AMR and SSP: Conceptualization, Investigation, Writing—original draft, Writing—review & editing. KD and RD: Validation, Writing—review & editing, Supervision. All authors read and approved the submitted version.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Laxminarayan R, Matsoso P, Pant S, Brower C, Røttingen J, Klugman K, et al. Access to effective antimicrobials: a worldwide challenge.Lancet. 2016;387:168–75. [DOI] [PubMed]
Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: A global emerging threat to public health systems.Crit Rev Food Sci Nutr. 2017;57:2857–76. [DOI] [PubMed]
Ombašić A. An Insight into Antibiotic Resistance Mechanisms: Microbiological Implications for Public Health.Bulgarian Society for Microbiology (Union of Scientists in Bulgaria). 2024;40:131–41. [DOI]
Sheikh BA, Bhat BA, Mir MA. Antimicrobial resistance: new insights and therapeutic implications.Appl Microbiol Biotechnol. 2022;106:6427–40. [DOI] [PubMed]
Singh B, Bhat A, Ravi K. Antibiotics Misuse and Antimicrobial Resistance Development in Agriculture: A Global Challenge.Environ Health (Wash). 2024;2:618–22. [DOI] [PubMed] [PMC]
de Carvalho JJV, Boaventura FG, de Cássia Ribeiro da Silva A, Ximenes RL, Rodrigues LKC, de Almeida Nunes DA, et al. Bactérias multirresistentes e seus impactos na saúde pública: Uma responsabilidade social.Research, Society and Development. 2021;10:e58810616303. [DOI]
Pinto I, Simões M, Gomes IB. An Overview of the Impact of Pharmaceuticals on Aquatic Microbial Communities.Antibiotics (Basel). 2022;11:1700. [DOI] [PubMed] [PMC]
Bulathsinhala BKS, Siriwardana RC, Liyanage CAH. Acute portal vein thrombosis leading to small bowel stricture.Sri Lanka Journal of Surgery. 2017;35:14. [DOI]
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health.Healthcare (Basel). 2023;11:1946. [DOI] [PubMed] [PMC]
Jha KK, Saini S, Raj A, Bishnoi H. The Antibiotic Resistance Crisis.Asian Journal of Pharmaceutical Research and Development. 2023;11:44–52. [DOI]
Venkatasubramanian A, Veluchamy C, Chandrasekaran R, Thiagarajan K. Urgent imperatives and perspectives of Antimicrobial resistance.Res J Biotechnol. 2023;18:255–63. [DOI]
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review.Pharmaceuticals (Basel). 2023;16:1615. [DOI] [PubMed] [PMC]
Rolfe RJ, Shaikh H, Tillekeratne LG. Mass drug administration of antibacterials: weighing the evidence regarding benefits and risks.Infect Dis Poverty. 2022;11:77. [DOI] [PubMed] [PMC]
Arslan B, Vasudeva G, Hirsch EB. Public-Private and Private-Private Collaboration as Pathways for Socially Beneficial Innovation: Evidence from Antimicrobial Drug-Development Tasks.Academy of Management Journal. 2024;67:554–82. [DOI]
Geilen J, Kainz M, Zapletal B, Naka A, Tichy J, Jäger W, et al. Antimicrobial Drug Penetration Is Enhanced by Lung Tissue Inflammation and Injury.Am J Respir Crit Care Med. 2024;209:829–39. [DOI] [PubMed]
Portillo-Gonzalez R, Garzon A, Pereira RVV, Silva-Del-Rio N, Karle BM, Habing GG. Effect of a dairy farmworker stewardship training program on antimicrobial drug usage in dairy cows.J Dairy Sci. 2024;107:2941–53. [DOI] [PubMed]
Atkinson I, Seciu-Grama A, Serafim A, Petrescu S, Voicescu M, Anghel EM, et al. Bioinspired 3D scaffolds with antimicrobial, drug delivery, and osteogenic functions for bone regeneration.Drug Deliv Transl Res. 2024;14:1028–47. [DOI] [PubMed]
Viayna A, Matamoros P, Blázquez-Ruano D, Zamora WJ. From Canonical to Unique: Extension of A Lipophilicity Scale of Amino Acids to Non-Standard Residues.Explor Drug Sci. 2024;2:389–407. [DOI]
Goudarzi ZM, Zaszczyńska A, Kowalczyk T, Sajkiewicz P. Electrospun Antimicrobial Drug Delivery Systems and Hydrogels Used for Wound Dressings.Pharmaceutics. 2024;16:93. [DOI] [PubMed] [PMC]
Sowmiya A, Jayakodi S, Selvam KA, Sangeetha K. In silico Molecular Docking of Cyclic Peptides against TEM-1 Beta-Lactamases for Effective Antimicrobial Drug Development.J Pure Appl Microbiol. 2024;18:1674–83. [DOI]
Zhang F, Cheng W. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies.Antibiotics (Basel). 2022;11:1215. [DOI] [PubMed] [PMC]
Salimiyan Rizi K, Ghazvini K, kouhi Noghondar M. Adaptive Antibiotic Resistance: Overview and Perspectives.Journal of Infectious Diseases & Therapy. 2018;6:363. [DOI]
Shinu P, Mouslem AKA, Nair AB, Venugopala KN, Attimarad M, Singh VA, et al. Progress Report: Antimicrobial Drug Discovery in the Resistance Era.Pharmaceuticals (Basel). 2022;15:413. [DOI] [PubMed] [PMC]
Ikokwu GM, Oseghale ID, Omoregie I, Ralph-Okhiria OH, Ighile EF. Emerging Trends in Antimicrobial Resistance and Novel Therapeutic Strategies.International Journal of Pathogen Research. 2023;12:10–26. [DOI]
Mohr KI. History of antibiotics research.Curr Top Microbiol Immunol. 2016;398:237–72. [DOI]
Iskandar K, Murugaiyan J, Halat DH, Hage SE, Chibabhai V, Adukkadukkam S, et al. Antibiotic Discovery and Resistance: The Chase and the Race.Antibiotics (Basel). 2022;11:182. [DOI] [PubMed] [PMC]
Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities.Molecules. 2015;20:5286–98. [DOI] [PubMed] [PMC]
Mustajab M. A Review on Antibiotics: History and Present.IJARIIE. 2021;7:379–83.
Cunha BRd, Fonseca LP, Calado CRC. Antibiotic Discovery: Where Have We Come from, Where Do We Go?Antibiotics (Basel). 2019;8:45. [DOI] [PubMed] [PMC]
Goethem MWV, Pierneef R, Bezuidt OKI, Peer YVD, Cowan DA, Makhalanyane TP. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils.Microbiome. 2018;6:40. [DOI] [PubMed] [PMC]
Poulin-Laprade D, Brouard J, Gagnon N, Turcotte A, Langlois A, Matte JJ, et al. Resistance determinants and their genetic context in enterobacteria from a longitudinal study of pigs reared under various husbandry conditions.Appl Environ Microbiol. 2021;87:e02612–20. [DOI] [PubMed] [PMC]
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Zhou QT, et al. Pharmacokinetics and pharmacodynamics of peptide antibiotics.Adv Drug Deliv Rev. 2022;183:114171. [DOI] [PubMed] [PMC]
Ullah H, Ali S. Classification of anti-bacterial agents and their functions. In: Kumavath RN, editor. Antibacterial Agents. IntechOpen; 2017. pp. 1–16. [DOI]
Xing H, Liu X, Lin J, Sun M, Huang J, Li X, et al. Trans-cinnamaldehyde inhibits Escherichia coli growth by regulating lipopolysaccharide accumulation.Food Bioscience. 2024;61:104559. [DOI]
Rani S, Singh H, Ram C. Efficacy and mechanism of carvacrol with octanoic acid against mastitis causing multi-drug-resistant pathogens.Braz J Microbiol. 2022;53:385–99. [DOI] [PubMed] [PMC]
Cheng Z, Si X, Tan H, Zang Z, Tian J, Shu C, et al. Cyanidin-3-O-glucoside and its phenolic metabolites ameliorate intestinal diseases via modulating intestinal mucosal immune system: potential mechanisms and therapeutic strategies.Crit Rev Food Sci Nutr. 2023;63:1629–47. [DOI] [PubMed]
Jiao F, Bao Y, Li M, Zhang Y, Zhang F, Wang P, et al. Unraveling the mechanism of ceftaroline-induced allosteric regulation in penicillin-binding protein 2a: insights for novel antibiotic development against methicillin-resistant Staphylococcus aureus.Antimicrob Agents Chemother. 2023;67:e0089523. [DOI] [PubMed] [PMC]
Cada DJ, Ingram K, Baker DE. Dalbavancin.Hosp Pharm. 2014;49:851–61. [DOI] [PubMed] [PMC]
Brade KD, Rybak JM, Rybak MJ. Oritavancin: A New Lipoglycopeptide Antibiotic in the Treatment of Gram-Positive Infections.Infect Dis Ther. 2016;5:1–15. [DOI] [PubMed] [PMC]
Katsnelson A. Making Natural Products Supernatural.ACS Cent Sci. 2024;10:1125–8. [DOI] [PubMed] [PMC]
Mitcheltree MJ, Pisipati A, Syroegin EA, Silvestre KJ, Klepacki D, Mason JD, et al. A synthetic antibiotic class overcoming bacterial multidrug resistance.Nature. 2021;599:507–12. [DOI] [PubMed] [PMC]
Ovung A, Bhattacharyya J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions.Biophys Rev. 2021;13:259–72. [DOI] [PubMed] [PMC]
Rahal JJ Jr, Simberkoff MS. Bactericidal and bacteriostatic action of chloramphenicol against memingeal pathogens.Antimicrob Agents Chemother. 1979;16:13–8. [DOI] [PubMed] [PMC]
Scarff JM, Waidyarachchi SL, Meyer CJ, Lane DJ, Chai W, Lemmon MM, et al. Aminomethyl spectinomycins: a novel antibacterial chemotype for biothreat pathogens.J Antibiot (Tokyo). 2019;72:693–701. [DOI] [PubMed] [PMC]
Quinlivan EP, McPartlin J, Weir DG, Scott J. Mechanism of the antimicrobial drug trimethoprim revisited.FASEB J. 2000;14:2519–24. [DOI] [PubMed]
El-Gamal MI, Brahim I, Hisham N, Aladdin R, Mohammed H, Bahaaeldin A. Recent updates of carbapenem antibiotics.Eur J Med Chem. 2017;131:185–95. [DOI] [PubMed]
Vaudaux P, Waldvogel FA. Gentamicin antibacterial activity in the presence of human polymorphonuclear leukocytes.Antimicrob Agents Chemother. 1979;16:743–9. [DOI] [PubMed] [PMC]
Ezelarab HAA, Abbas SH, Hassan HA, Abuo-Rahma GEA. Recent updates of fluoroquinolones as antibacterial agents.Arch Pharm (Weinheim). 2018;351:e1800141. [DOI] [PubMed]
Nagarajan R. Antibacterial activities and modes of action of vancomycin and related glycopeptides.Antimicrob Agents Chemother. 1991;35:605–9. [DOI] [PubMed] [PMC]
Rúben F, Amador P, Prudêncio C. β-Lactams: chemical structure, mode of action and mechanisms of resistance.Reviews and Research in Medical Microbiology. 2013;24:7–17. [DOI]
Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: An Overview.Cold Spring Harb Perspect Med. 2016;6:a027029. [DOI] [PubMed] [PMC]
Lenz KD, Klosterman KE, Mukundan H, Kubicek-Sutherland JZ. Macrolides: From Toxins to Therapeutics.Toxins (Basel). 2021;13:347. [DOI] [PubMed] [PMC]
Retsema J, Fu W. Macrolides: structures and microbial targets.Int J Antimicrob Agents. 2001;18:S3–10. [DOI] [PubMed]
Mendes CddS, Antunes AMdS. Pipeline of Known Chemical Classes of Antibiotics.Antibiotics (Basel). 2013;2:500–34. [DOI] [PubMed] [PMC]
Daghrir R, Drogui P. Tetracycline antibiotics in the environment: A review.Environ Chem Lett. 2013;11:209–27. [DOI]
Kocsis B, Domokos J, Szabo D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin.Ann Clin Microbiol Antimicrob. 2016;15:34. [DOI] [PubMed] [PMC]
Andriole VT. The quinolones: past, present, and future.Clin Infect Dis. 2005;41:S113–9. [DOI] [PubMed]
Suay-García B, Bueso-Bordils JI, Antón-Fos G, Pérez-Gracia MT, Falcó A, Alemán-López P. Synthesis of Quinolones and Zwitterionic Quinolonate Derivatives with Broad-Spectrum Antibiotic Activity.Pharmaceuticals. 2022;15:818. [DOI] [PubMed] [PMC]
Dai Y. Toxicity Study of Sulfonamides Antibiotics.Frontiers in Sustainable Development. 2024;4:109–21.
A. Greule and M. J. Cryle. The Glycopeptide Antibiotics. In: Liu HW, Begley TP, editors. Comprehensive Natural Products III. Oxford: Elsevier; 2020. pp. 247–83. [DOI]
Tian L, Shi S, Zhang X, Han F, Dong H. Newest perspectives of glycopeptide antibiotics: biosynthetic cascades, novel derivatives, and new appealing antimicrobial applications.World J Microbiol Biotechnol. 2023;39:67. [DOI] [PubMed] [PMC]
Hansen MH, Adamek M, Iftime D, Petras D, Schuseil F, Grond S, et al. Resurrecting ancestral antibiotics: unveiling the origins of modern lipid II targeting glycopeptides.Nat Commun. 2023;14:7842. [DOI] [PubMed] [PMC]
Etebu, Ebimieowei, and Ibemologi Arikekpar. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives.Int J Appl Microbiol Biotechnol Res. 2016;4:90–101.
Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation.Sci Prog. 2002;85:57–72. [DOI] [PubMed] [PMC]
Hudson AD, Jamieson O, Crapnell RD, Rurack K, Soares TCC, Mecozzi F, et al. Dual detection of nafcillin using a molecularly imprinted polymer-based platform coupled to thermal and fluorescence read-out.Mater Adv. 2021;2:5105–15. [DOI]
Bressler AM, Williams T, Culler EE, Zhu W, Lonsway D, Patel JB, et al. Correlation of penicillin Binding protein 2a detection with oxacillin resistance in Staphylococcus aureus and discovery of a novel penicillin binding protein 2a mutation.J Clin Microbiol. 2005;43:4541–4. [DOI] [PubMed] [PMC]
Grayson LM, Kucers A, Crowe S, McCarthy J, Mills J, Mouton J, editors. Kucers’ The Use of Antibiotics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs. CRC Press; 2010.
Ciriminna R, Fidalgo A, Meneguzzo F, Presentato A, Scurria A, Nuzzo D, et al. Pectin: A Long-Neglected Broad-Spectrum Antibacterial.ChemMedChem. 2020;15:2228–35. [DOI] [PubMed]
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, et al. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: A review.Front Pharmacol. 2024;15:1444781. [DOI] [PubMed] [PMC]
Luepke KH, Suda KJ, Boucher H, Russo RL, Bonney MW, Hunt TD, et al. Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications.Pharmacotherapy. 2017;37:71–84. [DOI] [PubMed]
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens.Pathogens. 2021;10:1310. [DOI] [PubMed] [PMC]
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria.AIMS Microbiol. 2018;4:482–501. [DOI] [PubMed] [PMC]
Francine P. Systems Biology: New Insight into Antibiotic Resistance.Microorganisms. 2022;10:2362. [DOI] [PubMed] [PMC]
Blaskovich MAT, Hansford KA, Butler MS, Jia Z, Mark AE, Cooper MA. Developments in Glycopeptide Antibiotics.ACS Infect Dis. 2018;4:715–35. [DOI] [PubMed] [PMC]
Sawa T, Moriyama K, Kinoshita M. Current status of bacteriophage therapy for severe bacterial infections.J Intensive Care. 2024;12:44. [DOI] [PubMed] [PMC]
Li G, Lai Z, Shan A. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections.Adv Sci (Weinh). 2023;10:e2206602. [DOI] [PubMed] [PMC]
Balcha FB, Neja SA. CRISPR-Cas9 mediated phage therapy as an alternative to antibiotics.Animal Diseases. 2023;3:4. [DOI]
Barber M. Drug combinations in antibacterial chemotherapy.Proc R Soc Med. 1965;58:990–5. [PubMed] [PMC]
Lorente-Torres B, Llano-Verdeja J, Castañera P, Ferrero HÁ, Fernández-Martínez S, Javadimarand F, et al. Innovative Strategies in Drug Repurposing to Tackle Intracellular Bacterial Pathogens.Antibiotics. 2024;13:834. [DOI] [PubMed] [PMC]
Elebiju OF, Oduselu GO, Ogunnupebi TA, Ajani OO, Adebiyi E. In Silico Design of Potential Small-Molecule Antibiotic Adjuvants against Salmonella typhimurium Ortho Acetyl Sulphydrylase Synthase to Address Antimicrobial Resistance.Pharmaceuticals (Basel). 2024;17:543. [DOI] [PubMed] [PMC]
Barragán-Cárdenas A, Castellar-Almonacid D, Vargas-Casanova Y, Parra-Giraldo C, Umaña-Pérez A, López-Meza J, et al. Enhanced breast cancer cell targeting: RGD integrin ligand potentiates RWQWRWQWR’s cytotoxicity and inhibits migration.Explor Drug Sci. 2024;2:369–88. [DOI]
Wankumbu SC, Ji XM, Xu M. Decoding vascular aging: implications for atherosclerosis progression and clinical intervention.Explor Drug Sci. 2024;2:449–72. [DOI]
Chaubey GK, Dilawari R, Modanwal R, Talukdar S, Dhiman A, Raje M. Metformin in COVID-19: a magical role beyond the hyperglycemia.Explor Drug Sci. 2024;2:428–48. [DOI]
Safe S. Natural products as anticancer agents and enhancing their efficacy by a mechanism-based precision approach.Explor Drug Sci. 2024;2:408–27. [DOI]
Ofir R. Plants and fungi metabolites as novel autophagy inducers and senescence inhibitors.Explor Drug Sci. 2024;2:361–8. [DOI]
Iqbal K, Milioudi A, Wicha SG. Pharmacokinetics and Pharmacodynamics of Tedizolid.Clin Pharmacokinet. 2022;61:489–503. [DOI] [PubMed] [PMC]
Zhanel GG, Schweizer F, Karlowsky JA. Oritavancin: mechanism of action.Clin Infect Dis. 2012;54:S214–9. [DOI] [PubMed]
Shirley M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections.Drugs. 2018;78:675–92. [DOI] [PubMed]
Dhillon S. Meropenem/Vaborbactam: A Review in Complicated Urinary Tract Infections.Drugs. 2018;78:1259–1270.Erratum in: Drugs. 2018;78:1383. [DOI] [PubMed] [PMC]
Stancil SL, Mirzayev F, Abdel-Rahman SM. Profiling Pretomanid as a Therapeutic Option for TB Infection: Evidence to Date.Drug Des Devel Ther. 2021;15:2815–30. [DOI] [PubMed] [PMC]
Veve MP, Wagner JL. Lefamulin: Review of a Promising Novel Pleuromutilin Antibiotic.Pharmacotherapy. 2018;38:935–46. [DOI] [PubMed]
Bunick CG, Keri J, Tanaka SK, Furey N, Damiani G, Johnson JL, et al. Antibacterial Mechanisms and Efficacy of Sarecycline in Animal Models of Infection and Inflammation.Antibiotics (Basel). 2021;10:439. [DOI] [PubMed] [PMC]
Clark JA, Burgess DS. Plazomicin: a new aminoglycoside in the fight against antimicrobial resistance.Ther Adv Infect Dis. 2020;7:2049936120952604. [DOI] [PubMed] [PMC]
Wang S, Zhao K, Chen Z, Liu D, Tang S, Sun C, et al. Halicin: A New Horizon in Antibacterial Therapy against Veterinary Pathogens.Antibiotics (Basel). 2024;13:492. [DOI] [PubMed] [PMC]
Mohammadi MR. Zoliflodacin: A hope to treat antibiotic-resistant Neisseria gonorrhoeae.Journal of Medical Bacteriology. 2023;11:27–35. [DOI]
Yang Q, Xu Y, Jia P, Zhu Y, Zhang J, Zhang G, et al. In vitro activity of sulbactam/durlobactam against clinical isolates of Acinetobacter baumannii collected in China.J Antimicrob Chemother. 2020;75:1833–9. [DOI] [PubMed]
Logan A, Wolfe A, Williamson JC. Antifungal Resistance and the Role of New Therapeutic Agents.Curr Infect Dis Rep. 2022;24:105–16. [DOI] [PubMed] [PMC]