Administración Nacional de Laboratorios e Institutos de Salud
Brazil
Instituto Butantan, Fundação Ezequiel Dias, Instituto Vital Brazil, and Centro de Produção e Pesquisa em Imunobiológicos
Bolivia
Instituto Nacional de Laboratorios de Salud
Colombia
Instituto Nacional de Salud
Costa Rica
Instituto Clodomiro Picado, Universidad de Costa Rica
Mexico
BIRMEX, Laboratorio de Biológicos y Reactivos de México
Peru
Instituto Nacional de Salud
Venezuela
BIOTECFAR, Universidad Central de Venezuela
Declarations
Author contributions
JAR, GRBV, and JAE: Writing—original draft, Writing—review & editing. SAC: Funding acquisition, Conceptualization, Writing—original draft, Writing—review & editing. All authors read and approved the submitted version.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This work was partially supported by the Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación de la República Argentina [PICT-2021-I-A-00236]; the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) [PIP 11220210100075CO] and the Universidad de Buenos Aires, Argentina [20020220200001BA]. SAC is a researcher at the CONICET and a professor at the UBA. JAR, GRBV, and JAE are teachers at the UBA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Fernández C EA, Youssef P. Snakebites in the Americas: a Neglected Problem in Public Health.Curr Trop Med Rep. 2024;11:19–27. [DOI]
Hauke TJ, Herzig V. Dangerous arachnids-Fake news or reality?Toxicon. 2017;138:173–83. [DOI] [PubMed]
Bochner R. Paths to the discovery of antivenom serotherapy in France.J Venom Anim Toxins Incl Trop Dis. 2016;22:20. [DOI] [PubMed] [PMC]
Gutiérrez JM. Global Availability of Antivenoms: The Relevance of Public Manufacturing Laboratories.Toxins (Basel). 2018;11:5. [DOI] [PubMed] [PMC]
Zurbano BN, Tavarone E, Viacava BG, Dokmetjian JC, Cascone O, Fingermann M. Critical aspects on traditional antivenom production processes and their optimization by factorial analysis.Biologicals. 2020;68:65–73. [DOI] [PubMed]
Potet J, Beran D, Ray N, Alcoba G, Habib AG, Iliyasu G, et al. Access to antivenoms in the developing world: A multidisciplinary analysis.Toxicon X. 2021;12:100086. [DOI] [PubMed] [PMC]
Bermúdez-Méndez E, Fuglsang-Madsen A, Føns S, Lomonte B, Gutiérrez JM, Laustsen AH. Innovative Immunization Strategies for Antivenom Development.Toxins (Basel). 2018;10:452. [DOI] [PubMed] [PMC]
Silva HAd, Ryan NM, Silva HJd. Adverse reactions to snake antivenom, and their prevention and treatment.Br J Clin Pharmacol. 2016;81:446–52. [DOI] [PubMed] [PMC]
Uko SO, Malami I, Ibrahim KG, Lawal N, Bello MB, Abubakar MB, et al. Revolutionizing snakebite care with novel antivenoms: Breakthroughs and barriers.Heliyon. 2024;10:e25531. [DOI] [PubMed] [PMC]
Camperi SA, Acosta G, Barredo GR, Iglesias-García LC, Caldeira CAdS, Martínez-Ceron MC, et al. Synthetic peptides to produce antivenoms against the Cys-rich toxins of arachnids.Toxicon X. 2020;6:100038. [DOI] [PubMed] [PMC]
Jaradat DMM. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation.Amino Acids. 2018;50:39–68. [DOI] [PubMed]
Gori A, Longhi R, Peri C, Colombo G. Peptides for immunological purposes: design, strategies and applications.Amino Acids. 2013;45:257–68. [DOI] [PubMed]
Skwarczynski M, Toth I. Peptide-based synthetic vaccines.Chem Sci. 2016;7:842–54. [DOI] [PubMed] [PMC]
Fujita Y, Taguchi H. Nanoparticle-based peptide vaccines. In: Skwarczynski M, Toth I, editors. Micro and nanotechnology in vaccine development. New York: William Andrew Publishing; 2017. pp.149–70.
Malonis RJ, Lai JR, Vergnolle O. Peptide-Based Vaccines: Current Progress and Future Challenges.Chem Rev. 2020;120:3210–29. [DOI] [PubMed] [PMC]
Alharbi N, Skwarczynski M, Toth I. The influence of component structural arrangement on peptide vaccine immunogenicity.Biotechnol Adv. 2022;60:108029. [DOI] [PubMed]
Rodríguez JA, Barredo-Vacchelli GR, Iglesias-García LC, Birocco AM, Blachman A, Calabrese GC, et al. Design and Synthesis of Peptides from Phoneutria nigriventer δ-Ctenitoxin-Pn2a for Antivenom Production.Int J Pept Res Ther. 2023;29. [DOI]
Fry B, editor. Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery. Oxford: Oxford University Press; 2015.
Gopalakrishnakone P, Malhotra A, editors. Evolution of venomous animals and their toxins. Dordrecht: Springer; 2017.
Jenner R, Undheim E. Venom: The secrets of nature’s deadliest weapon. Washington: Smithsonian Books; 2017.
Casewell NR, Jackson TNW, Laustsen AH, Sunagar K. Causes and Consequences of Snake Venom Variation.Trends Pharmacol Sci. 2020;41:570–81. [DOI] [PubMed] [PMC]
Zancolli G, Calvete JJ, Cardwell MD, Greene HW, Hayes WK, Hegarty MJ, et al. When one phenotype is not enough: divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species.Proc Biol Sci. 2019;286:20182735. [DOI] [PubMed] [PMC]
Murphy KM, Travers P, Walport M, Janeway C. Immunization. In: Murphy KM, editor. Janeway’s Immunobiology. 8th ed. London: Garland Science; 2012. pp. 718–9.
Rockberg J, Nilvebrant J, editors. Epitope Mapping Protocols (Methods in Molecular Biology 1785). 3rd ed. New York: Humana Press; 2018.
Geysen HM, Meloen RH, Barteling SJ. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid.Proc Natl Acad Sci U S A. 1984;81:3998–4002. [DOI] [PubMed] [PMC]
Frank R. Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support.Tetrahedron. 1992;48:9217–32. [DOI]
Schneider FS, Lima SdA, Ávila GRd, Castro KL, Guerra-Duarte C, Sanchez EF, et al. Identification of protective B-cell epitopes of Atroxlysin-I: A metalloproteinase from Bothrops atrox snake venom.Vaccine. 2016;34:1680–7. [DOI] [PubMed]
Molina DAM, Guerra-Duarte C, Souza DLNd, Costal-Oliveira F, Ávila GRd, Soccol VT, et al. Identification of a linear B-cell epitope in the catalytic domain of bothropasin, a metalloproteinase from Bothrops jararaca snake venom.Mol Immunol. 2018;104:20–6. [DOI] [PubMed]
Melo PDVd, Lima SdA, Araújo P, Santos RM, Gonzalez E, Belo AA, et al. Immunoprotection against lethal effects of Crotalus durissus snake venom elicited by synthetic epitopes trapped in liposomes.Int J Biol Macromol. 2020;161:299–307. [DOI] [PubMed]
Castro KL, Duarte CG, Ramos HR, Avila RAMd, Schneider FS, Oliveira D, et al. Identification and characterization of B-cell epitopes of 3FTx and PLA2 toxins from Micrurus corallinus snake venom.Toxicon. 2015;93:51–60. [DOI] [PubMed]
Alvarenga LM, Diniz CR, Granier C, Chávez-Olórtegui C. Induction of neutralizing antibodies against Tityus serrulatus scorpion toxins by immunization with a mixture of defined synthetic epitopes.Toxicon. 2002;40:89–95. [DOI] [PubMed]
Maria WS, Velarde DT, Alvarenga LM, Nguyen C, Villard S, Granier C, et al. Localization of epitopes in the toxins of Tityus serrulatus scorpions and neutralizing potential of therapeutic antivenoms.Toxicon. 2005;46:210–7. [DOI] [PubMed]
Duarte CG, Alvarenga LM, Dias-Lopes C, Machado-de-Avila RA, Nguyen C, Molina F, et al. In vivo protection against Tityus serrulatus scorpion venom by antibodies raised against a discontinuous synthetic epitope.Vaccine. 2010;28:1168–76. [DOI] [PubMed]
Felicori L, Fernandes PB, Giusta MS, Duarte CG, Kalapothakis E, Nguyen C, et al. An in vivo protective response against toxic effects of the dermonecrotic protein from Loxosceles intermedia spider venom elicited by synthetic epitopes.Vaccine. 2009;27:4201–8. [DOI] [PubMed]
Dias-Lopes C, Guimarães G, Felicori L, Fernandes P, Emery L, Kalapothakis E, et al. A protective immune response against lethal, dermonecrotic and hemorrhagic effects of Loxosceles intermedia venom elicited by a 27-residue peptide.Toxicon. 2010;55:481–7. [DOI] [PubMed]
Felicori L, Araujo SC, Avila RAMd, Sanchez EF, Granier C, Kalapothakis E, et al. Functional characterization and epitope analysis of a recombinant dermonecrotic protein from Loxosceles intermedia spider.Toxicon. 2006;48:509–19. [DOI] [PubMed]
Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface.Science. 1985;228:1315–7. [DOI] [PubMed]
Cardoso R, Homsi-Brandeburgo MI, Rodrigues VM, Santos WB, Souza GLR, Prudencio CR, et al. Peptide mimicking antigenic and immunogenic epitope of neuwiedase from Bothrops neuwiedi snake venom.Toxicon. 2009;53:254–61. [DOI] [PubMed]
Machado-de-Ávila RA, Avila RAMd, Stransky S, Velloso M, Castanheira P, Schneider FS, Kalapothakis E, et al. Mimotopes of mutalysin-II from Lachesis muta snake venom induce hemorrhage inhibitory antibodies upon vaccination of rabbits.Peptides. 2011;32:1640–6. [DOI] [PubMed]
Moura Jd, Felicori L, Moreau V, Guimarães G, Dias-Lopes C, Molina L, et al. Protection against the toxic effects of Loxosceles intermedia spider venom elicited by mimotope peptides.Vaccine. 2011;29:7992–8001. [DOI] [PubMed]
Houghten RA. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids.Proc Natl Acad Sci U S A. 1985;82:5131–5. [DOI] [PubMed] [PMC]
Jemmerson R, Paterson Y. Mapping epitopes on a protein antigen by the proteolysis of antigen-antibody complexes.Science. 1986;232:1001–4. [DOI] [PubMed]
Yurina V, Adianingsih OR. Predicting epitopes for vaccine development using bioinformatics tools.Ther Adv Vaccines Immunother. 2022;10:25151355221100218. [DOI] [PubMed] [PMC]
Cia G, Pucci F, Rooman M. Critical review of conformational B-cell epitope prediction methods.Brief Bioinform. 2023;24:bbac567. [DOI] [PubMed]
Kozlova EEG, Cerf L, Schneider FS, Viart BT, NGuyen C, Steiner BT, et al. Computational B-cell epitope identification and production of neutralizing murine antibodies against Atroxlysin-I.Sci Rep. 2018;8:14904. [DOI] [PubMed] [PMC]
Machado-de-Ávila RA, Velloso M, Oliveira D, Stransky S, Flor-Sá A, Schneider FS, et al. Induction of neutralizing antibodies against mutalysin-II from Lachesis muta muta snake venom elicited by a conformational B-cell epitope predicted by Blue Star Sting data base.Immunome Res. 2014;11:1–6. [DOI]
Madrigal M, Alape-Girón A, Barboza-Arguedas E, Aguilar-Ulloa W, Flores-Díaz M. Identification of B cell recognized linear epitopes in a snake venom serine proteinase from the central American bushmaster Lachesis stenophrys.Toxicon. 2017;140:72–82. [DOI] [PubMed]
Rodríguez JA, Barredo-Vacchelli GR, Iglesias-García LC, Acosta G, Albericio F, Camperi SA. Identification and synthesis of immunogenic peptides to produce Tityus antivenom. In: Michal L, editor. Proceedings of the 36th European and the 12th International Peptide Symposium. Munich: European Peptide Society; 2022. pp. 43–4.
Zhou S, Luo Y, Lovell JF. Vaccine approaches for antigen capture by liposomes.Expert Rev Vaccines. 2023;22:1022–40. [DOI] [PubMed]
Tam JP. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system.Proc Natl Acad Sci U S A. 1988;85:5409–13. [DOI] [PubMed] [PMC]
Joshi VG, Dighe VD, Thakuria D, Malik YS, Kumar S. Multiple antigenic peptide (MAP): a synthetic peptide dendrimer for diagnostic, antiviral and vaccine strategies for emerging and re-emerging viral diseases.Indian J Virol. 2013;24:312–20. [DOI] [PubMed] [PMC]
Sebilleau CO, Sucheck SJ. Lipopeptide adjuvants for antibiotics and vaccines: the future step in the fight against multidrug-resistant and extensively drug-resistant pathogens.Explor Drug Sci. 2024;2:203–33. [DOI]
Singh SK, Collins JM. New Developments in Microwave-Assisted Solid Phase Peptide Synthesis.Methods Mol Biol. 2020;2103:95–109. [DOI] [PubMed]
Hermanson GT, editor. Vaccines and immunogen conjugates.In: Bioconjugate Techniques. 3rd ed. New York: Academic Press; 2013. pp. 839–65.
Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays.Food Front. 2020;1:332–49. [DOI]
Vandebriel R, Hoefnagel MMN. Dendritic cell-based in vitro assays for vaccine immunogenicity.Hum Vaccin Immunother. 2012;8:1323–5. [DOI] [PubMed] [PMC]
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review.Trop Med Infect Dis. 2024;9:13. [DOI] [PubMed] [PMC]
Lee KJ, Kim YK, Krupa M, Nguyen AN, Do BH, Chung B, et al. Crotamine stimulates phagocytic activity by inducing nitric oxide and TNF-α via p38 and NFκ-B signaling in RAW 264.7 macrophages.BMB Rep. 2016;49:185–90. [DOI] [PubMed] [PMC]
Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB, Mueller-Dieckmann C, et al. Tyrosine Phosphorylation of IκB-α Activates NF-κB without Proteolytic Degradation of IκB-α.Cell. 1996;86:787–98. [DOI] [PubMed]
Heinrich L, Tissot N, Hartmann DJ, Cohen R. Comparison of the results obtained by ELISA and surface plasmon resonance for the determination of antibody affinity.J Immunol Methods. 2010;352:13–22. [DOI] [PubMed]
Theakston RDG, Warrell DA, Griffiths E. Report of a WHO workshop on the standardization and control of antivenoms.Toxicon. 2003;41:541–57. [DOI] [PubMed]
Khochare S, Jaglan A, Rashmi U, Dam P, Sunagar K. Harnessing the Cross-Neutralisation Potential of Existing Antivenoms for Mitigating the Outcomes of Snakebite in Sub-Saharan Africa.Int J Mol Sci. 2024;25:4213. [DOI] [PubMed] [PMC]
Ainsworth S, Menzies SK, Casewell NR, Harrison RA. An analysis of preclinical efficacy testing of antivenoms for sub-Saharan Africa: Inadequate independent scrutiny and poor-quality reporting are barriers to improving snakebite treatment and management.PLoS Negl Trop Dis. 2020;14:e0008579. [DOI] [PubMed] [PMC]
Pla D, Rodríguez Y, Calvete JJ. Third Generation Antivenomics: Pushing the Limits of the In Vitro Preclinical Assessment of Antivenoms.Toxins (Basel). 2017;9:158. [DOI] [PubMed] [PMC]
Oliveira VCd, Lanari LC, Hajos SE, Roodt ARd. Toxicity of Bothrops neuwiedi complex “yarará chica”) venom from different regions of Argentina (Serpentes, Viperidae).Toxicon. 2011;57:680–5. [DOI] [PubMed]
Monteiro WM, Contreras-Bernal JC, Bisneto PF, Sachett J, Silva IMd, Lacerda M, et al. Bothrops atrox, the most important snake involved in human envenomings in the amazon: How venomics contributes to the knowledge of snake biology and clinical toxinology.Toxicon X. 2020;6:100037. [DOI] [PubMed] [PMC]
Nicolau CA, Prorock A, Bao Y, Neves-Ferreira AGdC, Valente RH, Fox JW. Revisiting the Therapeutic Potential of Bothrops jararaca Venom: Screening for Novel Activities Using Connectivity Mapping.Toxins (Basel). 2018;10:69. [DOI] [PubMed] [PMC]
Siva AMd, Monteiro WM, Bernarde PS. Popular names for bushmaster (Lachesis muta) and lancehead (Bothrops atrox) snakes in the Alto Juruá region: repercussions for clinical-epidemiological diagnosis and surveillance.Rev Soc Bras Med Trop. 2019;52:e20180140. [DOI] [PubMed]
Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis.Biochim Biophys Acta. 2000;1477:146–56. [DOI] [PubMed]
Castro-Amorim J, Oliveira ANd, Silva SLD, Soares AM, Mukherjee AK, Ramos MJ, et al. Catalytically Active Snake Venom PLA2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction.J Med Chem. 2023;66:5364–76. [DOI] [PubMed] [PMC]
Georgieva D, Ohler M, Seifert J, Bergen Mv, Arni RK, Genov N, et al. Snake venomic of Crotalus durissus terrificus—correlation with pharmacological activities.J Proteome Res. 2010;9:2302–16. [DOI] [PubMed]
Castro KLPd, Lopes-de-Souza L, Oliveira Dd, Machado-de-Ávila RA, Paiva ALB, Freitas CFd, et al. A Combined Strategy to Improve the Development of a Coral Antivenom Against Micrurus spp.Front Immunol. 2019;10:2422. [DOI] [PubMed] [PMC]
Avila RAMd, Alvarenga LM, Tavares CAP, Molina F, Granier C, Chávez-Olórtegui C. Molecular characterization of protective antibodies raised in mice by Tityus serrulatus scorpion venom toxins conjugated to bovine serum albumin.Toxicon. 2004;44:233–41. [DOI] [PubMed]
Roodt ARd, Lanari LC, Laskowicz RD, Oliveira VCd, Litwin S, Calderon L, et al. Study on the obtaining of Tityus trivittatus venom in Argentina.Toxicon. 2019;159:5–13. [DOI] [PubMed]
Coronas FIV, Diego-García E, Restano-Cassulini R, Roodt ARd, Possani LD. Biochemical and physiological characterization of a new Na+-channel specific peptide from the venom of the Argentinean scorpion Tityus trivittatus.Peptides. 2015;68:11–6. [DOI] [PubMed]
Ojanguren Affilastro AA, Kochalka J, Guerrero-Orellana D, Garcete-Barrett B, de Roodt AR, Borges A, et al. Redefinition of the identity and phylogenetic position of Tityus trivittatus Kraepelin 1898, and description of Tityus carrilloi n. sp. (Scorpiones; Buthidae), the most medically important scorpion of southern South America.Rev Mus Argentino Cienc Nat. 2021;23:27–55. [DOI]
Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules.Immunology. 2018;154:394–406. [DOI] [PubMed] [PMC]
Gremski LH, Justa HCd, Silva TPd, Polli NLC, Antunes BC, Minozzo JC, et al. Forty Years of the Description of Brown Spider Venom Phospholipases-D.Toxins (Basel). 2020;12:164. [DOI] [PubMed] [PMC]
Diniz MRV, Paiva ALB, Guerra-Duarte C, Jr MYN, Mudadu MA, Oliveira Ud, et al. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches.PLoS One. 2018;13:e0200628. [DOI] [PubMed] [PMC]
Matavel A, Fleury C, Oliveira LC, Molina F, Lima MEd, Cruz JS, et al. Structure and activity analysis of two spider toxins that alter sodium channel inactivation kinetics.Biochemistry. 2009;48:3078–88. [DOI] [PubMed]