Compilation of ten years (2013–2023) of published studies concerning microbial biotransformations conducted by biofilms to produce high-value molecules
NSO, RCPSR, and RCP had scholarships from the Coordination for the Improvement of Higher Education Personnel (CAPES-Brazil financial code 001). MGCP had a scholarship from the National Council for Scientific and Technological Development (CNPq-Brazil).
Author contributions
NSdO: Data curation, Writing—original draft. RCPdSR, RCdP, MGdCP, and RTR: Data curation. LFB and EARR: Writing—review & editing.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
Southey MW, Brunavs M. Introduction to small molecule drug discovery and preclinical development.Front Drug Discov. 2023;3:1314077. [DOI]
Kharissova OV, Kharisov BI, González CMO, Méndez YP, López I. Greener synthesis of chemical compounds and materials.R Soc Open Sci. 2019;6:191378. [DOI] [PubMed] [PMC]
Martinengo B, Diamanti E, Uliassi E, Bolognesi ML. Harnessing the 12 Green Chemistry Principles for Sustainable Antiparasitic Drugs: Toward the One Health Approach.ACS Infect Dis. 2024;10:1856–70. [DOI] [PubMed] [PMC]
Woodley JM. Towards the sustainable production of bulk-chemicals using biotechnology.N Biotechnol. 2020;59:59–64. [DOI] [PubMed]
Winkler CK, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis.ACS Cent Sci. 2021;7:55–71. [DOI] [PubMed] [PMC]
Saadat NP, Nies T, Rousset Y, Ebenhöh O. Thermodynamic Limits and Optimality of Microbial Growth.Entropy (Basel). 2020;22:277. [DOI] [PubMed] [PMC]
Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM. Sustainable energy from waste organic matters via efficient microbial processes.Sci Total Environ. 2020;722:137927. [DOI] [PubMed]
Li G, Zhu Q, Niu Q, Meng Q, Yan H, Wang S, et al. The degradation of organic matter coupled with the functional characteristics of microbial community during composting with different surfactants.Bioresour Technol. 2021;321:124446. [DOI] [PubMed]
Ujor VC, Okonkwo CC. Microbial detoxification of lignocellulosic biomass hydrolysates: Biochemical and molecular aspects, challenges, exploits and future perspectives.Front Bioeng Biotechnol. 2022;10:1061667. [DOI] [PubMed] [PMC]
Carvalho FM, Azevedo A, Ferreira MM, Mergulhão FJM, Gomes LC. Advances on Bacterial and Fungal Biofilms for the Production of Added-Value Compounds.Biology (Basel). 2022;11:1126. [DOI] [PubMed] [PMC]
Liberato V, Benevenuti C, Coelho F, Botelho A, Amaral P, Junior NP, et al. Clostridium sp. as bio-catalyst for fuels and chemicals production in a biorefinery context.Catalysts. 2019;9:962. [DOI]
Wainaina S, Kisworini AD, Fanani M, Wikandari R, Millati R, Niklasson C, et al. Utilization of food waste-derived volatile fatty acids for production of edible Rhizopus oligosporus fungal biomass.Bioresour Technol. 2020;310:123444. [DOI] [PubMed]
Castro D, Marques ASC, Almeida MR, Paiva GBd, Bento HBS, Pedrolli DB, et al. L-asparaginase production review: bioprocess design and biochemical characteristics.Appl Microbiol Biotechnol. 2021;105:4515–34. [DOI] [PubMed]
Ju S, Cao Z, Wong C, Liu Y, Foda MF, Zhang Z, et al. Isolation and Optimal Fermentation Condition of the Bacillus subtilis Subsp. natto Strain WTC016 for Nattokinase Production.Fermentation. 2019;54:92. [DOI]
Sheng Y, Yang J, Wang C, Sun X, Yan L. Microbial nattokinase: from synthesis to potential application.Food Funct. 2023;14:2568–85. [DOI] [PubMed]
Kumari N, Bansal S. Statistical modeling and optimization of microbial phytase production towards utilization as a feed supplement.Biomass Convers Biorefin. 2023;139:8339–49. [DOI]
Wohlgemuth R. Biocatalysis - Key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis.N Biotechnol. 2021;60:113–23. [DOI] [PubMed]
Abraham N, Chan ETS, Zhou T, Seah SYK. Microbial detoxification of mycotoxins in food.Front Microbiol. 2022;13:957148. [DOI] [PubMed] [PMC]
Vogel M, Fischer S, Maffert A, Hübner R, Scheinost AC, Franzen C, et al. Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles.J Hazard Mater. 2018;344:749–57. [DOI] [PubMed]
Qin D, Dong J. Multi-Level Optimization and Strategies in Microbial Biotransformation of Nature Products.Molecules. 2023;28:2619. [DOI] [PubMed] [PMC]
Abo Elsoud MMA. Classification and Production of Microbial Surfactants. In: Inamuddin, Ahamed MI, Prasad R, editors. Microbial Biosurfactants. Environmental and Microbial Biotechnology. Singapore: Springer; 2021.
Rosche B, Li XZ, Hauer B, Schmid A, Buehler K. Microbial biofilms: a concept for industrial catalysis?Trends Biotechnol. 2009;27:636–43. [DOI] [PubMed]
Boyd DR, Sharma ND, Stevenson PJ, Hoering P, Allen CCR, Dansette PM. Monooxygenase- and Dioxygenase-Catalyzed Oxidative Dearomatization of Thiophenes by Sulfoxidation, cis-Dihydroxylation and Epoxidation.Int J Mol Sci. 2022;23:909. [DOI] [PubMed] [PMC]
Chaput G, Billings AF, DeDiego L, Orellana R, Adkins JN, Nicora CD, et al. Lignin induced iron reduction by novel sp., Tolumonas lignolytic BRL6-1.PLoS One. 2020;15:e0233823. [DOI] [PubMed] [PMC]
Tong X, Barberi TT, Botting CH, Sharma SV, Simmons MJH, Overton TW, et al. Rapid enzyme regeneration results in the striking catalytic longevity of an engineered, single species, biocatalytic biofilm.Microb Cell Fact. 2016;15:180. [DOI] [PubMed] [PMC]
Smitha MS, Singh S. Microbial bio transformation: a process for chemical alterations.J Bacteriol Mycol Open Access. 2017;4:47–51. [DOI]
Junter G, Jouenne T. Immobilized viable microbial cells: from the process to the proteome… or the cart before the horse.Biotechnol Adv. 2004;22:633–58. [DOI] [PubMed]
Kieslich K. Production of drugs by microbial biosynthesis and biotransformation. Possibilities, limits and future developments (1st communication).Arzneimittelforschung. 1986;36:774–8. [PubMed]
Azerad R. Microbial models for drug metabolism. In: Faber K, editor. Biotransformations. Advances in Biochemical Engineering/Biotechnology. Berlin: Springer; 1999. pp. 169–218.
Abourashed EA, Clark AM, Hufford CD. Microbial models of mammalian metabolism of xenobiotics: An updated review.Curr Med Chem. 1999;6:359–74. [DOI] [PubMed]
Venisetty RK, Ciddi V. Application of microbial biotransformation for the new drug discovery using natural drugs as substrates.Curr Pharm Biotechnol. 2003;4:153–67. [DOI] [PubMed]
Pervaiz I, Ahmad S, Madni MA, Ahmad H, Khaliq FH. Microbial biotransformation: a tool for drug designing (Review).Prikl Biokhim Mikrobiol. 2013;49:435–49. [DOI] [PubMed]
Bianchini LF, Arruda MFC, Vieira SR, Campelo PMS, Grégio AMT, Rosa EAR. Microbial Biotransformation to Obtain New Antifungals.Front Microbiol. 2015;6:1433. [DOI] [PubMed] [PMC]
Yousuf M, Jamil W, Mammadova K. Microbial Bioconversion: A Regio-specific Method for Novel Drug Design and Toxicological Study of Metabolites.Curr Pharm Biotechnol. 2019;20:1156–62. [DOI] [PubMed]
Wheeler JD, Secchi E, Rusconi R, Stocker R. Not Just Going with the Flow: The Effects of Fluid Flow on Bacteria and Plankton.Annu Rev Cell Dev Biol. 2019;35:213–37. [DOI] [PubMed]
Webb C, Manan MA. Design aspects of solid-state fermentation as applied to microbial bioprocessing.J Appl Biotechnol Bioeng. 2017;4:511–32. [DOI]
Moore-Ott JA, Chiu S, Amchin DB, Bhattacharjee T, Datta SS. A biophysical threshold for biofilm formation.Elife. 2022;11:e76380. [DOI] [PubMed] [PMC]
Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications.Microb Cell Fact. 2016;15:165. [DOI] [PubMed] [PMC]
Carballeira JD, Fernandez-Lucas J, Quezada MA, Hernaiz MJ, Alcantara A, Simeó Y, et al. Biotransformations. In: Schaechter M, editor. Encyclopedia of Microbiology-Annual Reports Section B (Organic Chemistry). Amsterdam: Elsevier; 2009. pp. 212–51.
Nedovic VA, Obradovic B, Leskosek-Cukalovic I, Vunjak-Novakovic G. Immobilized yeast bioreactor systems for brewing—Recent achievements. In: Hofman M, Thonart P, editors. Engineering and manufacturing for biotechnology. Focus on Biotechnology. Dordrecht: Springer; 2001. pp. 227–92.
Donlan RM. Biofilms: microbial life on surfaces.Emerg Infect Dis. 2002;8:881–90. [DOI] [PubMed] [PMC]
Li XZ, Webb JS, Kjelleberg S, Rosche B. Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production.Appl Environ Microbiol. 2006;72:1639–44. [DOI] [PubMed] [PMC]
Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited.Trends Microbiol. 2005;13:20–6. [DOI] [PubMed]
Gross R, Hauer B, Otto K, Schmid A. Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations.Biotechnol Bioeng. 2007;98:1123–34. [DOI] [PubMed]
Halan B, Buehler K, Schmid A. Biofilms as living catalysts in continuous chemical syntheses.Trends Biotechnol. 2012;30:453–65. [DOI] [PubMed]
Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates.Microb Cell Fact. 2005;4:24. [DOI] [PubMed] [PMC]
Ercan D, Demirci A. Current and future trends for biofilm reactors for fermentation processes.Crit Rev Biotechnol. 2015;35:1–14. [DOI] [PubMed]
Cao N, Du J, Chen C, Gong CS, Tsao GT. Production of fumaric acid by immobilized Rhizopus using rotary biofilm contactor.Appl Biochem Biotechnol. 1997;63:387–94. [DOI] [PubMed]
Aziani G, Terenzi HF, Jorge JA, Henrique L, Souza Guimarães LH. Production of Fructooligosaccharides by Aspergillus phoenicis Biofilm on Polyethylene as inert Support.Food Technol Biotechnol. 2012;50:40–5.
Sonawane JM, Rai AK, Sharma M, Tripathi M, Prasad R. Microbial biofilms: Recent advances and progress in environmental bioremediation.Sci Total Environ. 2022;824:153843. [DOI] [PubMed]
Demirci A, Palmettos AL III. Repeated-batch fermentation in biofilm reactors with plastic-composite supports for lactic acid production.Appl Microbiol Biotechnol. 1995;44:585–9. [DOI]
Strieth D, Ulber R, Muffler K. Application of phototrophic biofilms: from fundamentals to processes.Bioprocess Biosyst Eng. 2018;41:295–312. [DOI] [PubMed]
Yenkie KM, Wu W, Maravelias CT. Synthesis and analysis of separation networks for the recovery of intracellular chemicals generated from microbial-based conversions.Biotechnol Biofuels. 2017;10:119. [DOI] [PubMed] [PMC]
Cheng K, Demirci A, Catchmark JM. Advances in biofilm reactors for production of value-added products.Appl Microbiol Biotechnol. 2010;87:445–56. [DOI] [PubMed]
Bianchini LF, da Silva Ramos RC, de Oliveira NS, de Paula RC, Rosa RT, Glassey J, et al. Drug biotransformation process favoured by fungal biofilms formed on a proposed fixed bed‐airlift hybrid reactor.J Chem Technol Biotechnol. 2021;96:999–1006. [DOI]
Tsoligkas AN, Winn M, Bowen J, Overton TW, Simmons MJH, Goss RJM. Engineering biofilms for biocatalysis.Chembiochem. 2011;12:1391–5. [DOI] [PubMed]
Seelbach K, Liese A, Wandrey C, editors. Industrial Biotransformations. 2nd ed. Hoboken: John Wiley & Sons; 2006. p. 570.
Oda S, Nakanishi M, Ishikawa A, Baba T. Modified liquid–liquid interface cultivation system with floating microspheres and binder micro-pieces for slow-growing or unicellular microorganisms: application to interfacial bioconversions with an actinomycete and yeasts.Process Biochem. 2019;80:1–8. [DOI]
Cordeiro KCFA. Fungal biotransformation of hesperetin and its application in the production of active metabolites. In: Federal University of Goias, editor. Nenhuma Miniatura disponívelFungal. Brasil: LA Referencia; 2019. p. 128.
Souza PLdM, Arruda EL, Pazini F, Menegatti R, Vaz BG, Lião LM, et al. One step N-glycosylation by filamentous fungi biofilm in bioreactor of a new phosphodiesterase-3 inhibitor tetrazole.Bioorg Med Chem Lett. 2016;26:3177–81. [DOI] [PubMed]
Quinn L, Dempsey R, Casey E, Kane A, Murphy CD. Production of drug metabolites by immobilised Cunninghamella elegans: from screening to scale up.J Ind Microbiol Biotechnol. 2015;42:799–806. [DOI] [PubMed]
Amadio J, Casey E, Murphy CD. Filamentous fungal biofilm for production of human drug metabolites.Appl Microbiol Biotechnol. 2013;97:5955–63. [DOI] [PubMed]
Palmerín-Carreño DM, Rutiaga-Quiñones OM, Verde-Calvo JR, Huerta-Ochoa S. Biconversion of (+)-nootkatone by Botryodiplodia theobromae using a membrane aerated biofilm reactor.Rev Mex Ing Quim. 2014;13:757–64.
Soares MS, Rico ALL, Andrade GSS, de Castro HF, Oliveira PC. Synthesis, characterization and application of a polyurethane-based support for immobilizing membrane-bound lipase.Braz J Chem Eng. 2017;34:29–39. [DOI]
Escamilla-García E, O’Riordan S, Gomes N, Aguedo M, Belo I, Teixeira J, et al. An air-lift biofilm reactor for the production of γ-decalactones by Yarrowia lipolytica.rocess Biochem. 2014;49:1377–82. [DOI]
Hsueh Y, Liaw W, Kuo J, Deng C, Wu C. Hydrogel Film-Immobilized Lactobacillus brevis RK03 for γ-Aminobutyric Acid Production.Int J Mol Sci. 2017;18:2324. [DOI] [PubMed] [PMC]
Chen P, Yan L, Zhang S, Wu Z, Li S, Yan X, et al. Optimizing bioconversion of ferulic acid to vanillin by Bacillus subtilis in the stirred packed reactor using Box-Behnken design and desirability function.Food Sci Biotechnol. 2017;26:143–52. [DOI] [PubMed] [PMC]
Yan L, Chen P, Zhang S, Li S, Yan X, Wang N, et al. Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors.Sci Rep. 2016;6:34644. [DOI] [PubMed] [PMC]
Hu Y, Liu X, Ren ATM, Gu J, Cao B. Optogenetic Modulation of a Catalytic Biofilm for the Biotransformation of Indole into Tryptophan.ChemSusChem. 2019;12:5142–8. [DOI] [PubMed]
Perni S, Hackett L, Goss RJ, Simmons MJ, Overton TW. Optimisation of engineered Escherichia coli biofilms for enzymatic biosynthesis of L-halotryptophans.AMB Express. 2013;3:66. [DOI] [PubMed] [PMC]
Li XZ, Hauer B, Rosche B. Catalytic biofilms on structured packing for the production of glycolic acid.J Microbiol Biotechnol. 2013;23:195–204. [DOI] [PubMed]
Willrodt C, Halan B, Karthaus L, Rehdorf J, Julsing MK, Buehler K, et al. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow.Biotechnol Bioeng. 2017;114:281–90. [DOI] [PubMed]
Lang K, Buehler K, Schmid A. Multistep synthesis of (S)‐3‐hydroxyisobutyric acid from glucose using Pseudomonas taiwanensis VLB120 B83 T7 catalytic biofilms.Adv Synth Catal. 2015;357:1919–27. [DOI]
Heuschkel I, Dagini R, Karande R, Bühler K. The Impact of Glass Material on Growth and Biocatalytic Performance of Mixed-Species Biofilms in Capillary Reactors for Continuous Cyclohexanol Production.Front Bioeng Biotechnol. 2020;8:588729. [DOI] [PubMed] [PMC]
Hoschek A, Heuschkel I, Schmid A, Bühler B, Karande R, Bühler K. Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol.Bioresour Technol. 2019;282:171–8. [DOI] [PubMed]
Halan B, Schmid A, Buehler K. Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors.Biotechnol Bioeng. 2010;106:516–27. [DOI] [PubMed]
Carvalho CCCRd. Whole cell biocatalysts: essential workers from Nature to the industry.Microb Biotechnol. 2017;10:250–63. [DOI] [PubMed] [PMC]
Yafetto L. Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis.Heliyon. 2022;8:e09173. [DOI] [PubMed] [PMC]
Muffler K, Lakatos M, Schlegel C, Strieth D, Kuhne S, Ulber R. Application of biofilm bioreactors in white biotechnology.Adv Biochem Eng Biotechnol. 2014;146:123–61. [DOI] [PubMed]
Germec M, Demirci A, Turhan I. Biofilm reactors for value-added products production: an in-depth review.Biocatal Agric Biotechnol. 2020;27:101662. [DOI]
Schmeckebier A, Zayed A, Ulber R. Productive biofilms: from prokaryotic to eukaryotic systems.J Chem Technol Biotechnol. 2022;97:3049–64. [DOI]
Quentina Z, Alisonb B, Marcc O, Dominiqued T, Philippeb T, Frank D. Biofilm formation on metal structured packing for the production of high added value biomolecules.Récent Progr en Génie Procédés. 2013;104:sfgp20131201651-7.
Musoni M, Destain J, Thonart P, Bahama JB, Delvigne F. Bioreactor design and implementation strategies for the cultivation of filamentous fungi and the production of fungal metabolites: from traditional methods to engineered systems.Biotechnol Agron Soc Environ. 2015;19:430–42.
Brück HL, Coutte F, Dhulster P, Gofflot S, Jacques P, Delvigne F. Growth Dynamics of Bacterial Populations in a Two-Compartment Biofilm Bioreactor Designed for Continuous Surfactin Biosynthesis.Microorganisms. 2020;8:679. [DOI] [PubMed] [PMC]
Lara-Juache HR, Ávila-Hernández JG, Rodríguez-Durán LV, Michel MR, Wong-Paz JE, Muñiz-Márquez DB, et al. Characterization of a Biofilm Bioreactor Designed for the Single-Step Production of Aerial Conidia and Oosporein by Beauveria bassiana PQ2.J Fungi (Basel). 2021;7:582. [DOI] [PubMed] [PMC]
Kretschmer M, Hayta EN, Ertelt MJ, Würbser MA, Boekhoven J, Lieleg O. A rotating bioreactor for the production of biofilms at the solid-air interface.Biotechnol Bioeng. 2022;119:895–906. [DOI] [PubMed]
Krsmanovic M, Biswas D, Ali H, Kumar A, Ghosh R, Dickerson AK. Hydrodynamics and surface properties influence biofilm proliferation.Adv Colloid Interface Sci. 2021;288:102336. [DOI] [PubMed]
Sriyutha Murthy P, Venkatesan R. Industrial biofilms and their control.In: Springer Series on Biofilms. Berlin: Springer; 2008.
Winn M, Foulkes JM, Perni S, Simmons MJ, Overton TW, Goss RJ. Biofilms and their engineered counterparts: A new generation of immobilised biocatalysts.Catal Sci Technol. 2012;2:1544–7. [DOI]
Mukherjee M, Cao B. Engineering controllable biofilms for biotechnological applications.Microb Biotechnol. 2021;14:74–8. [DOI] [PubMed] [PMC]
Peulen T, Wilkinson KJ. Diffusion of nanoparticles in a biofilm.Environ Sci Technol. 2011;45:3367–73. [DOI] [PubMed]
Su H, Chou C, Hung D, Lin S, Pao I, Lin J, et al. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay.Biomaterials. 2009;30:5979–87. [DOI] [PubMed]
de Oliveira NS, da Silva GPL, Furlan O, Peña LC, Bianchini LF, Parahitiyawa N, et al. The song remains the same. The lab bench dilemma of using shaken flasks in microbial biotransformation experiments.Biocatal Biotransform. 2024;42:565–90. [DOI]