Sebastian J, Rathinasamy K. Microtubules and Cell Division: Potential Pharmacological Targets in Cancer Therapy.Curr Drug Targets. 2023;24:889–918. [DOI] [PubMed]
Matthew S, Chen QY, Ratnayake R, Fermaintt CS, Lucena-Agell D, Bonato F, et al. Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site.Proc Natl Acad Sci USA. 2021;118:e2021847118. [DOI] [PubMed] [PMC]
Nurullah M, Usmani Z, Ahmad S, Panda BP, Amin S, Mir SR. Purification and characterization of Taxol and 10-Deacetyl baccatin III from the bark, needles, and endophytes of Taxus baccata by preparative high-performance liquid chromatography, ultra-high-performance liquid chromatography-mass spectrometry, and nuclear magnetic resonance.J Sep Sci. 2023;46:e2200841. [DOI] [PubMed]
Zhang D, Kanakkanthara A. Beyond the Paclitaxel and Vinca Alkaloids: Next Generation of Plant-Derived Microtubule-Targeting Agents with Potential Anticancer Activity.Cancers (Basel). 2020;12:1721. [DOI] [PubMed] [PMC]
Hawash M. Recent Advances of Tubulin Inhibitors Targeting the Colchicine Binding Site for Cancer Therapy.Biomolecules. 2022;12:1843. [DOI] [PubMed] [PMC]
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming.Drug Resist Updat. 2021;54:100742. [DOI] [PubMed]
Olatunde OZ, Yong J, Lu C. The Progress of the Anticancer Agents Related to the Microtubules Target.Mini Rev Med Chem. 2020;20:2165–92. [DOI] [PubMed]
Monti L, Liu LJ, Varricchio C, Lucero B, Alle T, Yang W, et al. Structure-Activity Relationships, Tolerability and Efficacy of Microtubule-Active 1,2,4-Triazolo[1,5- a]pyrimidines as Potential Candidates to Treat Human African Trypanosomiasis**.ChemMedChem. 2023;18:e202300193. [DOI] [PubMed]
Monti L, Wang SC, Oukoloff K, Smith AB 3rd, Brunden KR, Caffrey CR, et al. Brain-Penetrant Triazolopyrimidine and Phenylpyrimidine Microtubule Stabilizers as Potential Leads to Treat Human African Trypanosomiasis.ChemMedChem. 2018;13:1751–4. [DOI] [PubMed] [PMC]
Lafanechère L. The microtubule cytoskeleton: An old validated target for novel therapeutic drugs.Front Pharmacol. 2022;13:969183. [DOI] [PubMed] [PMC]
Kaur P, Khera A, Alajangi HK, Sharma A, Jaiswal PK, Singh G, et al. Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders.Mol Neurobiol. 2023;60:1690–720. [DOI] [PubMed]
Cui YJ, Zhou Y, Zhang XW, Dou BK, Ma CC, Zhang J. The discovery of water-soluble indazole derivatives as potent microtubule polymerization inhibitors.Eur J Med Chem. 2023;262:115870. [DOI] [PubMed]
Dong H, Lu L, Song X, Li Y, Zhou J, Xu Y, et al. Design, synthesis and biological evaluation of tetrahydroquinoxaline sulfonamide derivatives as colchicine binding site inhibitors.RSC Adv. 2023;13:30202–16. [DOI] [PubMed] [PMC]
Li S, Mori M, Yang M, Elfazazi S, Hortigüela R, Chan P, et al. Targeting the tubulin C-terminal tail by charged small molecules.Org Biomol Chem. 2022;21:153–62. [DOI] [PubMed]
Hsieh YY, Du JL, Yang PM. Repositioning VU-0365114 as a novel microtubule-destabilizing agent for treating cancer and overcoming drug resistance.Mol Oncol. 2023;18:386–414. [DOI] [PubMed] [PMC]
Montecinos F, Sackett DL. Structural Changes, Biological Consequences, and Repurposing of Colchicine Site Ligands.Biomolecules. 2023;13:834. [DOI] [PubMed] [PMC]
Menchon G, Prota AE, Lucena-Agell D, Bucher P, Jansen R, Irschik H, et al. A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin.Nat Commun. 2018;9:2106. [DOI] [PubMed] [PMC]
de la Roche NM, Mühlethaler T, Di Martino RMC, Ortega JA, Gioia D, Roy B, et al. Novel fragment-derived colchicine-site binders as microtubule-destabilizing agents.Eur J Med Chem. 2022;241:114614. [DOI] [PubMed]
Sahu SK, Ojha KK. Applications of QSAR study in drug design of tubulin binding inhibitors.J Biomol Struct Dyn. 2023:1–16. [DOI] [PubMed]
Athar M, Lone MY, Khedkar VM, Radadiya A, Shah A, Jha PC. Structural Investigation of Vinca Domain Tubulin Binders by Pharmacophore, Atom based QSAR, Docking and Molecular Dynamics Simulations.Comb Chem High Throughput Screen. 2017;20:682–95. [DOI] [PubMed]
Horgan MJ, Zell L, Siewert B, Stuppner H, Schuster D, Temml V. Identification of Novel β-Tubulin Inhibitors Using a Combined In Silico/In Vitro Approach.J Chem Inf Model. 2023;63:6396–411. [DOI] [PubMed] [PMC]
Mangiatordi GF, Trisciuzzi D, Alberga D, Denora N, Iacobazzi RM, Gadaleta D, et al. Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein.Eur J Med Chem. 2017;139:792–803. [DOI] [PubMed]
Gallego-Yerga L, Ochoa R, Lans I, Peña-Varas C, Alegría-Arcos M, Cossio P, et al. Application of ensemble pharmacophore-based virtual screening to the discovery of novel antimitotic tubulin inhibitors.Comput Struct Biotechnol J. 2021;19:4360–72. [DOI] [PubMed] [PMC]
Vergoten G, Bailly C. Molecular Docking of Cryptoconcatones to α-Tubulin and Related Pironetin Analogues.Plants (Basel). 2023;12:296. [DOI] [PubMed] [PMC]
Liu CJ, Fan XD, Jiang JG, Chen QX, Zhu W. Potential anticancer activities of securinine and its molecular targets.Phytomedicine. 2022;106:154417. [DOI] [PubMed]
Ashraf SM, Mahanty S, Rathinasamy K. Securinine induces mitotic block in cancer cells by binding to tubulin and inhibiting microtubule assembly: A possible mechanistic basis for its anticancer activity.Life Sci. 2021;287:120105. [DOI] [PubMed]
Chirkin E, Atkatlian W, Porée FH. Chapter One - The Securinega alkaloids.Alkaloids Chem Biol. 2015;74:1–120. [DOI] [PubMed]
Yang X, Liu J, Huo Z, Yuwen H, Li Y, Zhang Y. Fluevirines E and F, two new alkaloids from Flueggea virosa.Nat Prod Res. 2020;34:2001–6. [DOI] [PubMed]
Li XH, Cao MM, Zhang Y, Li SL, Di YT, Hao XJ. Fluevirines A–D, four new securinega-type alkaloids from Flueggea virosa.Tetrahedron Lett. 2014;55:6101–4. [DOI]
Gan LS, Fan CQ, Yang SP, Wu Y, Lin LP, Ding J, et al. Flueggenines A and B, two novel C,C-linked dimeric indolizidine alkaloids from Flueggea virosa.Org Lett. 2006;8:2285–8. [DOI] [PubMed]
Zhang H, Zhu KK, Han YS, Luo C, Wainberg MA, Yue JM. Flueggether A and Virosinine A, Anti-HIV Alkaloids from Flueggea virosa.Org Lett. 2015;17:6274–7. [DOI] [PubMed]
Zhang H, Wei W, Yue JM. From monomer to tetramer and beyond: the intriguing chemistry of Securinega alkaloids from Flueggea virosa.Tetrahedron. 2013;69:3942–6. [DOI]
Zhang H, Zhang CR, Han YS, Wainberg MA, Yue JM. New Securinega alkaloids with anti-HIV activity from Flueggea virosa.RSC Adv. 2015;5:107045–53. [DOI]
Nettles JH, Li H, Cornett B, Krahn JM, Snyder JP, Downing KH. The binding mode of epothilone A on α,β-tubulin by electron crystallography.Science. 2004;305:866–9. [DOI] [PubMed]
Yang J, Wang Y, Wang T, Jiang J, Botting CH, Liu H, et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule.Nat Commun. 2016;7:12103. [DOI] [PubMed] [PMC]
Jorgensen WL, Tirado-Rives J. Molecular modeling of organic and biomolecular systemsusing BOSS and MCPRO.J Comput Chem. 2005;26:1689–700. [DOI] [PubMed]
Huang B, Schroeder M. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation.BMC Struct Biol. 2006;6:19. [DOI] [PubMed] [PMC]
Zhao J, Cao Y, Zhang L. Exploring the computational methods for protein-ligand binding site prediction.Comput Struct Biotechnol J. 2020;18:417–26. [DOI] [PubMed] [PMC]
Prymula K, Jadczyk T, Roterman I. Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction.J Comput Aided Mol Des. 2011;25:117–33. [DOI] [PubMed] [PMC]
Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins.Nucleic Acids Res. 2018;46:W363–7. [DOI] [PubMed] [PMC]
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking.J Mol Biol. 1997;267:727–48. [DOI] [PubMed]
Meziane-Tani M, Lagant P, Semmoud A, Vergoten G. The SPASIBA force field for chondroitin sulfate: vibrational analysis of d-glucuronic and N-acetyl-d-galactosamine 4-sulfate sodium salts.J Phys Chem A. 2006;110:11359–70. [DOI] [PubMed]
Vergoten G, Mazur I, Lagant P, Michalski JC, Zanetta JP. The SPASIBA force field as an essential tool for studying the structure and dynamics of saccharides.Biochimie. 2003;85:65–73. [DOI] [PubMed]
Lagant P, Nolde D, Stote R, Vergoten G, Karplus M. Increasing normal modes analysis accuracy: the SPASIBA spectroscopic force field introduced into the CHARMM program.J Phys Chem A. 2004;108:4019–29. [DOI]
Homans SW. A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man.alpha.1-3Man.beta.1-4GlcNAc.Biochemistry. 1990;29:9110–8. [DOI] [PubMed]
Jorgensen WL, Tirado-Rives J. Monte Carlo vs Molecular Dynamics for Conformational Sampling.J Phys Chem. 1996;100:14508–13. [DOI]
Jorgensen WL, Ulmschneider JP, Tirado-Rives J. Free Energies of Hydration from a Generalized Born Model and an All-Atom Force Field.J Phys Chem B. 2004;108:16264–70. [DOI]
Pérez-Peña H, Abel AC, Shevelev M, Prota AE, Pieraccini S, Horvath D. Computational Approaches to the Rational Design of Tubulin-Targeting Agents.Biomolecules. 2023;13:285. [DOI] [PubMed] [PMC]
Zhao BX, Wang Y, Zhang DM, Jiang RW, Wang GC, Shi JM, et al. Flueggines A and B, two new dimeric indolizidine alkaloids from Flueggea virosa.Org Lett. 2011;13:3888–91. [DOI] [PubMed]
Field JJ, Pera B, Gallego JE, Calvo E, Rodríguez-Salarichs J, Sáez-Calvo G, et al. Zampanolide Binding to Tubulin Indicates Cross-Talk of Taxane Site with Colchicine and Nucleotide Sites.J Nat Prod. 2018;81:494–505. [DOI] [PubMed]
Naaz F, Haider MR, Shafi S, Yar MS. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains.Eur J Med Chem. 2019;171:310–31. [DOI] [PubMed]
Xie S, Zhou J. Harnessing Plant Biodiversity for the Discovery of Novel Anticancer Drugs Targeting Microtubules.Front Plant Sci. 2017;8:720. [DOI] [PubMed] [PMC]
Zhou J, Pang Y, Zhang W, OuYang F, Lin H, Li X, et al. Discovery of a Novel Stilbene Derivative as a Microtubule Targeting Agent Capable of Inducing Cell Ferroptosis.J Med Chem. 2022;65:4687–708. [DOI] [PubMed]
Liu K, Mo M, Yu G, Yu J, Song SM, Cheng S, et al. Discovery of novel 2-(trifluoromethyl)quinolin-4-amine derivatives as potent antitumor agents with microtubule polymerization inhibitory activity.Bioorg Chem. 2023;139:106727. [DOI] [PubMed]
Chen G, Jiang Z, Zhang Q, Wang G, Chen QH. New Zampanolide Mimics: Design, Synthesis, and Antiproliferative Evaluation.Molecules. 2020;25:362. [DOI] [PubMed] [PMC]
Fang S, Bi S, Li Y, Tian S, Xu H, Fu L, et al. Design, synthesis and anti-tumor evaluation of plinabulin derivatives as potential agents targeting β-tubulin.Bioorg Med Chem Lett. 2023;91:129370. [DOI] [PubMed]
Joerger M, Hundsberger T, Haefliger S, von Moos R, Hottinger AF, Kaindl T, et al. Safety and anti-tumor activity of lisavanbulin administered as 48-hour infusion in patients with ovarian cancer or recurrent glioblastoma: a phase 2a study.Invest New Drugs. 2023;41:267–75. [DOI] [PubMed] [PMC]
Charest A. Optimizing an effective combination of the new microtubule-targeting agent lisavanbulin with standard-of-care therapy for glioblastoma in patient-derived xenograft preclinical models.Neuro Oncol. 2022;24:396–7. [DOI] [PubMed] [PMC]
Burgenske DM, Talele S, Pokorny JL, Mladek AC, Bakken KK, Carlson BL, et al. Preclinical modeling in glioblastoma patient-derived xenograft (GBM PDX) xenografts to guide clinical development of lisavanbulin—a novel tumor checkpoint controller targeting microtubules.Neuro Oncol. 2022;24:384–95. [DOI] [PubMed] [PMC]
Prota AE, Danel F, Bachmann F, Bargsten K, Buey RM, Pohlmann J, et al. The Novel Microtubule-Destabilizing Drug BAL27862 Binds to the Colchicine Site of Tubulin with Distinct Effects on Microtubule Organization.J Mol Biol. 2014;426:1848–60. [DOI] [PubMed]
Yang H, Zhang T, Chen C, Chiang C, Chen K, Wu Y, et al. Laxiflorin B covalently binds the tubulin colchicine-binding site to inhibit triple negative breast cancer proliferation and induce apoptosis.Chem Biol Interact. 2023;383:110681. [DOI] [PubMed]
Hussein SAA, Kubba A, Balakit AA, Tahtamouni LH, Abbas AH. Design, Synthesis, in silico and in vitro Evaluation of New Combretastatin A-4 Analogs as Antimitotic Antitumor Agents.Med Chem. 2023;19:1018–36. [DOI] [PubMed]
Zhang S, Mo M, Lv M, Xia W, Liu K, Yu G, et al. Design, synthesis and bioevaluation of novel trifluoromethylquinoline derivatives as tubulin polymerization inhibitors.Future Med Chem. 2023;15:1967–86. [DOI] [PubMed]
Tan Y, Hu H, Zhu W, Wang T, Gao T, Wang H, et al. Design, synthesis and biological evaluation of novel dihydroquinolin-4(1H)-one derivatives as novel tubulin polymerization inhibitors.Eur J Med Chem. 2023;262:115881. [DOI] [PubMed]
Li DD, Qin YJ, Zhang X, Yin Y, Zhu HL, Zhao LG. Combined Molecular Docking, 3D-QSAR, and Pharmacophore Model: Design of Novel Tubulin Polymerization Inhibitors by Binding to Colchicine-binding Site.Chem Biol Drug Des. 2015;86:731–45. [DOI] [PubMed]
Gawali R, Bhosale R, Nagesh N, Masand VH, Jadhav S, Zaki MEA, et al. Design, synthesis, docking studies and biological screening of 2-pyrimidinyl-2, 3-dihydro-1H-naphtho [1, 2-e][1, 3] oxazines as potent tubulin polymerization inhibitors.J Biomol Struct Dyn. 2023:1–18. [DOI] [PubMed]
Das A, Sarangi M, Jangid K, Kumar V, Kumar A, Singh PP, et al. Identification of 1,3,4-oxadiazoles as tubulin-targeted anticancer agents: a combined field-based 3D-QSAR, pharmacophore model-based virtual screening, molecular docking, molecular dynamics simulation, and density functional theory calculation approach.J Biomol Struct Dyn. 2023:1–19. [DOI] [PubMed]
Zhang H, Luo QQ, Hu ML, Wang N, Qi HZ, Zhang HR, et al. Discovery of potent microtubule-destabilizing agents targeting for colchicine site by virtual screening, biological evaluation, and molecular dynamics simulation.Eur J Pharm Sci. 2023;180:106340. [DOI] [PubMed]
Hawash M, Ergun SG, Kahraman DC, Olgac A, Hamel E, Cetin-Atalay R, et al. Novel indole-pyrazole hybrids as potential tubulin-targeting agents; Synthesis, antiproliferative evaluation, and molecular modeling studies.J Mol Struct. 2023;1285:135477. [DOI] [PubMed]
Saruengkhanphasit R, Butkinaree C, Ornnork N, Lirdprapamongkol K, Niwetmarin W, Svasti J, et al. Identification of new 3-phenyl-1H-indole-2-carbohydrazide derivatives and their structure–activity relationships as potent tubulin inhibitors and anticancer agents: A combined in silico, in vitro and synthetic study.Bioorg Chem. 2021;110:104795. [DOI] [PubMed]
Hong Y, Zhu YY, He Q, Gu SX. Indole derivatives as tubulin polymerization inhibitors for the development of promising anticancer agents.Bioorg Med Chem. 2021;55:116597. [DOI] [PubMed]
Song J, Guan YF, Liu WB, Song CH, Tian XY, Zhu T, et al. Discovery of novel coumarin-indole derivatives as tubulin polymerization inhibitors with potent anti-gastric cancer activities.Eur J Med Chem. 2022;238:114467. [DOI] [PubMed]
Yao Y, Huang T, Wang Y, Wang L, Feng S, Cheng W, et al. Angiogenesis and anti-leukaemia activity of novel indole derivatives as potent colchicine binding site inhibitors.J Enzyme Inhib Med Chem. 2022;37:652–65. [DOI] [PubMed] [PMC]
Hurysz B, Evans BA, Laryea RN, Boyer BE, Coburn TE, Dexter MS, et al. Synthesis, modeling, and biological evaluation of anti-tubulin indole-substituted furanones.Bioorg Med Chem Lett. 2023;90:129347. [DOI] [PubMed]
Naaz F, Neha K, Haider MR, Shafi S. Indole derivatives (2010–2020) as versatile tubulin inhibitors: synthesis and structure–activity relationships.Future Med Chem. 2021;13:1795–828. [DOI] [PubMed]
Zhang X, Zhang O, Shen C, Qu W, Chen S, Cao H, et al. Efficient and accurate large library ligand docking with KarmaDock.Nat Comput Sci. 2023;3:789–804. [DOI] [PubMed]
Röhrig UF, Goullieux M, Bugnon M, Zoete V. Attracting Cavities 2.0: Improving the Flexibility and Robustness for Small-Molecule Docking.J Chem Inf Model. 2023;63:3925–40. [DOI] [PubMed]
Prota AE, Setter J, Waight AB, Bargsten K, Murga J, Diaz JF, et al. Pironetin Binds Covalently to αCys316 and Perturbs a Major Loop and Helix of α-Tubulin to Inhibit Microtubule Formation.J Mol Biol. 2016;428:2981–8. [DOI] [PubMed]
Alpízar-Pedraza D, Veulens AN, Ginarte YMÁ, Piloto-Ferrer J, Sánchez-Lamar Á. Xanthatin and 8-epi-xanthatin as new potential colchicine binding site inhibitors: a computational study.J Mol Model. 2023;29:36. [DOI] [PubMed]
Zhang J, Zhao R, Jin L, Pan L, Lei D. Xanthanolides in Xanthium L.: Structures, Synthesis and Bioactivity.Molecules. 2022;27:8136. [DOI] [PubMed] [PMC]
Jeon S, Han S. An Accelerated Intermolecular Rauhut–Currier Reaction Enables the Total Synthesis of (–)-Flueggenine C.J Am Chem Soc. 2017;139:6302–5. [DOI] [PubMed]
Jeon S, Lee J, Park S, Han S. Total synthesis of dimeric Securinega alkaloids (–)-flueggenines D and I.Chem Sci. 2020;11:10934–8. [DOI] [PubMed] [PMC]
Kang G, Park S, Han S. Synthesis of High-Order and High-Oxidation State Securinega Alkaloids.Acc Chem Res. 2023;56:140–56. [DOI] [PubMed]