Borsuah JF, Messer TL, Snow DD, Comfort SD, Mittelstet AR. Literature review: global neonicotinoid insecticide occurrence in aquatic environments.Water. 2020;12:3388. [DOI]
Sheets LP, Li AA, Minnema DJ, Collier RH, Creek MR, Peffer RC. A critical review of neonicotinoid insecticides for developmental neurotoxicity.Crit Rev Toxicol. 2016;46:153–90. [DOI] [PubMed] [PMC]
Hladik ML, Main AR, Goulson D. Environmental risks and challenges associated with neonicotinoid insecticides.Environ Sci Technol. 2018;52:3329–35. [DOI] [PubMed]
Yamamoto I. Nicotine to nicotinoids: 1962 to 1997. In: Yamamoto I, Casida JE, editors. Nicotinoid insecticides and the nicotinic acetylcholine receptor. Tokyo: Springer; 1999. pp. 3–27.
Kollmeyer WD, Flattum RF, Foster JP, Powell JE, Schroeder ME, Soloway SB. Discovery of the nitromethylene heterocycle insecticides. In: Yamamoto I, Casida JE, editors. Nicotinoid insecticides and the nicotinic acetylcholine receptor. Tokyo: Springer; 1999. pp. 71–89.
Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology: mechanisms of selective action.Annu Rev Pharmacol Toxicol. 2005;45:247–68. [DOI] [PubMed]
Verebová V, Staničová J. The effect of neonicotinoid insecticides on the structure and stability of bio-macromolecules.IntechOpen. 2022. [DOI]
Thompson DA, Lehmler HJ, Kolpin DW, Hladik ML, Vargo JD, Schilling KE, et al. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health.Environ Sci Process Impacts. 2020;22:1315–46. [DOI] [PubMed]
Blacquière T, Smagghe G, van Gestel CAM, Mommaerts V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment.Ecotoxicology. 2012;21:973–92. [DOI] [PubMed] [PMC]
Butler D. EU expected to vote on pesticide ban after major scientific review.Nature. 2018;555:150–1. [DOI] [PubMed]
Özdemir N. Neonicotinoid pesticides and effects on honeybee health.U Bee J. 2017;17:44–8. Turkish.
Cressey D. The bitter battle over the world’s most popular insecticides.Nature. 2017;551:156–8. [DOI] [PubMed]
Buszewski B, Bukowska M, Ligor M, Staneczko-Baranowska I. A holistic study of neonicotinoids neuroactive insecticides—properties, applications, occurrence, and analysis.Environ Sci Pollut Res. 2019;26:34723–40. [DOI] [PubMed] [PMC]
Yamamoto I, Casida JE, editors. Nicotinoid insecticides and the nicotinic acetylcholine receptor. Tokyo: Springer; 1999.
Matsuda K, Ihara M, Sattelle DB. Neonicotinoid insecticides: molecular targets, resistance, and toxicity.Annu Rev Pharmacol Toxicol. 2020;60:241–55. [DOI] [PubMed]
Alsafran M, Rizwan M, Usman K, Saleem MH, Al Jabri H. Neonicotinoid insecticides in the environment: a critical review of their distribution, transport, fate, and toxic effects.J Environ Chem Eng. 2022;10:108485. [DOI]
Wood TJ, Goulson D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013.Environ Sci Pollut Res Int. 2017;24:17285–325. [DOI] [PubMed] [PMC]
Seltenrich N. Catching up with popular pesticides: more human health studies are needed on neonicotinoids.Environ Health Perspect. 2017;125:A41–2. [DOI] [PubMed] [PMC]
Cimino AM, Boyles AL, Thayer KA, Perry MJ. Effects of neonicotinoid pesticide exposure on human health: a systematic review.Environ Health Perspect. 2016;125:155–62. [DOI] [PubMed] [PMC]
Zhang D, Lu S. Human exposure to neonicotinoids and the associated health risks: a review.Environ Int. 2022;163:107201. [DOI] [PubMed]
Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites.Environ Sci Pollut Res Int. 2015;22:5–34. [DOI] [PubMed] [PMC]
Hernández AF. Food safety: Pesticides.In: Caballero B, editor. Encyclopedia of human nutrition. 4th ed. Oxford: Academic Press; 2023. pp. 375–88.
Deng Y, Liu R, Zheng M, Wang Z, Yu S, Zhou Y, et al. From the first to third generation of neonicotinoids: implication for saving the loss of fruit quality and flavor by pesticide applications.J Agric Food Chem. 2022;70:15415–29. [DOI] [PubMed]
Akayama A, Minamida I. Discovery of a new systemic insecticide, nitenpyram and its insecticidal properties. In: Yamamoto I, Casida JE, editors. Nicotinoid insecticides and the nicotinic acetylcholine receptor. Tokyo: Springer; 1999. pp. 127–48.
Zhang Z, Zhang X, Wang Y, Zhao Y, Lin J, Liu F, et al. Nitenpyram, dinotefuran, and thiamethoxam used as seed treatments act as efficient controls against Aphis gossypii via high residues in cotton leaves.J Agric Food Chem. 2016;64:9276–85. [DOI] [PubMed]
Dobson P, Tinembart O, Fisch RD, Junquera P. Efficacy of nitenpyram as a systemic flea adulticide in dogs and cats.Vet Rec. 2000;147:709–13. [PubMed]
Nagata K, Aoyama E, Ikeda T, Shono T. Effects of nitenpyram on the neuronal nicotinic acetylcholine receptor-channel in rat phaeochromocytoma PC12 cells.J Pestic Sci. 1999;24:143–8. [DOI]
Zhu L, Qi S, Xue X, Niu X, Wu L. Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.).Environ Pollut. 2020;258:113671. [DOI] [PubMed]
Zhang GQ, Nie SQ, Long LP, Zeng DQ, Chen JX, Yang HX, et al. Determination of nitenpyram residue in cabbage and soil using gas chromatography.Se Pu. 2010;28:1103–6. Chinese. [PubMed]
Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S. Determination of acetamiprid, imidacloprid, and nitenpyram residues in vegetables and fruits by high-performance liquid chromatography with diode-array detection.J Agric Food Chem. 2002;50:4464–7. [DOI] [PubMed]
Liu J, Xiong WH, Ye LY, Zhang WS, Yang H. Developing a novel nanoscale porphyrinic metal-organic framework: a bifunctional platform with sensitive fluorescent detection and elimination of nitenpyram in agricultural environment.J Agric Food Chem. 2020;68:5572–8. [DOI] [PubMed]
Chen X, Li Y, Li J, Cao L, Yao C. An upconverted nanoparticle-porphyrin metal-organic framework platform for near-infrared detection of nitenpyram.Anal Methods. 2023;15:2946–54. [DOI] [PubMed]
Yoshida T, Murakawa H, Toda K. Determination of nitenpyram and its metabolites in agricultural products by using hydrophilic interaction liquid chromatography-tandem mass spectrometry.J Pestic Sci. 2013;38:27–32. [DOI]
Ge S, Wang Y, Song Q, Chen L, Zhang Y, Hu D. Determination of nitenpyram dissipation and residue in kiwifruit by LC-MS/MS.Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020;37:955–62. [DOI] [PubMed]
Kiriyama K, Nishimura K. Structural effects of dinotefuran and analogues in insecticidal and neural activities.Pest Manag Sci. 2002;58:669–76. [DOI] [PubMed]
Wakita T, Yasui N, Yamada E, Kishi D. Development of a novel insecticide, dinotefuran.J Pestic Sci. 2005;30:122–33. [DOI]
Wakita T, Kinoshita K, Yamada E, Yasui N, Kawahara N, Naoi A, et al. The discovery of dinotefuran: a novel neonicotinoid.Pest Manag Sci. 2003;59:1016–22. [DOI] [PubMed]
Corbel V, Duchon S, Zaim M, Jougard JM. Dinotefuran: a potential neonicotinoid insecticide against resistant mosquitoes.J Med Entomol. 2004;41:712–7. [DOI] [PubMed]
Franc M, Genchi C, Bouhsira E, Warin S, Kaltsatos V, Baduel L, et al. Efficacy of dinotefuran, permethrin and pyriproxyfen combination spot-on against Aedes aegypti mosquitoes on dogs.Vet Parasitol. 2012;189:333–7. [DOI] [PubMed]
Bouhsira E, Lienard E, Jacquiet P, Warin S, Kaltsatos V, Baduel L, et al. Efficacy of permethrin, dinotefuran and pyriproxyfen on adult fleas, flea eggs collection, and flea egg development following transplantation of mature female fleas (Ctenocephalides felis felis) from cats to dogs.Vet Parasitol. 2012;190:541–6. [DOI] [PubMed]
Dryden MW, Payne PA, Vicki S, Kobuszewski D. Efficacy of topically applied dinotefuran formulations and orally administered spinosad tablets against the KS1 flea strain infesting dogs.Int J Appl Res Vet Med. 2011;9:124–9.
Bai A, Chen A, Chen W, Liu S, Luo X, Liu Y, et al. Residue behavior, transfer and risk assessment of tolfenpyrad, dinotefuran and its metabolites during tea growing and tea brewing.J Sci Food Agric. 2021;101:5992–6000. [DOI] [PubMed]
Underwood R, Breeman B, Benton J, Bielski J, Palkendo J, Betts T. Are non-target honey bees (hymenoptera: apidae) exposed to dinotefuran from spotted lanternfly (hemiptera: fulgoridae) trap trees?J Econ Entomol. 2019;112:2993–6. [DOI] [PubMed]
Huang M, Dong J, Guo H, Xiao M, Wang D. Identification of circular RNAs and corresponding regulatory networks reveals potential roles in the brains of honey bee workers exposed to dinotefuran.Pestic Biochem Phys. 2022;180:104994. [DOI] [PubMed]
Zhang Q, Fu L, Cang T, Tang T, Guo M, Zhou B, et al. Toxicological effect and molecular mechanism of the chiral neonicotinoid dinotefuran in honeybees.Environ Sci Technol. 2022;56:1104–12. [DOI] [PubMed]
Chen Z, Yao X, Dong F, Duan H, Shao X, Chen X, et al. Ecological toxicity reduction of dinotefuran to honeybee: new perspective from an enantiomeric level.Environ Int. 2019;130:104854. [DOI] [PubMed]
Chen X, Dong F, Liu X, Xu J, Li J, Li Y, et al. Enantioselective separation and determination of the dinotefuran enantiomers in rice, tomato and apple by HPLC.J Sep Sci. 2012;35:200–5. [DOI] [PubMed]
Rahman MM, Abd El-Aty AM, Kabir MH, Chung HS, Lee HS, Hacımüftüoğlu F, et al. A quick and effective methodology for analyzing dinotefuran and its highly polar metabolites in plum using liquid chromatography-tandem mass spectrometry.Food Chem. 2018;239:1235–43. [DOI] [PubMed]
Kammoun S, Mulhauser B, Aebi A, Mitchell EAD, Glauser G. Ultra-trace level determination of neonicotinoids in honey as a tool for assessing environmental contamination.Environ Pollut. 2019;247:964–72. [DOI] [PubMed]
Amelin VG, Bol’shakov DS, Andoralov AM. Determination of neonicotinoid insecticides in natural waters by high-resolution time-of-flight mass spectrometry with direct electrospray ionization of samples.J Anal Chem. 2017;72:178–82. [DOI]
Li X, Ma W, Yang B, Tu M, Zhang Q, Li H. Impurity profiling of dinotefuran by high resolution mass spectrometry and SIRIUS tool.Molecules. 2022;27:5251. [DOI] [PubMed] [PMC]
Brett CMA, Brett AMO. Electrochemistry: principles, methods, and applications. Oxford: Oxford University Press; 1993.
Ozkan SA, Kauffmann JM, Zuman P. Electroanalysis in biomedical and pharmaceutical sciences. Heidelberg: Springer; 2015.
Özbek O, Berkel C. Recent advances in potentiometric analysis: paper–based devices.Sens Int. 2022;3:100189. [DOI]
Bakker E, Pretsch E. Potentiometric sensors for trace-level analysis.TrAC Trends Anal Chem. 2005;24:199–207.
Zosel J. Amperometry. In: Kreysa G, Ota Ki, Savinell RF, editors. Encyclopedia of applied electrochemistry. New York: Springer; 2014. pp. 65–73. [DOI] [PubMed] [PMC]
Feliz FS, Angnes L. Fast and accurate analysis of drugs using amperometry associated with flow injection analysis.J Pharm Sci. 2010;99:4784–804. [DOI] [PubMed]
Mosharov EV, Sulzer D. Analysis of exocytotic events recorded by amperometry.Nat Methods. 2005;2:651–8. [DOI] [PubMed]
Zuman P. Principles of applications of polarography and voltammetry in the analysis of drugs.FABAD J Pharm Sci. 2006;31:97–115.
Kounavez SP. Voltammetric techniques. In: Settle FA, editor. Handbook of instrumental techniques for analytical chemistry. New Jersey: Prentice Hall PTR; 1997. pp. 709–25.
Ozkan SA. Principles and techniques of electroanalytical stripping methods for pharmaceutically active compounds in dosage forms and biological samples.Curr Pharm Anal. 2009;5:127–43. [DOI]
Bard AJ, Faulkner LR, editors. Electrochemical methods: fundamentals and applications. 2nd ed. New York: John Wiley & Sons Inc.; 2001.
Papp Z, Guzsvány V, Švancara I, Vytřas K. Voltammetric monitoring of photodegradation of clothianidin, nitenpyram and imidacloprid insecticides using a tricresyl phosphate-based carbon paste electrode.Int J Electrochem Sci. 2006;6:5161–71. [DOI]
Brycht M, Vajdle O, Zbiljić J, Papp Z, Guzsvány V, Skrzypek S. Renewable silver-amalgam film electrode for direct cathodic SWV determination of clothianidin, nitenpyram and thiacloprid neonicotinoid insecticides reducible in a fairly negative potential range.Int J Electrochem Sci. 2012;7:10652–65. [DOI]
Dong X, Jiang D, Liu Q, Han E, Zhang X, Guan X, et al. Enhanced amperometric sensing for direct detection of nitenpyram via synergistic effect of copper nanoparticles and nitrogen-doped graphene.J Electroanal Chem. 2014;734:25–30. [DOI]
Lezi N, Economou A. Voltammetric determination of neonicotinoid pesticides at disposable screen-printed sensors featuring a sputtered bismuth electrode.Electroanalysis. 2015;27:2313–21. [DOI]
Zhang M, Zhang H, Zhai X, Yang X, Zhao H, Wang J, et al. Application of β-cyclodextrin-reduced graphene oxide nanosheets for enhanced electrochemical sensing nitenpyram residue in real samples.New J Chem. 2017;41:2169–77. [DOI]
Wang H, Pan L, Liu Y, Ye Y, Yao S. Electrochemical sensing of nitenpyram based on the binary nanohybrid of hydroxylated multiwall carbon nanotubes/single-wall carbon nanohorns.J Electroanal Chem. 2020;862:113955. [DOI]
Ai J, Wang X, Zhang Y, Hu H, Zhou H, Duan Y, et al. A sensitive electrochemical sensor for nitenpyram detection based on CeO2/MWCNTs nanocomposite.Appl Phys A. 2022;128:831. [DOI]
Ammasai K. Electrochemical detection of nitenpyram pesticide using nanoparticles synthesized from waste plastics.J Environ Eng. 2023;149:04023043. [DOI]
Smarzewska S, Skrzypek S, Ciesielski W. Renewable silver amalgam film electrode for the determination of dinotefuran in spiked carrot juice samples using SW voltammetry.Electroanal. 2012;24:1591–6. [DOI]
Zhang M, Zhai XC, Yang X, Zhao HT, Dong AJ, Zhang H, et al. Rapid and sensitive determination of dinotefuran residue based on electrochemical enhancement of β-cyclodextrin-graphene composite.Electroanal. 2016;28:1495–503. [DOI]
Abdel-Ghany MF, Hussein LA, El Azab NF. Novel potentiometric sensors for the determination of the dinotefuran insecticide residue levels in cucumber and soil samples.Talanta. 2017;164:518–28. [DOI] [PubMed]
Wang Q, Zhangsun H, Zhao Y, Zhuang Y, Xu Z, Bu T, et al. Macro-meso-microporous carbon composite derived from hydrophilic metal-organic framework as high-performance electrochemical sensor for neonicotinoid determination.J Hazard Mater. 2021;411:125122. [DOI] [PubMed]
Zhangsun H, Wang Q, Xu Z, Wang J, Wang X, Zhao Y, et al. NiCu nanoalloy embedded in N-doped porous carbon composite as superior electrochemical sensor for neonicotinoid determination.Food Chem. 2022;384:132607. [DOI] [PubMed]