Partition coefficients (logP) values for lysine (Lys) and acetyllysine [(Ac)Lys] using the capping groups of the Model 1 and change in lipophilicity due to acetylation (ΔlogPAc) of lysine residues
The authors thank the Spanish Ministerio de Ciencia e Innovación [PID2020-117646RB-I00, MCIN/AEI/10.13039/501100011033], Generalitat de Catalunya [2021SGR00671], and Consorci de Serveis Universitaris de Catalunya [CSUC; Molecular Recognition project] for financial support. The authors thank the Vice Chancellor for Research of the University of Costa Rica for its support work via the research project [115-C1-450]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
von Heijne G. Protein Evolution and Design.Annu Rev Biochem. 2018;87:101–3. [DOI] [PubMed]
Doig AJ. Frozen, but no accident - why the 20 standard amino acids were selected.FEBS J. 2017;284:1296–305. [DOI] [PubMed]
Chin JW. Expanding and reprogramming the genetic code.Nature. 2017;550:53–60. [DOI] [PubMed]
Efremov RG, Chugunov AO, Pyrkov TV, Priestle JP, Arseniev AS, Jacoby E. Molecular lipophilicity in protein modeling and drug design.Curr Med Chem. 2007;14:393–415. [DOI] [PubMed]
Tang S, Li J, Huang G, Yan L. Predicting Protein Surface Property with its Surface Hydrophobicity.Protein Pept Lett. 2021;28:938–44. [DOI] [PubMed]
Weinstein JY, Elazar A, Fleishman SJ. A lipophilicity-based energy function for membrane-protein modelling and design.PLoS Comput Biol. 2019;15:e1007318. [DOI] [PubMed] [PMC]
Simm S, Einloft J, Mirus O, Schleiff E. 50 years of amino acid hydrophobicity scales: revisiting the capacity for peptide classification.Biol Res. 2016;49:31. [DOI] [PubMed] [PMC]
Peters C, Elofsson A. Why is the biological hydrophobicity scale more accurate than earlier experimental hydrophobicity scales?Proteins. 2014;82:2190–8. [DOI] [PubMed]
MacCallum JL, Tieleman DP. Hydrophobicity scales: a thermodynamic looking glass into lipid-protein interactions.Trends Biochem Sci. 2011;36:653–62. [DOI] [PubMed]
Zamora WJ, Campanera JM, Luque FJ. Development of a Structure-Based, pH-Dependent Lipophilicity Scale of Amino Acids from Continuum Solvation Calculations.J Phys Chem Lett. 2019;10:883–9. [DOI] [PubMed]
Dunbrack RL Jr, Karplus M. Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains.Nat Struct Biol. 1994;1:334–40. [DOI] [PubMed]
Castro TG, Melle-Franco M, Sousa CEA, Cavaco-Paulo A, Marcos JC. Non-Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure, Function, and Applications.Biomolecules. 2023;13:981. [DOI] [PubMed] [PMC]
Ochoa R, Fox T. Assessing the fast prediction of peptide conformers and the impact of non-natural modifications.J Mol Graph Model. 2023;125:108608. [DOI] [PubMed]
Jin X, Park OJ, Hong SH. Incorporation of non-standard amino acids into proteins: challenges, recent achievements, and emerging applications.Appl Microbiol Biotechnol. 2019;103:2947–58. [DOI] [PubMed] [PMC]
López-López E, Robles O, Plisson F, Medina-Franco JL. Mapping the structure–activity landscape of non-canonical peptides with MAP4 fingerprinting.Digital Discovery. 2023;2:1494–505. [DOI]
Kubyshkin V. Experimental lipophilicity scale for coded and noncoded amino acid residues.Org Biomol Chem. 2021;19:7031–40. [DOI] [PubMed]
Oeller M, Kang RJD, Bolt HL, Gomes Dos Santos AL, Weinmann AL, Nikitidis A, et al. Sequence-based prediction of the intrinsic solubility of peptides containing non-natural amino acids.Nat Commun. 2023;14:7475. [DOI] [PubMed] [PMC]
Hansch C, Leo A, Hoekman D. Exploring QSAR: Hydrophobic, electronic, and steric constants. In: Hansch C, Leo A, Hoekman D, editors. Exploring QSAR: Hydrophobic, electronic, and steric constants. Washington, DC: American Chemcial Society; 1995. p. 6.
Avogadro: an open-source molecular builder and visualization tool. Version 1.1.1 [Internet].Avogadro Chemistry; c2022 [cited 2024 Jan 30]. Available from: https://avogadro.cc/releases/avogadro_111/
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox.J Cheminform. 2011;3:33. [DOI] [PubMed] [PMC]
Lee C, Yang W, Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys Rev B Condens Matter. 1988;37:785–9. [DOI] [PubMed]
Becke AD. Density-functional thermochemistry. III. The role of exact exchange.J Chem Phys. 1993; 98:5648–52. [DOI]
Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism Spectra Using Density-Functional Force-Fields.J Phys Chem-Us. 1994;98:11623–27. [DOI]
Curutchet C, Orozco M, Luque FJ. Solvation in octanol: Parametrization of the continuum MST model.J Comput Chem. 2001;22:1180–93. [DOI]
Curutchet C, Bidon-Chanal A, Soteras I, Orozco M, Luque FJ. MST continuum study of the hydration free energies of monovalent ionic species.J Phys Chem B. 2005;109:3565–74. [DOI] [PubMed]
Soteras I, Curutchet C, Bidon-Chanal A, Orozco M, Luque FJ. Extension of the MST model to the IEF formalism: HF and B3LYP parametrizations.J Mol Struc-Theochem. 2005;727:29–40. [DOI]
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, Revision C.01 [software]. 2019 Oct 14 [cited 2024 Jan 30]. Available from: https://gaussian.com/gaussian16/
Fauchère JL, Pliska V. Hydrophobic Parameters Π of Amino Acid Side Chains from the Partitioning of N-Acetyl-Amino Acid Amides.Eur J Med Chem. 1983;18:369–75.
Campanera JM, Barril X, Luque FJ. On the transferability of fractional contributions to the hydration free energy of amino acids.Theor Chem Acc. 2013;132:1343. [DOI]
Lim JM, Kim G, Levine RL. Methionine in Proteins: It’s Not Just for Protein Initiation Anymore.Neurochem Res. 2019;44:247–57. [DOI] [PubMed] [PMC]
Pinheiro S, Soteras I, Gelpí JL, Dehez F, Chipot C, Luque FJ, et al. Structural and energetic study of cation-π-cation interactions in proteins.Phys Chem Chem Phys. 2017;19:9849–61. [DOI] [PubMed]
Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Identification of lysine succinylation as a new post-translational modification.Nat Chem Biol. 2011;7:58–63. [DOI] [PubMed] [PMC]
Matamoros P, Pinheiro S, Viayna A, Zamora WJ. Towards an understanding of the lipophilicity of non-coded amino acids: computational simulations of proline analogs. IEEE 4th International Conference on BioInspired Processing (BIP); 2022 Nov 15–17; Cartago, Costa Rica. IEEE; pp. 1–5. [DOI]
Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.J Phys Chem B. 2009;113:6378–96. [DOI] [PubMed]
Soto P, Mark AE. The Effect of the Neglect of Electronic Polarization in Peptide Folding Simulation.J Phys Chem B. 2002;106:12830–3. [DOI]
Gao J, Truhlar DG, Wang Y, Mazack MJM, Löffler P, Provorse MR, et al. Explicit polarization: a quantum mechanical framework for developing next generation force fields.Acc Chem Res. 2014;47:2837–45. [DOI] [PubMed] [PMC]
Yarne DA, Tuckerman ME, Klein ML. Structural and dynamical behavior of an azide anion in water from ab initio molecular dynamics calculations.Chem Phys. 2000;258:163–9. [DOI]
York DM, Lee TS, Yang W. Quantum Mechanical Study of Aqueous Polarization Effects on Biological Macromolecules.J Am Chem Soc. 1996;118:10940–1. [DOI]
Zhang D, Lazim R, Yip YM. Incorporating Polarizability of Backbone Hydrogen Bonds Improved Folding of Short α-Helical Peptides.Biophys J. 2019;117:2079–86. [DOI] [PubMed] [PMC]
Zhang D, Yip TM. Application of the polarized structure-specific backbone charge scheme on the folding of Beta3s.Chem Phys Lett. 2021;781:138981. [DOI]
Zhang J, Zhang H, Wu T, Wang Q, van der Spoel D. Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents.J Chem Theory Comput. 2017;13:1034–43. [DOI] [PubMed]
Chen J, Shao Y, Ho J. Are Explicit Solvent Models More Accurate than Implicit Solvent Models? A Case Study on the Menschutkin Reaction.J Phys Chem A. 2019;123:5580–9. [DOI] [PubMed]
Ree R, Varland S, Arnesen T. Spotlight on protein N-terminal acetylation.Exp Mol Med. 2018;50:1–13. [DOI] [PubMed] [PMC]
Yan K, Mousavi N, Yang X. Analysis of Lysine Acetylation and Acetylation-like Acylation In Vitro and In Vivo.Curr Protoc. 2023;3:e738. [DOI] [PubMed]
Mizero B, Yeung D, Spicer V, Krokhin OV. Peptide retention time prediction for peptides with post-translational modifications: N-terminal (α-amine) and lysine (ε-amine) acetylation.J Chromatogr A. 2021;1657:462584. [DOI] [PubMed]
Marvin Desktop Suite version 23.16.0 [Internet].Chemaxon Ltd.; c1998–2024 [cited 2024 Jan 30]. Available from: https://chemaxon.com
Molinspiration Cheminformatics free web services [Internet].Slovensky Grob: Molinspiration Cheminformatics; c2024 [cited 2024 Jan 30]. Available from: https://www.molinspiration.com/cgi/properties
Işık M, Bergazin TD, Fox T, Rizzi A, Chodera JD, Mobley DL. Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge.J Comput Aided Mol Des. 2020;34:335–70. [DOI] [PubMed] [PMC]
Zamora WJ, Pinheiro S, German K, Ràfols C, Curutchet C, Luque FJ. Prediction of the n-octanol/water partition coefficients in the SAMPL6 blind challenge from MST continuum solvation calculations.J Comput Aided Mol Des. 2020;34:443–51. [DOI] [PubMed]
Viayna A, Pinheiro S, Curutchet C, Luque FJ, Zamora WJ. Prediction of n-octanol/water partition coefficients and acidity constants (pKa) in the SAMPL7 blind challenge with the IEFPCM-MST model.J Comput Aided Mol Des. 2021;35:803–11. [DOI] [PubMed] [PMC]