 2022;13:275. [DOI] [PubMed] [PMC]
Reily C, Stewart TJ, Renfrow MB, Novak J.Glycosylation in health and disease. Nat Rev Nephrol. 2019;15:346–66. [DOI] [PubMed] [PMC]
Majuri ML, Pinola M, Niemelä R, Tiisala S, Natunen J, Renkonen O, et al. α2,3-Sialyl and α1,3-fucosyltransferase-dependent synthesis of sialyl Lewis x, an essential oligosaccharide present on L-selectin counterreceptors, in cultured endothelial cells. Eur J Immunol. 1994;24:3205–10. [DOI] [PubMed]
Ogiso M, Shogomori H, Hoshi M.Localization of LewisX, sialyl-LewisX and alpha-galactosyl epitopes on glycosphingolipids in lens tissues. Glycobiology. 1998;8:95–105. [DOI] [PubMed]
Chen Q, Pang PC, Cohen ME, Longtine MS, Schust DJ, Haslam SM, et al. Evidence for differential glycosylation of trophoblast cell types*. Mol Cell Proteomics. 2016;15:1857–66. [DOI] [PubMed] [PMC]
Ma Z, Yang H, Peng L, Kuhn C, Chelariu-Raicu A, Mahner S, et al. Expression of the carbohydrate Lewis antigen, sialyl Lewis A, sialyl Lewis X, Lewis X, and Lewis Y in the placental villi of patients with unexplained miscarriages. Front Immunol. 2021;12:679424. [DOI] [PubMed] [PMC]
Miyara M, Chader D, Sage E, Sugiyama D, Nishikawa H, Bouvry D, et al. Sialyl Lewis x (CD15s) identifies highly differentiated and most suppressive FOXP3high regulatory T cells in humans. Proc Natl Acad Sci U S A. 2015;112:7225–30. [DOI] [PubMed] [PMC]
Safarova Y, Umbayev B, Hortelano G, Askarova S.Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Regen Med. 2020;15:1579–94. [DOI] [PubMed]
Mourant AE.A ‘new’ human blood group antigen of frequent occurrence. Nature. 1946;158:237. [DOI] [PubMed]
Henry S, Oriol R, Samuelsson B.Lewis histo-blood group system and associated secretory phenotypes. Vox Sang. 1995;69:166–82. [DOI] [PubMed]
Andresen PH.Relations between the ABO, secretor/nonsecretor, and Lewis systems with particular reference to the Lewis system. Am J Hum Genet. 1961;13:396–412. [PubMed] [PMC]
Vajaria BN, Patel PS.Glycosylation: a hallmark of cancer?Glycoconj J. 2017;34:147–56. [DOI] [PubMed]
Mondal N, Dykstra B, Lee J, Ashline DJ, Reinhold VN, Rossi DJ, et al. Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells. J Biol Chem. 2018;293:7300–14. [DOI] [PubMed] [PMC]
Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al., editors. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009. [PubMed]
Phillips ML, Nudelman E, Gaeta FCA, Perez M, Singhal AK, Hakomori SI, et al. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science. 1990;250:1130–2. [DOI] [PubMed]
Alon R, Feizi T, Yuen CT, Fuhlbrigge RC, Springer TA.Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions. J Immunol. 1995;154:5356–66. [DOI] [PubMed]
Trinchera M, Aronica A, Dall’Olio F.Selectin ligands sialyl-Lewis a and sialyl-Lewis x in gastrointestinal Cancers. Biology (Basel). 2017;6:16. [DOI] [PubMed] [PMC]
Pang PC, Chiu PC, Lee CL, Chang LY, Panico M, Morris HR, et al. Human sperm binding is mediated by the sialyl-Lewisx oligosaccharide on the zona pellucida. Science. 2011;333:1761–4. [DOI] [PubMed]
Wang Y, Zhao W, Mei S, Chen P, Leung TY, Lee CL, et al. Identification of sialyl-Lewis(x)-interacting protein on human spermatozoa. Front Cell Dev Biol. 2021;9:700396. [DOI] [PubMed] [PMC]
Puan KJ, San Luis B, Yusof N, Kumar D, Andiappan AK, Lee W, et al.;23 andMe Research Team; Rapp E, Poidinger M, Wang Y, Soranzo N, Lee B, Rötzschke O.FUT6 deficiency compromises basophil function by selectively abrogating their sialyl-Lewis x expression. Commun Biol. 2021;4:832. [DOI] [PubMed] [PMC]
Galustian C, Lawson AM, Komba S, Ishida H, Kiso M, Feizi T.Sialyl-lewisx sequence 6-O-Sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand forl-selectin and de-N-acetylation of the sialic acid enhances the binding strength. Biochem Biophys Res Commun. 1997;240:748–51. Erratum in: Biochem Biophys Res Commun. 1998;245:640. [DOI] [PubMed]
Santra A, Yu H, Tasnima N, Muthana MM, Li Y, Zeng J, et al. Systematic chemoenzymatic synthesis of O-sulfated sialyl Lewis x antigens. Chem Sci. 2016;7:2827–31. [DOI]
Leppänen A, Parviainen V, Ahola-Iivarinen E, Kalkkinen N, Cummings RD.Human L-selectin preferentially binds synthetic glycosulfopeptides modeled after endoglycan and containing tyrosine sulfate residues and sialyl Lewis x in core 2 O-glycans. Glycobiology. 2010;20:1170–85. [DOI] [PubMed] [PMC]
Kawashima H, Petryniak B, Hiraoka N, Mitoma J, Huckaby V, Nakayama J, et al. N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat Immunol. 2005;6:1096–104. [DOI] [PubMed]
Kawashima H, Fukuda M.Sulfated glycans control lymphocyte homing. Ann N Y Acad Sci. 2012;1253:112–21. [DOI] [PubMed]
Fukuda M, Hiraoka N, Akama TO, Fukuda MN.Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology*. J Biol Chem. 2001;276:47747–50. [DOI] [PubMed]
Bistrup A, Bhakta S, Lee JK, Belov YY, Gunn MD, Zuo FR, et al. Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J Cell Biol. 1999;145:899–910. [DOI] [PubMed] [PMC]
Tobisawa Y, Imai Y, Fukuda M, Kawashima H.Sulfation of colonic mucins by N-acetylglucosamine 6-O-sulfotransferase-2 and its protective function in experimental colitis in mice*. J Biol Chem. 2010;285:6750–60. [DOI] [PubMed] [PMC]
Mitoma J, Bao X, Petryanik B, Schaerli P, Gauguet JM, Yu SY, et al. Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat Immunol. 2007;8:409–18. [DOI] [PubMed]
Kameyama A, Ishida H, Kiso M, Hasegawa A.Total synthesis of sialyl Lewis X. Carbohydr Res. 1991;209:c1–4. [DOI] [PubMed]
Rauvala H.Gangliosides of human kidney. J Biol Chem. 1976;251:7517–20. [DOI] [PubMed]
Fukushima K, Hirota M, Terasaki PI, Wakisaka A, Togashi H, Chia D, et al. Characterization of sialosylated Lewisx as a new tumor-associated antigen. Cancer Res. 1984;44:5279–85. [PubMed]
Blois SM, Verlohren S, Wu G, Clark G, Dell A, Haslam SM, et al. Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB). Semin Immunopathol. 2020;42:469–86. [DOI] [PubMed] [PMC]
Ilić D, Genbačev O, Jin F, Caceres E, Almeida EAC, Bellingard-Dubouchaud V, et al. Plasma membrane-associated pY397FAK is a marker of cytotrophoblast invasion in vivo and in vitro. Am J Pathol. 2001;159:93–108. [DOI] [PubMed] [PMC]
Feng Y, Ma X, Deng L, Yao B, Xiong Y, Wu Y, et al. Role of selectins and their ligands in human implantation stage. Glycobiology. 2017;27:385–91. [DOI] [PubMed]
Liu S, Yang X, Liu Y, Wang X, Yan Q.sLeX/L-selectin mediates adhesion in vitro implantation model. Mol Cell Biochem. 2011;350:185–92. [DOI] [PubMed]
Guérardel Y, Chang LY, Maes E, Huang CJ, Khoo KH.Glycomic survey mapping of zebrafish identifies unique sialylation pattern. Glycobiology. 2006;16:244–57. [DOI] [PubMed]
Hanzawa K, Suzuki N, Natsuka S.Structures and developmental alterations of N-glycans of zebrafish embryos. Glycobiology. 2017;27:228–45. [DOI] [PubMed]
Rotteveel FT, van Doornmalen AM, van Duin M.sLex is not responsible for the interaction of sLex-positive memory T lymphocytes with E-selectin. Immunology. 1995;86:34–40.
Jin F, Wang F.The physiological and pathological roles and applications of sialyl Lewis x, a common carbohydrate ligand of the three selectins. Glycoconj J. 2020;37:277–91. [DOI] [PubMed]
Hernandez Mir G, Helin J, Skarp KP, Cummings RD, Mäkitie A, Renkonen R, et al. Glycoforms of human endothelial CD34 that bind L-selectin carry sulfated sialyl Lewis x capped O- and N-glycans. Blood. 2009;114:733–41. [DOI] [PubMed] [PMC]
Fukuda M, Hiraoka N, Yeh JC.C-type lectins and sialyl Lewis X oligosaccharides. Versatile roles in cell-cell interaction. J Cell Biol. 1999;147:467–70. [DOI] [PubMed] [PMC]
Kawashima H.Glycosylation in high endothelial venules. In: In: Endo T, Seeberger PH, Hart GW, Wong CH, Taniguchi N, editors. Glycoscience: biology and medicine. Tokyo: Springer Japan; 2021. pp. 1–5. [DOI]
Yang WH, Nussbaum C, Grewal PK, Marth JD, Sperandio M.Coordinated roles of ST3Gal-VI and ST3Gal-IV sialyltransferases in the synthesis of selectin ligands. Blood. 2012;120:1015–26. [DOI] [PubMed] [PMC]
Homeister JW, Thall AD, Petryniak B, Malý P, Rogers CE, Smith PL, et al. The α(1,3) fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity. 2001;15:115–26. [DOI] [PubMed]
Uchimura K, Gauguet JM, Singer MS, Tsay D, Kannagi R, Muramatsu T, et al. A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat Immunol. 2005;6:1105–13. [DOI] [PubMed]
Xiong W, Liu W, Nishida S, Komiyama D, Liu W, Hirakawa J, et al. Therapeutic effects of an anti-sialyl Lewis X antibody in a murine model of allergic asthma. Int J Mol Sci. 2021;22:9961. [DOI] [PubMed] [PMC]
Sako D, Comess KM, Barone KM, Camphausen RT, Cumming DA, Shaw GD.A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell. 1995;83:323–31. [DOI] [PubMed]
Brunk DK, Hammer DA.Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands. Biophys J. 1997;72:2820–33. [DOI] [PubMed]
Rodgers SD, Camphausen RT, Hammer DA.Sialyl Lewisx-mediated, PSGL-1-independent rolling adhesion on P-selectin. Biophys J. 2000;79:694–706. [DOI] [PubMed]
Zaongo SD, Liu Y, Harypursat V, Song F, Xia H, Ma P, et al. P-Selectin glycoprotein ligand 1: a potential HIV-1 therapeutic target. Front Immunol. 2021;12:710121. [DOI] [PubMed] [PMC]
Bullard DC, Kunkel EJ, Kubo H, Hicks MJ, Lorenzo I, Doyle NA, et al. Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J Exp Med. 1996;183:2329–36. [DOI] [PubMed] [PMC]
Norman KE, Katopodis AG, Thoma G, Kolbinger F, Hicks AE, Cotter MJ, et al. P-selectin glycoprotein ligand-1 supports rolling on E- and P-selectin in vivo. Blood. 2000;96:3585–91. [DOI] [PubMed]
Zhang X, Bogorin DF, Moy VT.Molecular basis of the dynamic strength of the sialyl Lewis X—selectin interaction. Chemphyschem. 2004;5:175–82. [DOI] [PubMed]
Dall’Olio F, Pucci M, Malagolini N.The cancer-associated antigens sialyl Lewisa/x and Sda: two opposite faces of terminal glycosylation. Cancers (Basel). 2021;13:5273. [DOI] [PubMed] [PMC]
Zhang Z, Wuhrer M, Holst S.Serum sialylation changes in cancer. Glycoconj J. 2018;35:139–60. [DOI] [PubMed] [PMC]
Ohyama C, Tsuboi S, Fukuda M.Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO J. 1999;18:1516–25. [DOI] [PubMed] [PMC]
Gomes C, Osório H, Pinto MT, Campos D, Oliveira MJ, Reis CA.Expression of ST3GAL4 leads to SLex expression and induces c-Met activation and an invasive phenotype in gastric carcinoma cells. PLoS One. 2013;8:e66737. [DOI] [PubMed] [PMC]
Stowell SR, Ju T, Cummings RD.Protein glycosylation in cancer. Annu Rev Pathol. 2015;10:473–510. [DOI] [PubMed] [PMC]
Fujita T, Murayama K, Hanamura T, Okada T, Ito T, Harada M, et al. CSLEX (sialyl Lewis X) is a useful tumor marker for monitoring of breast cancer patients. Jpn J Clin Oncol. 2011;41:394–9. [DOI] [PubMed]
Song Y, Sun H, Wu K, Lyu J, Zhang J, Gu F, et al. sLex expression in invasive micropapillary breast carcinoma is associated with poor prognosis and can be combined with MUC1/EMA as a supplementary diagnostic indicator. Cancer Biol Med. 2021;18:477–89. [DOI] [PubMed] [PMC]
Balmaña M, Sarrats A, Llop E, Barrabés S, Saldova R, Ferri MJ, et al. Identification of potential pancreatic cancer serum markers: increased sialyl-Lewis X on ceruloplasmin. Clin Chim Acta. 2015;442:56–62. [DOI] [PubMed]
Tang H, Singh S, Partyka K, Kletter D, Hsueh P, Yadav J, et al. Glycan motif profiling reveals plasma sialyl-Lewis x elevations in pancreatic cancers that are negative for sialyl-lewis A*. Mol Cell Proteomics. 2015;14:1323–33. [DOI] [PubMed] [PMC]
Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol. 2019;26:481–9. [DOI] [PubMed] [PMC]
Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R, Peng W, et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci U S A. 2017;114:E8508–17. [DOI] [PubMed] [PMC]
Tei K, Kawakami-Kimura N, Taguchi O, Kumamoto K, Higashiyama S, Taniguchi N, et al. Roles of cell adhesion molecules in tumor angiogenesis induced by cotransplantation of cancer and endothelial cells to nude rats. Cancer Res. 2002;62:6289–96. [PubMed]
Mathieu S, Gerolami R, Luis J, Carmona S, Kol O, Crescence L, et al. Introducing α(1,2)-linked fucose into hepatocarcinoma cells inhibits vasculogenesis and tumor growth. Int J Cancer. 2007;121:1680–9. [DOI] [PubMed]
Nicolaou KC, Hummel CW, Bockovich NJ, Wong CH.Stereocontrolled synthesis of sialyl Lex, the oligosaccharide binding ligand to ElAM-1 (sialyl = N-acetylneuramin). J Chem Soc Chem Commun. 1991;13:870–2. [DOI]
Hasegawa A, Fushimi K, Ishida H, Kiso M.Synthetic studies on sialoglycoconjugates 52: synthesis of sialyl Lewis-X analogs containing azidoalkyl groups at the reducing end. J Carbohydr Chem. 1993;12:1203–16. [DOI]
Hasegawa A, Ito K, Ishida H, Kiso M.Synthetic studies on sialoglycoconjugates 70: synthesis of sialyl and sulfo Lewis × analogs containing a ceramide or 2-(tetradecyl)hexadecyl residue. J Carbohydr Chem. 1995;14:353–68. [DOI]
Jain RK, Vig R, Rampal R, Chandrasekaran EV, Matta KL.Total synthesis of 3’-O-Sialyl, 6’-O-Sulfo Lewisx, NeuAcα2→3(6-O-SO3Na)Ga1β1→4(Fucα1→3)GlcNAcβ-OMe: a major capping group of GLYCAM-I. J Am Chem Soc. 1994;116:12123–4. [DOI]
Jain RK, Vig R, Locke RD, Mohammad A, Matta KL.Selectin ligands: 2,3,4-tri-O-acetyl-6-O-pivaloyl-α/β-galactopyranosyl halide as novel glycosyl donor for the synthesis of 3-O-sialyl or 3-O-sulfo Lex and Lea type structures. Chem Commun. 1996:65–7. [DOI]
Ellervik U, Magnusson G.A high yielding chemical synthesis of sialyl Lewis x tetrasaccharide and Lewis x trisaccharide; examples of regio- and stereodifferentiated glycosylations. J Org Chem. 1998;63:9314–22. [DOI]
Filser C, Kowalczyk D, Jones C, Wild MK, Ipe U, Vestweber D, et al. Synthetic glycopeptides from the E-selectin ligand 1 with varied sialyl Lewisx structure as cell-adhesion inhibitors of E-selectin. Angew Chem Int Ed Engl. 2007;46:2108–11. [DOI] [PubMed]
Lu D, Hu Y, He X, Sollogoub M, Zhang Y.Total synthesis of a sialyl Lewisx derivative for the diagnosis of cancer. Carbohydr Res. 2014;383:89–96. [DOI] [PubMed]
Danishefsky SJ, Gervay J, Peterson JM, Mcdonald FE, Koseki K, Oriyama T, et al. Remarkable regioselectivity in the chemical glycosylation of glycal acceptors: a concise solution to the synthesis of sialyl-Lewis X glycal. J Am Chem Soc. 1992;114:8329–31. [DOI]
Danishefsky SJ, Koseki K, Griffith DA, Gervay J, Peterson JM, Mcdonald FE, et al. Azaglycosylation of complex stannyl alkoxides with glycal-derived iodo sulfonamides: a straightforward synthesis of sialyl-Lewis X antigen and other oligosaccharide domains. J Am Chem Soc. 1992;114:8331–3. [DOI]
Danishefsky SJ, Gervay J, Peterson JM, Mcdonald FE, Koseki K, Griffith DA, et al. Application of glycals to the synthesis of oligosaccharides: convergent total syntheses of the Lewis X trisaccharide sialyl Lewis X antigenic determinant and higher congeners. J Am Chem Soc. 1995;117:1940–53. [DOI]
Sprengard U, Kretzschmar G, Bartnik E, Huls C, Kunz H.Synthesis of an RGD-sialyl-LewisX glycoconjugate: a new highly active ligand for P-selectin**. Angew Chem Int Ed Engl. 1995;34:990–3. [DOI]
Kretzschmar G, Stahl W.Large scale synthesis of linker-modified sialyl LewisX, LewisX and N-acetyllactosamine. Tetrahedron. 1998;54:6341–58. [DOI]
Misra AK, Ding Y, Lowe JB, Hindsgaul O.A concise synthesis of the 6-o- and 6’-o-sulfated analogues of the sialyl lewis X tetrasaccharide. Bioorg Med Chem Lett. 2000;10:1505–9. [DOI] [PubMed]
Dekany G, Wright K, Toth I.An economical synthesis of Lewis X, sialyl Lewis X and their α-galactosyl analogues. J Carbohydr Chem. 1997;16:983–99. [DOI]
Baba K, Iwata N, Hamajima H, Ikami T, Ishida H, Hasegawa A, et al. A convenient and efficient synthesis of sialyl Lewis X. Biosci Biotechnol Biochem. 1998;62:590–2. [DOI] [PubMed]
Gege C, Vogel J, Bendas G, Rothe U, Schmidt RR.Synthesis of the sialyl Lewis X epitope attached to glycolipids with different core structures and their selectin-binding characteristics in a dynamic test system. Chemistry. 2000;6:111–22. [DOI] [PubMed]
Akçay G, Ramphal JY, d’Alarcao M, Kumar K.Total synthesis of trifluorobutyryl-modified, protected sialyl Lewis X by a convergent [2+2] approach. Tetrahedron Lett. 2015;56:109–14. [DOI]
Pazynina GV, Sablina MA, Tuzikov AB, Chinarev AA, Bovin NV.Synthesis of complex α2-3 sialooligosaccharides, including sulfated and fucosylated ones, using Neu5Acα2-3Gal as a building block. Mendeleev Commun. 2003;13:245–8. [DOI]
Esposito D, Hurevich M, Castagner B, Wang CC, Seeberger PH.Automated synthesis of sialylated oligosaccharides. Beilstein J Org Chem. 2012;8:1601–9. [DOI] [PubMed] [PMC]
Kröck L, Esposito D, Castagner B, Wang CC, Bindschädler P, Seeberger PH.Streamlined access to conjugation-ready glycans by automated synthesis. Chem Sci. 2012;3:1617–22. [DOI]
Palcic MM, Venot AP, Ratcliffe RM, Hindsgaul O.Enzymic synthesis of oligosaccharides terminating in the tumor-associated sialyl-Lewis-a determinant. Carbohydr Res. 1989;190:1–11. [DOI] [PubMed]
de Vries T, van den Eijnden DH, Schultz J, O’Neill R.Efficient enzymatic synthesis of the sialyl-LewisX tetrasaccharide. A ligand for selectin-type adhesion molecules. FEBS Lett. 1993;330:243–8. [DOI] [PubMed]
Dumas DP, Ichikawa Y, Wong CH, Lowe JB, Nair RP.Enzymatic synthesis of sialyl Lex and derivatives based on a recombinant fucosyltransferase. Bioorg Med Chem Lett. 1991;1:425–8. [DOI]
Kondo H, Ichikawa Y, Wong CH.β-Sialyl phosphite and phosphoramidite: synthesis and application to the chemoenzymic synthesis of CMP-sialic acid and sialyl oligosaccharides. J Am Chem Soc. 1992;114:8748–50. [DOI]
Ball GE, O’neill RA, Schultz JE, Lowe JB, Weston BW, Nagy JO, et al. Synthesis and structural analysis using 2-D NMR of sialyl Lewis X (SLex) and Lewis X (Lex) oligosaccharides: ligands related to E-selectin [ELAM-1] binding. J Am Chem Soc. 1992;114:5449–51. [DOI]
Nikrad PV, Kashem MA, Wlasichuk KB, Alton G, Venot AP.Use of human-milk fucosyl-transferase in the chemoenzymic synthesis of analogs of the sialyl Lewis(X) and sialyl Lewis(a) tetrasaccharides modified at the C-2 position of the reducing unit. Carbohydr Res. 1993;250:145–60. [DOI] [PubMed]
Ichikawa Y, Lin YC, Dumas DP, Shen GJ, Garcia-junceda E, Williams MA, et al. Chemical-enzymatic synthesis and conformational-analysis of sialyl Lewis-x and derivatives. J Am Chem Soc. 1992;114:9283–98. [DOI]
Seitz O, Wong CH.Chemoenzymatic Solution- and Solid-Phase Synthesis of O-Glycopeptides of the Mucin Domain of MAdCAM-1. A General Route to O-LacNAc, O-Sialyl-LacNAc, and O-Sialyl-Lewis-X Peptides. J Am Chem Soc. 1997;119:8766–76. [DOI]
Blixt O, Norberg T.Solid-phase enzymatic synthesis of a sialyl Lewis x tetrasaccharide on a sepharose matrix. J Org Chem. 1998;63:2705–10. [DOI] [PubMed]
Hayashi M, Tanaka M, Itoh M, Miyauchi H.A convenient and efficient synthesis of SLeX analogs. J Org Chem. 1996;61:2938–45. [DOI] [PubMed]
Sugiarto G, Lau K, Yu H, Vuong S, Thon V, Li YH, et al. Cloning and characterization of a viral α2–3-sialyltransferase (vST3Gal-I) for the synthesis of sialyl Lewisx. Glycobiology. 2011;21:387–96. [DOI] [PubMed] [PMC]
Tasnima N, Yu H, Yan XB, Li WQ, Xiao A, Chen X.Facile chemoenzymatic synthesis of Lewis a (Lea) antigen in gram-scale and sialyl Lewis a (sLea) antigens containing diverse sialic acid forms. Carbohydr Res. 2019;472:115–21. [DOI] [PubMed] [PMC]
Cao HZ, Huang SS, Cheng JS, Li YH, Muthana S, Son B, et al. Chemical preparation of sialyl Lewis x using an enzymatically synthesized sialoside building block. Carbohydr Res. 2008;343:2863–9. [DOI] [PubMed] [PMC]
Tissot B, North SJ, Ceroni A, Pang PC, Panico M, Rosati F, et al. Glycoproteomics: past, present and future. FEBS Lett. 2009;583:1728–35. [DOI] [PubMed] [PMC]
Taylor ME, Drickamer K.Introduction to glycobiology. 3th ed. New York: Oxford University Press; 2011.
Plummer TH, Elder JH, Alexander S, Phelan AW, Tarentino AL.Demonstration of peptide:N-glycosidase F activity in endo-β-nacetyigiucosaminidase F preparations*. J Biol Chem. 1984;259:10700–4. [DOI] [PubMed]
Yang S, Zhang H.Glycomic analysis of glycans released from glycoproteins using chemical immobilization and mass spectrometry. Curr Protoc Chem Biol. 2014;6:191–208. [DOI] [PubMed] [PMC]
Ciucanu I, Kerek F.A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res. 1984;131:209–17. [DOI]
Zhou S, Wooding KM, Mechref Y.Analysis of permethylated glycan by liquid chromatography (LC) and mass spectrometry (MS). In: In: Lauc G, Wuhrer M, editors. High-throughput glycomics and glycoproteomics: methods and protocols. NY: Springer New York; 2017. pp. 83–96. [DOI] [PubMed] [PMC]
North SJ, Jang-Lee J, Harrison R, Canis K, Ismail MN, Trollope A, et al. Chapter two - Mass spectrometric analysis of mutant mice. Methods Enzymol. 2010;478:27–77. [DOI] [PubMed]
Chen Q, Zhang Y, Zhang K, Liu J, Pan H, Wang X, et al. Profiling the bisecting N-acetylglucosamine modification in amniotic membrane via mass spectrometry. Genomics Proteomics Bioinformatics. 2022;20:648–56. [DOI] [PubMed] [PMC]
Zhou X, Yang G, Guan F.Biological functions and analytical strategies of sialic acids in tumor. Cells. 2020;9:273. [DOI] [PubMed] [PMC]
Chen X, Varki A.Advances in the biology and chemistry of sialic acids. ACS Chem Biol. 2010;5:163–76. [DOI] [PubMed] [PMC]
Schauer R, Kamerling JP.Chapter one - Exploration of the sialic acid world. Adv Carbohydr Chem Biochem. 2018;75:1–213. [DOI] [PubMed] [PMC]
Nishikaze T.Sialic acid derivatization for glycan analysis by mass spectrometry. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95:523–37. [DOI] [PubMed] [PMC]
Cheeseman J, Kuhnle G, Spencer DIR, Osborn HMI.Assays for the identification and quantification of sialic acids: challenges, opportunities and future perspectives. Bioorg Med Chem. 2021;30:115882. [DOI] [PubMed]
Cohen M, Varki A.The sialome--far more than the sum of its parts. OMICS. 2010;14:455–64. [DOI] [PubMed]
Matrosovich M, Herrler G, Klenk HD.Sialic acid receptors of viruses. Top Curr Chem. 2015;367:1–28. [DOI] [PubMed] [PMC]
Juge N, Tailford L, Owen CD.Sialidases from gut bacteria: a mini-review. Biochem Soc Trans. 2016;44:166–75. [DOI] [PubMed] [PMC]
Corfield AP, Higa H, Paulson JC, Schauer R.The specificity of viral and bacterial sialidases for α(2–3)- and α(2–6)-linked sialic acids in glycoproteins. Biochim Biophys Acta. 1983;744:121–6. [DOI] [PubMed]
Ohta Y, Tsukada Y, Sugimori T.Purification and properties of neuraminidase isozymes in Arthrobacter ureafaciens mutant. J Biochem. 1989;106:1086–9. [DOI] [PubMed]
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB.Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem Rev. 2018;118:7886–930. [DOI] [PubMed] [PMC]
Delafield DG, Li L.Recent advances in analytical approaches for glycan and glycopeptide quantitation. Mol Cell Proteomics. 2021;20:10054. [DOI] [PubMed] [PMC]
Nishikaze T, Tsumoto H, Sekiya S, Iwamoto S, Miura Y, Tanaka K.Differentiation of sialyl linkage isomers by one-pot sialic acid derivatization for mass spectrometry-based glycan profiling. Anal Chem. 2017;89:2353–60. [DOI] [PubMed]
Suzuki N, Abe T, Natsuka S.Quantitative LC-MS and MS/MS analysis of sialylated glycans modified by linkage-specific alkylamidation. Anal Biochem. 2019;567:117–27. [DOI] [PubMed]
Zhou XX, Yang S, Yang GL, Tan ZQ, Guan F.Two-step derivatization and mass spectral distinction of α2,3 and α2,6 sialic acid linkages on N-glycans by MALDI-TOF. Chin Chem Lett. 2019;30:676–80. [DOI]
de Haan N, Yang S, Cipollo J, Wuhrer M.Glycomics studies using sialic acid derivatization and mass spectrometry. Nat Rev Chem. 2020;4:229–42. [DOI]
Tao S, Huang Y, Boyes BE, Orlando R.Liquid chromatography-selected reaction monitoring (LC-SRM) approach for the separation and quantitation of sialylated N-glycans linkage isomers. Anal Chem. 2014;86:10584–90. [DOI] [PubMed] [PMC]
Huang Y, Nie Y, Boyes B, Orlando R.Resolving isomeric glycopeptide glycoforms with hydrophilic interaction chromatography (HILIC). J Biomol Tech. 2016;27:98–104. [DOI] [PubMed] [PMC]
van der Burgt YEM, Siliakus KM, Cobbaert CM, Ruhaak LR.HILIC-MRM-MS for linkage-specific separation of sialylated glycopeptides to quantify prostate-specific antigen proteoforms. J Proteome Res. 2020;19:2708–16. [DOI] [PubMed] [PMC]
Yang S, Wu WW, Shen RF, Bern M, Cipollo J.Identification of sialic acid linkages on intact glycopeptides via differential chemical modification using intactGIG-HILIC. J Am Soc Mass Spectrom. 2018;29:1273–83. [DOI] [PubMed] [PMC]
Manz C, Mancera-Arteu M, Zappe A, Hanozin E, Polewski L, Gimenez E, et al. Determination of sialic acid isomers from released N-glycans using ion mobility spectrometry. Anal Chem. 2022;94:13323–31. [DOI] [PubMed] [PMC]
Dodds JN, Baker ES.Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J Am Soc Mass Spectrom. 2019;30:2185–95. [DOI] [PubMed] [PMC]
Guttman M, Lee KK.Site–specific mapping of sialic acid linkage isomers by ion mobility spectrometry. Anal Chem. 2016;88:5212–7. [DOI] [PubMed] [PMC]
Haab BB, Klamer Z.Advances in tools to determine the glycan-binding specificities of lectins and antibodies*. Mol Cell Proteomics. 2020;19:224–32. [DOI] [PubMed] [PMC]
Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ.The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac (α2-6)Gal/GalNAc sequence*. J Biol Chem. 1987;262:1596–601. [DOI] [PubMed]
Dugan AS, Gasparovic ML, Atwood WJ.Direct correlation between sialic acid binding and infection of cells by two human polyomaviruses (JC virus and BK virus). J Virol. 2008;82:2560–4. [DOI] [PubMed] [PMC]
Knibbs RN, Goldstein IJ, Ratcliffe RM, Shibuya N.Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid–specific lectins*. J Biol Chem. 1991;266:83–8. [DOI] [PubMed]
Schneider M, Al-Shareffi E, Haltiwanger RS.Biological functions of fucose in mammals. Glycobiology. 2017;27:601–18. [DOI] [PubMed] [PMC]
Becker DJ, Lowe JB.Fucose: biosynthesis and biological function in mammals. Glycobiology. 2003;13:41R–53R. [DOI] [PubMed]
Garber JM, Hennet T, Szymanski CM.Significance of fucose in intestinal health and disease. Mol Microbiol. 2021;115:1086–93. [DOI] [PubMed]
Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth CW, Seeberger PH.Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by statistical databank analysis. ACS Chem Biol. 2007;2:685–91. [DOI] [PubMed]
Sahadevan S, Antonopoulos A, Haslam SM, Dell A, Ramaswamy S, Babu P.Unique, polyfucosylated glycan-receptor interactions are essential for regeneration of Hydra magnipapillata. ACS Chem Biol. 2014;9:147–55. [DOI] [PubMed]
Lai K, Elsas LJ, Wierenga KJ.Galactose toxicity in animals. IUBMB Life. 2009;61:1063–74. [DOI] [PubMed] [PMC]
Acosta PB, Gross KC.Hidden sources of galactose in the environment. Eur J Pediatr. 1995;154:S87–92. [DOI] [PubMed]
Iskandar CF, Cailliez-Grimal C, Borges F, Revol-Junelles AM.Review of lactose and galactose metabolism in lactic acid bacteria dedicated to expert genomic annotation. Trends Food Sci Technol. 2019;88:121–32. [DOI]
Conte F, van Buuringen N, Voermans NC, Lefeber DJ.Galactose in human metabolism, glycosylation and congenital metabolic diseases: time for a closer look. Biochim Biophys Acta Gen Subj. 2021;1865:129898. [DOI] [PubMed]
Chuang PK, Hsiao M, Hsu TL, Chang CF, Wu CY, Chen BR, et al. Signaling pathway of globo-series glycosphingolipids and β1,3-galactosyltransferase V (β3GalT5) in breast cancer. Proc Natl Acad Sci U S A. 2019;116:3518–23. [DOI] [PubMed] [PMC]
Choo M, Tan HL, Ding V, Castangia R, Belgacem O, Liau B, et al. Characterization of H type 1 and type 1 N-acetyllactosamine glycan epitopes on ovarian cancer specifically recognized by the anti-glycan monoclonal antibody mAb-A4. J Biol Chem. 2017;292:6163–76. [DOI] [PubMed] [PMC]
Phang RP, Lin CH.Synthesis of type-I and type-II LacNAc-repeating oligosaccharides as the backbones of tumor-associated Lewis antigens. Front Immunol. 2022;13:858894. [DOI] [PubMed] [PMC]
Dell A, Reason AJ, Khoo KH, Panico M, McDowell RA, Morris HR.[8] Mass spectrometry of carbohydrate-containing biopolymers. In: Guide to techniques in glycobiology. Academic Press; 1994. pp. 108–32. [DOI] [PubMed]
Lee J, Yeo I, Kim Y, Shin D, Kim J, Kim Y, et al. Comparison of fucose-specific lectins to improve quantitative AFP-L3 assay for diagnosing hepatocellular carcinoma using mass spectrometry. J Proteome Res. 2022;21:1548–57. [DOI] [PubMed]
Yan L, Wilkins PP, Alvarez-Manilla G, Do SI, Smith DF, Cummings RD.Immobilized Lotus tetragonolobus agglutinin binds oligosaccharides containing the Lex determinant. Glycoconj J. 1997;14:45–55. [DOI] [PubMed]
Yu Y, Mishra S, Song X, Lasanajak Y, Bradley KC, Tappert MM, et al. Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers*. J Biol Chem. 2012;287:44784–99. [DOI] [PubMed] [PMC]
Lis-Kuberka J, Katnik-Prastowska I, Berghausen-Mazur M, Orczyk-Pawilowicz M.Lectin-based analysis of fucosylated glycoproteins of human skim milk during 47 days of lactation. Glycoconj J. 2015;32:665–74. [DOI] [PubMed] [PMC]