Moreda-Pineiro J, Moreda-Pineiro A. Combined assisted extraction techniques as green sample pre-treatments in food analysis.TrAC Trends Anal Chem. 2019;118:1−18. [DOI]
Kokosa JM. A guide to recent trends in green applications of liquid phase microextraction for bioanalytical sample preparations.Sustain Chem Pharm. 2021;22:100478. [DOI]
Poole CF. Chapter 1 - Milestones in the development of liquid-phase extraction techniques. In: Poole CF, editor. Liquid-Phase Extraction. Elsevier; 2020. pp. 1−44. [DOI]
Tobiszewski M, Mechlińska A, Namieśnik J. Green analytical chemistry—theory and practice.Chem Soc Rev. 2010;39:2869−78. [DOI] [PubMed]
Kokosa JM, Przyjazny A. Green microextraction methodologies for sample preparations.Green Anal Chem. 2022;3:100023. [DOI]
Anastassiades M, Lehotay SJ, Stajnbaher D, Schenk FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce.J AOAC Int. 2003;86:412−31. [PubMed]
Varela-Martínez DA, González-Sálamo J, González-Curbelo MÁ, Hernández-Borges J. Chapter 14 - Quick, easy cheap, effective, rugged, and safe (QuEChERS) extractions. In: Poole CF, editor. Liquid-Phase Extraction. Elsevier; 2020. pp. 399−437. [DOI]
Santana-Mayor A, Rodríguez-Ramos R, Herrera-Herrera AV, Socas-Rodríguez B, Rodríguez-Delgado MA. Updated overview of QuEChERS applications in food, environmental and biological analysis (2020−2023).TrAC Trends Anal Chem. 2023;169:117375. [DOI]
Lehotay SJ. The QuEChERSER mega-method.LCGC North Am. 2022;40:13−9. [DOI]
Moreda-Piñeiro J, Moreda-Piñeiro A. Recent advances in coupled green assisted extraction techniques for foodstuff analysis.TrAC Trends Anal Chem. 2023;169:117411. [DOI]
Porto-Figueira P, Camacho I, Câmara JS. Exploring the potentialities of an improved ultrasound-assisted quick, easy, cheap, effective, rugged, and safe-based extraction technique combined with ultrahigh pressure liquid chromatography-fluorescence detection for determination of Zearaleone in cereals.J Chromatogr A. 2015;1408:187−96. [DOI] [PubMed]
Gałuszka A, Magaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices.TrAC Trends Anal Chem. 2013;50:78−84. [DOI]
López-Lorente ÁI, Pena-Pereira F, Petersen-Bjergaard S, Zuin VG, Ozkan SA, Psillakis E. The ten principles of green sample preparation.TrAC Trends Anal Chem. 2022;148:116530. [DOI]
Kokosa JM. Principles for developing greener liquid-phase microextraction methods.TrAC Trends Anal Chem. 2023;167:117256. [DOI]
National environmental methods index [Internet].[Cited 2023 Dec 12]. Available from: https://www.nemi.gov/home/
Keith LH, Gron LU, Young JL. Green analytical methodologies.Chem Rev. 2007;107:2695−708. [DOI] [PubMed]
Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J. Analytical eco-scale for assessing the greenness of analytical procedures.TrAC Trends Anal Chem. 2012;37:61−72. [DOI]
Płotka-Wasylka J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index.Talanta. 2018;181:204−9. [DOI] [PubMed]
Ballester-Caudet A, Campíns-Falcó P, Pérez B, Sancho R, Lorente M, Sastre G, et al. A new tool for evaluating and/or selecting analytical methods: summarizing the information in a hexagon.TrAC Trends Anal Chem. 2019;118:538−47. [DOI]
Nowak PM, Kościelniak P. What color is your method? Adaptation of the RGB additive color model to analytical method evaluation.Anal Chem. 2019;91:10343−52. [DOI] [PubMed]
Pena-Periera F, Wojnowski M. Tobiszewski M. AGREE—analytical greenness metric approach and software.Anal Chem. 2020;92:10076−82. [DOI] [PubMed] [PMC]
Nowak PM, Wietecha-Posluszny R, Pawliszyn J. White analytical chemistry: an approach to reconcile the principles of green analytical chemistry and functionality.TrAC Trends Anal Chem. 2021;138:116223. [DOI]
Płotka-Wasylka J, Wojnowski W. Complementary green analytical procedure index (ComplexGAPI) and software.Green Chem. 2021;23:8657−65. [DOI]
Wojnowski W, Tobiszewski M, Pena-Periera F, Psillakis E. AGREEprep − analytical greenness metric for sample preparation.TrAC Trends Anal Chem. 2022;149:116553. [DOI]
Nowak PM, Wietecha-Posłuszny R, Płotka-Wasylka J, Tobiszewski M. How to evaluate methods used in chemical laboratories in terms of the total chemical risk? − A Chlortox Scale.Green Anal Chem. 2023;5:100056. [DOI]
Nowak PM, Bis A, Zima A. Chlortox base − a useful source of information on popular reagents in terms of chemical hazards and greenness assessment.Green Anal Chem. 2023;6:100065. [DOI]
Nowak PM, Bis A, Rusin M, Woźniakiewicz M. Carbon footprint of the analytical laboratory and the three-dimensional approach to its reduction.Green Anal Chem. 2023;4:100051. [DOI]
Nowak PM, Kościelniak P, Tobiszewski M, Ballester-Caudet A, Campíns-Falcó P. Overview of the three multicriteria approaches applied to a global assessment of analytical methods.TrAC Trends Anal Chem. 2020;133:116065. [DOI]
Kannaiah KP, Sugumaran A, Chanduluru HK, Rathinam S. Environmental impact of greenness assessment tools in liquid chromatography − a review.Microchem J. 2021;170:106685. [DOI]
Sajid M, Płotka-Wasylka J. Green analytical chemistry metrics: a review.Talanta. 2022;238:123046. [DOI] [PubMed]
Martinez J, Cortés JF, Miranda R. Green chemistry metrics, a review.Processes. 2022;10:1274. [DOI]
Derbenev IN, Dowden J, Twycross J, Hirst JD. Software tools for green and sustainable chemistry.Curr Opin Green Sustain Chem. 2022;35:1000623. [DOI]
Ferreira SS, Brito TA, Santana APR, Guimarães TGS, Lamarca RS, Ferreira KC, et al. Greenness of procedures using NADES in the preparation of vegetal samples: comparison of five green metrics.Talanta Open. 2022;6:100131. [DOI]
Ballester-Caudet A, Navarro-Utiel R, Campos-Hernández I, Campíns-Falcó P. Evaluation of the sample treatment influence in green and sustainable assessment of liquid chromatography methods by the HEXAGON tool: sulfanate-based dyes determination in meet samples.Green Anal Chem. 2022;3:100024. [DOI]
Dazat RE, Mammana SB, Canizo BV, Silva MF, Gomez FJV. Enhanced fluorescence detection of ergosterol by hydrophobic fluorescent natural deep eutectic solvent.Green Anal Chem. 2022;3:100026. [DOI]
Narloch I, Wejnerowska G. Comparison of the effectiveness and environmental impact of selected methods for the determination of fatty acids in milk samples.Molecules. 2022;27:8242. [DOI] [PubMed] [PMC]
Mandrioli R, Cirrincioni M, Mladěnka P, Protti M, Mercolini L. Green analytical chemistry (GAC) applications in sample preparation for the analysis of anthocyanins in products and by-products from plant sources.Adv Sample Prep. 2022;3:100037. [DOI]
Socas-Rodríguez B, Mendiola JA, Rodríguez-Delgado MÁ, Ibáñez E, Cifuentes A. Safety assessment of citrus and olive by-products using a sustainable methodology based on natural deep eutectic solvents.J Chromatogr A. 2022;1669:462922. [DOI] [PubMed]
El-Masry AA, El-Wasseef DR, Eid M, Shehata IA, Zeid AM. Development of three ecological spectroscopic methods for analysis of betrixaban either alone or in mixture with lercanidipine: greenness assessment.R Soc Open Sci. 2022;9:211457. [DOI] [PubMed] [PMC]
Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, et al. Tools and techniques for solvent selection: green solvent selection guides.Sustainable Chem Processes. 2016;4:7. [DOI]
Kokosa JM. Selecting an extraction solvent for a greener liquid phase microextraction (LPME) mode-based analytical method.TrAC Trends Anal Chem. 2019;118:238−47. [DOI]
Zhang Y, Chen M, Li L, Lv Y, Ma Q. Recent advances in microextraction techniques using sustainable green solvents for mass spectrometry analysis.TrAC Trends Anal Chem. 2024;170:117412. [DOI]
Flieger J, Flieger M. Ionic liquids toxicity—benefits and threats.Int J Mol Sci. 2020;21:6267. [DOI] [PubMed] [PMC]
Martínez GM, Townley GG, Martínez-Espinosa RM. Controversy on the toxic nature of deep eutectic solvents and their potential contribution to environmental pollution.Heliyon. 2022;8:e12567. [DOI] [PubMed] [PMC]
Chen J, Li Y, Wang X, Liu W. Application of deep eutectic solvents in food analysis: a review.Molecules. 2019;24:4594. [DOI] [PubMed] [PMC]
Huang J, Guo X, Xu T, Fan L, Zhou X, Wu S. Iionic deep eutectic solvents for the extraction and separation of natural products.J Chromatogr A. 2019;1598:1−19. [DOI] [PubMed]
Lu W, Liu S, Wu Z. Recent application of deep eutectic solvents as green solvent in dispersive liquid-liquid microextraction of trace level chemical contaminants in food and water.Crit Rev Anal Chem. 2022;52:504−18. [DOI] [PubMed]
Farooq MQ, Abbasi NB, Anderson JL. Deep eutectic solvents in separations: methods of preparation, polarity, and applications in extractions and capillary electrochromatography.J Chromatogr A. 2020;1633:461613. [DOI] [PubMed]
Ortega-Zamora C, González-Sálamo J, Hernández-Borges J. Deep eutectic solvents application in food analysis.Molecules. 2021;26:6846. [DOI] [PubMed] [PMC]
Tang W, An Y, Row KH. Emerging applications of (micro) extraction phase from hydrophilic to hydrophobic deep eutectic solvents: opportunities and trends.TrAC Trends Anal Chem. 2021;136:116187. [DOI]
Boatang ID. A critical review of emerging hydrophobic deep eutectic solvents’ applications in food chemistry: Trends and opportunities.J Agric Food Chem. 2022;70:11860−79. [DOI] [PubMed]
Omar KA, Sadeghi R. Physicochemical properties of deep eutectic solvents: a review.J Mol Liq. 2022;360:119524. [DOI]
Santos LB, Assis RS, Barreto JA, Bezerra MA, Novaes CG, Lemos VA. Deep eutectic solvents in liquid-phase microextraction: contribution to green chemistry.TrAC Trends Anal Chem. 2022;146:116478. [DOI]
Coelho de Andrade D, Monteiro SA, Marib J. A review on recent applications of deep eutectic solvents in microextraction techniques for the analysis of biological matrices.Adv Sample Prep. 2022;1:100007. [DOI]
Kamal El-Deen A, Abdallah N, Elmansi H, Belal F, Magdy G. Applications of deep eutectic solvents in microextraction and chromatographic separation techniques: Latest developments, challenges, and prospects.Talanta. 2023;265:124813. [DOI] [PubMed]
Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, et al. Application of deep eutectic solvents in analytical sample pretreatment (update 2017−2022). Part A: liquid phase microextraction.Michrochem J. 2023;189:108509. [DOI]
Cannavacciuolo C, Pagliari S, Frigerio J, Giustra CM, Labra M, Campone L. Natural deep eutectic solvents (NADESs) combined with sustainable extraction techniques: a review of the green chemistry approach in food analysis.Foods. 2022;12:56. [DOI] [PubMed] [PMC]
Vokh C, Koronkiewicz S. Surfactants application in sample preparation techniques: insights, trends, and perspectives.TrAC Trends Anal Chem. 2023;165:117143. [DOI]
Trivedi S, Juneja S, Khokhar V, Pandey S. Chapter 7 - Solvation within deep eutectic solvent-based systems: a review. In: Inamuddin, Altalhi T, editors. Green sustainable process for chemical and environmental engineering and science: green solvents and extraction technology. Elsevier; 2023. pp.145−92. [DOI]
Nazraz M, Yamini Y, Ramezani AM, Dinmohammadpour Z. Deep eutectic solvent dependent carbon dioxide switching as a homogeneous extracting solvent in liquid-liquid microextraction.J Chromatogr A. 2021;1636:461756. [DOI] [PubMed]
Zhang J, Li S, Yao L, Yi Y, Shen L, Li Z, et al. Responsive switchable deep eutectic solvents: a review.Chin Chem Lett. 2023;34:107750. [DOI]
Herce-Sesa B, López-López JA, Moreno C. Advances in ionic liquids and deep eutectic solvents-based liquid phase microextraction of metals for sample preparation in environmental analytical chemistry.TrAC Trends Anal Chem. 2021;143:116398. [DOI]
Llaver M, Fiorentini EF, Quintas PY, Oviedo MN, Arenas MBB, Wuilloud RG. Task-specific ionic liquids: applications in sample preparation and the chemistry behind their selectivity.Adv Sample Prep. 2022;1:100004. [DOI]
Delińska K, Yavir K, Kloskowski A. Ionic liquids in extraction techniques: Determination of pesticides in food and environmental samples.TrAC Trends Anal Chem. 2021;143:116396. [DOI]
Fiorentini EF, Llaver M, Oviedo MN, Quintas PY, Wuilloud RG. State-of-the-art analytical methods based on ionic liquids for food and beverage analysis.Green Anal Chem. 2022;1:100002. [DOI]
Llaver M, Mafra G, Marib J, Lucena R, Wuilloud RG, Carasek E. 16 - Ionic liquids. In: Lucena R, Cárdenas S, editors. Analytical sample preparation with nano- and other high-performance materials. Elsevier; 2021. pp. 427−51. [DOI]
Chatzimitakos T, Anagnostou P, Constantinou I, Dakidi K, Stalikas C. Magnetic ionic liquids in sample preparation: recent advances and future trends.Separations. 2021;8:153. [DOI]
Alves MS, Neto LCF, Scheid C, Merib J. An overview of magnetic ionic liquids: from synthetic strategies to applications in microextraction techniques.J Sep Sci. 2022;45:258−81. [DOI] [PubMed]
González-Martín R, Lodoso-Ruiz E, Trujillo-Rodríguez MJ, Pino V. Magnetic ionic liquids in analytical microextraction: a tutorial review.J Chromatogr A. 2022;1685:463577. [DOI] [PubMed]
Shi R, Zhou F, Chen Y, Liu Z, Liu S, Mu T. Magnetic deep eutectic solvents: formation and properties.Phys Chem Chem Phys. 2022;24:20073−81. [DOI] [PubMed]
Makoś-Chełstowska P, Kaykhaii M, Płotka-Wasylka J, de la Guardia M. Magnetic deep eutectic solvents − fundamentals and applications.J Mol Liq. 2022;365:120158. [DOI]
Aguirre MÁ, Canals A. Magnetic deep eutectic solvents in microextraction techniques.TrAC Trends Anal Chem. 2022;146:116500. [DOI]
Ma M, Cantwell FF. Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration: preconcentration into a single microdrop.Anal Chem. 1999;71:388−93. [DOI]
Ramos L. Solvent microextraction: theory and practice.Chromatographia. 2010;72:1237. [DOI]
Jeannot MA, Przyjazny A, Kokosa JM. Single drop microextraction—development, applications and future trends.J Chromatogr A. 2010;1217:2326−36. [DOI] [PubMed]
Kokosa JM. Solvent microextraction. Reference module in chemistry, molecular sciences and chemical engineering. Elsevier; 2015. [DOI]
Yamini Y, Rezazadeh M, Seidi S. Liquid-phase microextraction − The different principles and configurations.TrAC Trends Anal Chem. 2019;112:264−72. [DOI]
Rutkowska M, Płotka-Wasylka J, Sajid M, Andruch V. Liquid-phase microextraction: a review of reviews.Microchem J. 2019;149:103989. [DOI]
Agrawal A, Keçili R, Ghorbani-Bidkorbeh F, Hussain CM. Green miniaturized technologies in analytical and bioanalytical chemistry.TrAC Trends Anal Chem. 2021;143:116383. [DOI]
Câmara JS, Perestrelo R, Olayanju B, Berenguer CV, Kabir A, Pereira JAM. Overview of different modes and applications of liquid phase-based microextraction techniques.Processes. 2022;10:1347. [DOI]
Jalili V, Barkhordari A, Ghiasvand A. Liquid-phase microextraction of polycyclic aromatic hydrocarbons: a review.Rev Anal Chem. 2020;39:1−19. [DOI]
Song X, Huang X. Recent developments in microextraction techniques for detection and speciation of heavy metals.Adv Sample Prep. 2022;2:100019. [DOI]
Nithya K, Sathish A. Chapter 8 - Introductory chapter: understanding green chemistry principles for extraction of green solvents. In: Inamuddin, Altalhi T, editors. Green sustainable process for chemical and environmental engineering and science: green solvents and extraction technology. Elsevier; 2023. pp.193−216. [DOI]
Tintrop LK, Salemi A, Jochmann MA, Engewald WR, Schmidt TC. Improving greenness and sustainability of standard methods by microextraction techniques: a critical review.Anal Chim Acta. 2023;1271:341468. [DOI] [PubMed]
Esteve-Turrillas FA, Gsrrigues S, de la Guardia M. Green extraction techniques in green analytical chemistry: a 2019−2023 up-date.TrAC Trends Anal Chem. 2024;170:117464. [DOI]
Alsharif AMA, Huat TG, Mun CY, Lawal A. Liquid phase microextraction for analysis of mycotoxins in food samples: review.Res J Chen Environ Sci. 2015;3:05−21.
Sharifi V, Abbasi A, Nasrati A. Applicattion of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction techniques in analytical toxicology.J Food Drug Anal. 2016;24:264−76. [DOI] [PubMed] [PMC]
Demirhan B, Kara HES, Demirhan BE. Overview of green sample preparation techniques in food analysis. In: Stauffer M, editor. Ideas and applications toward sample preparation for food and beverage analysis. London: Intechopen; 2017. [DOI]
Diuzheva A, Locatelli M, Tartaglia A, Goga M, Ferrone V, Carlucci G, et al. Application of liquid-phase microextraction to the analyses of plant and herbal samples.Phytochem Anal. 2020;31:687−99. [DOI] [PubMed]
Eticha S. A review: sample preparation methods for the pesticide residue analysis in food samples.Int J Pharm Chem. 2020;6:65−76. [DOI]
Chormey DS, Zaman BT, Kasa NA, Bakirdere S. Liquid phase microextraction strategies and their application in the determination of endocrine disruptive compounds in food samples.TrAC Trends Anal Chem. 2020;128:115917. [DOI]
Khatibi SA, Hamidi S, Siahi-Shadbad MR. Application of liquid-liquid extraction for the determination of antibiotics in the foodstuff: recent trends and developments.Crit Rev Anal Chem. 2022;52:327−42. [DOI] [PubMed]
Jigirami MS, Soylak M. Review: microextraction technique based new trends in food analysis.Crit Rev Anal Chem. 2022;52:968−99. [DOI] [PubMed]
Jagirani MS, Ozalp O, Soylak M. New trend in the extraction of pesticides from the environmental and food samples applying microextraction based green chemistry scenario: a review.Crit Rev Anal Chem. 2022;52:1343−69. [DOI] [PubMed]
Jayasinghe GDTM, Jinadasa BKKK, Pohl P, Abdelkarim A. Critical review on microextraction techniques used an determination of histamine in food samples.Discov Food. 2022;2:8. [DOI]
Câmara JS, Perestrelo R, Berenguer CV, Andrade CFP, Gomes TM, Olayanju B, et al. Green extraction techniques as advanced sample preparation approaches in biological, food, and environmental matrices: a review.Molecules. 2022;27:2953. [DOI] [PubMed] [PMC]
Schettino L, Peris-Pastor G, Benedé JL, Chisvert A. A comprehensive review on the use of microextraction techniques in the analysis of cosmetic products.Adv Sample Prep. 2022;3:100024. [DOI]
Pereira JAM, Casado N, Porto-Figueira P, Câmara JS. The potential of microextraction techniques for the analysis of bioactive compounds in food.Front Nutr. 2022;9:825519. [DOI] [PubMed] [PMC]
Berenguer CV, Garcia-Cansino L, Garcia MÁ, Marina ML, Câmara JS, Pereira JAM. Exploring the potential of the microextraction in the survey of food fruits and vegetable safety.Appl Sci. 2023;13:7117. [DOI]
Vakh C, Tobiszewski M. Greenness assessment of analytical methods used for antibiotic residues determination in food samples.TrAC Trends Anal Chem. 2023;166:117162. [DOI]
Pourali A, Abbasalizadeh A, Afshar Mogaddam MR, Farajzadeh MA, Tuzen M, Nemati M. Liquid phase microextraction of hazardous compounds in dairy products; principal and practical aspects.Crit Rev Anal Chem. 2023;[Epub ahead of print]. [DOI] [PubMed]
Chen Y, Li H, Huang H, Zhang B, Ye Z, Yu X, et al. Recent advances in non-targeted screening of compounds in plastic-based/paper-based food contact materials.Foods. 2023;12:4135. [DOI] [PubMed] [PMC]
Zhao J, Quinto M, Zakia F, Li D. Microextraction of essential oils: a review.J Chromatogr A. 2023;1708:464357. [DOI] [PubMed]
Sebastià A, Pallarés N, Bridgeman L, Juan-García A, Castagnini JM, Ferrer E, et al. A critical review of acrylamide green extraction and determination in food matrices: current insights and future perspectives.TrAC Trends Anal Chem. 2023;167:117267. [DOI]
Kokosa JM. Recent trends in using single-drop microextraction and related techniques in green analytical methods.TrAC Trends Anal Chem. 2015;71:194−204. [DOI]
Mogaddam MRA, Mohebbi A, Pazhohan A, Khodadadeian F, Farajzadeh MA. Headspace mode of liquid phase microextraction: a review.TrAC Trends Anal Chem. 2019;110:8−14. [DOI]
Delove Tegladza I, Qi T, Chen T, Alorku K, Tang S, Shen W, et al. Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review.J Hazard Mater. 2020;393:122403. [DOI] [PubMed]
Jain A, Verma KK. Chapter 15 - Single-drop microextraction. In: Poole CF, editor. Liquid-Phase Extraction. Elsevier; 2020. pp. 439−72. [DOI]
Dmitrienko SG, Apyari VV, Tolmacheva VV, Gorbunova MV. Liquid−liquid extraction of organic compounds into a single drop of the extractant: overview of reviews.J Anal Chem. 2021;76:907−19. [DOI]
Pano-Farias NS, Ceballos-Magaña SG, Muñiz-Valencia R, Jurado JM, Alcázar Á, Aguayo-Villarreal IA. Direct immersion single drop micro-extraction method for multi-class pesticides analysis in mango using GC−MS.Food Chem. 2017;237:30−8. [DOI] [PubMed]
Jahromi Z, Mostafavi A, Shamspur T, Mohamadi M. Magnetic ionic liquid assisted single-drop microextraction of ascorbic acid before its voltammetric determination.J Sep Sci. 2017;40:4041−9. [DOI] [PubMed]
Li X, Li H, Ma W, Guo Z, Li X, Li X, et al. Determination of patulin in apple juice by single-drop liquid-liquid-liquid microextraction coupled with liquid chromatography-mass spectrometry.Food Chem. 2018;257:1−6. [DOI] [PubMed]
Saraji M, Javadian S. Single-drop microextraction combined with gas chromatography-electron capture detection for the determination of acrylamine in food samples.Food Chem. 2019;274:55−60. [DOI] [PubMed]
Mafra G, Vieira AA, Merib J, Anderson JL, Carasek E. Single drop microextraction in a 96-well plate format: a step toward automated and high-throughput analysis.Anal Chim Acta. 2019;1063:159−66. [DOI] [PubMed]
Ferreira VJ, Lemos VA, Teixeira LSG. Dynamic reversed-phase liquid-liquid microextraction for the determination of Cd, Cr, Mn, and Ni in vegetable oils by energy dispersive X-ray fluorescence spectroscopy.J Food Comps Anal. 2023;117:105098. [DOI]
Gholivand MB, Abolghasemi MM, Piryaei M, Maassoumi SM, Papzan A. Microwave distillation followed by headspace single drop microextraction coupled to gas chromatography-mass spectroscopy (GC-MS) for fast analysis of volatile components of Echinophora platyloba DC.Food Chem. 2013;138:251−5. [DOI] [PubMed]
Abreu DCP, Botrel BMC, Bazana MJF, E Rosa PV, Sales PF, Marques MDS, et al. Development and comparative analysis of single-drop and solid-phase microextraction techniques in the residual determination of 2-phenoxyethanol in fish.Food Chem. 2019;270:487−93. [DOI] [PubMed]
Triaux Z, Petitjean H, Marchioni E, Boltoeva M, Marcie C. Deep eutectic solvent−based headspace single-drop microextraction for the quantification of terpenes in spices.Anal Bioanal Chem. 2020;412:933−48. [DOI] [PubMed]
Abolghasemi MM, Piryaei M, Imani RM. Deep eutectic solvents as extraction phase in head-space single-drop microextraction for determination of pesticides in fruit juice and vegetable samples.Microchem J. 2020;158:105041. [DOI]
Mehravar A, Feizbakhsh A, Sarafi AHM, Konoz E, Faraji H. Deep eutectic solvent-based headspace single-drop microextraction of polycyclic aromatic hydrocarbons in aqueous samples.J Chromatogr A. 2020;1632:461618. [DOI] [PubMed]
Jain A, Soni S, Verma KK. Combined liquid phase microextraction and fiber-optics-based cuvetteless micro-spectrophotometry for sensitive determination of ammonia in water and food samples by the indophenol reaction.Food Chem. 2021;340:128156. [DOI] [PubMed]
Rafiei Jam M, Nezhadali A, Kaykhaii M. Application of gas flow headspace liquid phase micro extraction coupled with gas chromatography-mass spectrometry for determination of 4-methylimidazole in food samples employing experimental design optimization.BMC Chem. 2022;16:29. [DOI] [PubMed] [PMC]
Alsharif AM, Tan GH, Choo YM, Lawal A. Efficiency of hollow fiber liquid-phase microextraction chromatography methods in the separation of organic compounds: a review.J Chromatogr Sci. 2017;55:378−91. [DOI] [PubMed]
Prosen H. Applications of hollow-fiber and related microextraction techniques for the determination of pesticides in environmental and food samples—a mini review.Separations. 2019;6:57. [DOI]
Pedersen-Bjergaard S. Chapter 8 - Microextraction with supported liquid membranes. In: Poole CF, editor. Liquid-phase extraction. Elsevier; 2020. pp. 241−63. [DOI]
Khan WA, Arain MB, Yamini Y, Shah N, Kazi TG, Pedersen-Bjergaard S, et al. Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals.J Pharm Anal. 2020;10:109−22. [DOI] [PubMed] [PMC]
Olasupo A, Suah FBM. Trends in hollow fiber liquid phase microextraction for the preconcentration of pharmaceutically active compounds in aqueous solution: a case for polymer inclusion membrane.J Hazard Mater. 2022;431:128573. [DOI] [PubMed]
Gjelstad A. Three-phase hollow fiber liquid-phase microextraction and parallel artificial liquid membrane extraction.TrAC Trends Anal Chem. 2019;113:25−31. [DOI]
Huang C, Jensen H, Seip KF, Gjelstad A, Pedersen-Bjergaard S. Mass transfer in electromembrane extraction—the link between theory and experiments.J Sep Sci. 2016;39:188−97. [DOI] [PubMed]
Drouin N, Kubáň P, Rudaz S, Pedersen-Bjergaard S, Schappler J. Electromembrane extraction: overview of the last decade.TrAC Trends Anal Chem. 2019;113:357−63. [DOI]
Skaalvik TG, Øiestad EL, Trones R, Pedersen-Bjergaard S, Hegstad S. Determination of psychoactive drugs in serum using conductive vial electromembrane extraction combined with UHPLC-MS/MS.J Chromatogr B. 2021;1183:122926. [DOI] [PubMed]
Shi L, Chen M, Zhao G, Wang X, Fan M, Liu R, et al. Environmental Applications of Electromembrane Extraction: A Review.Membranes (Basel). 2023;13:705. [DOI] [PubMed] [PMC]
Li J, Zhu R, Shen X, Huang C. Functional materials and chemicals in electromembrane extraction.TrAC Trends Anal Chem. 2022;150:116574. [DOI]
Hansen FA, Petersen-Bjergaard S. Electromembrane extraction − looking closer into the liquid membrane.Adv Sample Prep. 2022;2:100020. [DOI]
Martins RO, de Araujo GL, Simas RC, Chaves AR. Electromembrane extraction (EME): fundamentals and applications.Talanta Open. 2023;7:100200. [DOI]
Sun X, Zhu F, Xi J, Lu T, Liu H, Tong Y, et al. Hollow fiber liquid-phase microextraction as clean-up step for the determination of organophosphorus pesticides residues in fish tissue by gas chromatography coupled with mass spectrometry.Mar Pollut Bull. 2011;63:102−7. [DOI] [PubMed]
González-Curbelo MÁ, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MÁ. Determination of organophosphorus pesticides and metabolites in cereal-based baby foods and wheat flour by means of ultrasound-assisted extraction and hollow-fiber liquid-phase microextraction prior to gas chromatography with nitrogen phosphorus detection.J Chromatogr A. 2013;1313:166−74. [DOI] [PubMed]
Tajik M, Yamini Y, Esrafili A, Ebrahimpour B. Automated hollow fiber microextraction based on two immiscible organic solvents for the extraction of two hormonal drugs.J Pharm Biomed Anal. 2015;107:24−31. [DOI] [PubMed]
Afshar Mogaddam MR, Farajzadeh MA, Mohebbi A, Nemati M. Hollow fiber-liquid phase microextraction method based on a new deep eutectic solvent for extraction and derivatization of some phenolic compounds in the beverage samples packed in plastics.Talanta. 2020;216:120986. [DOI] [PubMed]
Bouchouareb K, Combes A, Pichon V. Parallel artificial liquid membrane extraction of organophosphorus nerve agent degradation products from environmental samples.Anal Chim Acta. 2022;1190:339261. [DOI] [PubMed]
González-Domínguez R, Sayago A, Santos-Martín M, Fernández-Recamales Á. Hollow-fiber liquid-phase micro-extraction method for the simultaneous derivatization, extraction, and pre-concentration of organotin compounds from packed fruit juices.Food Anal Methods. 2023;16:63−70. [DOI]
Moret S, Hidalgo M, Sanchez JM. Hollow-fiber liquid-phase microextraction (HF-LPME) coupled on-line to liquid chromatography for the determination of the herbicides 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid and their main metabolites in soil samples.Separations. 2023;10:273. [DOI]
Moema D, Makwakwa TA, Gebreyohannes BE, Dube S, Nindi MM. Hollow fiber liquid phase microextraction of fluoroquinolones in chicken livers followed by high pressure liquid chromatography: greenness assessment using National Environmental Methods Index label (NEMI), green analytical procedure index (GAPI), Analytical GREEnness metric (AGREE) and Eco Scale.J Food Compos Anal. 2023;117:105131. [DOI]
Larenzo-Parodi N, Kaziur-Cegla W, Gjelstad A, Schmidt TC. Liquid-phase microextraction of aromatic amines: hollow fiber−liquid-phase microextraction and parallel artificial liquid membrane extraction comparison.Anal Bioanal Chem. 2023;415:1765−76. [DOI] [PubMed] [PMC]
Díaz-Álvarez M, Turiel E, Martín-Esteban A. Hydrophobic natural deep eutectic solvents based on L-menthol as supported liquid membrane for hollow fiber liquid phase microextraction of triazines from water and urine samples.Microchem J. 2023;194:109347. [DOI]
Khajeh M, Fard S, Bohlooli M, Ghaffari-Moghaddam M, Khatibi A. Extraction of caffein and gallic acid from coffee by electrokinetic methods coupled with a hollow-fiber membrane.J Food Process Eng. 2017;40:e12565. [DOI]
Rezaee M, Ebrahimi M, Shoeibi S. Developed and rapid extraction of melamine in infant formulae by combined electromembrane with nano graphene oxide reinforced hollow fiber.Iran J Chem Chem Eng. 2022;41:1835−43. [DOI]
Nsubuga H, Basheer C, Bushra MM, Essa MH, Omar MH, Shemsi AM. Microwave-assisted digestion followed by parallel electromembrane extraction for trace level perchlorate detection in biological samples.J Chromatogr B. 2016;1012-1013:1−7. [DOI] [PubMed]
Goodarzi L, Bayatloo MR, Chalavi S, Nojavan S, Rahmani T, Azimi SB. Selective extraction and determination of Cr(VI) in food samples based on tandem electromembrane extraction followed by electrothermal atomic absorption spectrometry.Food Chem. 2022;373:131442. [DOI] [PubMed]
Román-Hidalgo C, López-Pérez G, Villar-Navarro M, Martín-Valero MJ. Green electromembrane extraction procedure based on biodegradable chitosan films for determination of polyphenolic compounds in food samples: greenness assessment of the sample preparation approach.Talanta. 2023;253:124034. [DOI]
Šandrejová J, Campillo N, Viñas P, Andruch V. Classification and terminology in dispersive liquid-liquid microextraction.Microchem J. 2016;127:184−6. [DOI]
Sajid M. Dispersive liquid-liquid microextraction coupled with derivatization: a review of different modes, applications, and green aspects.TrAC Trends Anal Chem. 2018;106:169−82. [DOI]
Teshale A, Taye A. Review on recent development and application of dispersive liquid-liquid micro extraction.Chem Mater Res. 2019;11:1−15. [DOI]
Dmitrienko SG, Apyaria VV, Tolmacheva VV, Gorbunova MV. Dispersive liquid-liquid microextraction of organic compounds: an overview of reviews.J Anal Chem. 2020;75:1237−51. [DOI]
Kokosa JM. Chapter 16 - Dispersive liquid-liquid microextraction. In: Poole CF, editor. Liquid-phase extraction. Elsevier; 2020. pp. 473−97. [DOI]
Lasarte-Aragonés G, Lucena R, Cárdenas S. Effervescence-assisted microextraction—one decade of developments.Molecules. 2020;25:6053. [DOI] [PubMed] [PMC]
Grau J, Azorín C, Benedé JL, Chisvert A, Salvador A. Use of green alternative solvents in dispersive liquid-liquid microextraction: a review.J Sep Sci. 2022;45:210−22. [DOI] [PubMed]
Pacheco-Fernández I, González-Martín R, E Silva FA, Freire MG, Pino V. Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media − a review.Anal Chim Acta. 2021;1143:225−49. [DOI] [PubMed]
Ramezani AM, Ahmadi R, Yamini Y. Homogeneous liquid-liquid microextraction based on deep eutectic solvents.TrAC Trends Anal Chem. 2022;149:116566. [DOI]
Faraji H. Advancements in overcoming challenges in dispersive liquid-liquid microextraction: An overview of advanced strategies.TrAC Trends Anal Chem. 2024;170:117429. [DOI]
Ahmadi R, Azooz EA, Yamini Y, Ramezani AM. Liquid-liquid microextraction techniques based on in-situ formation/decomposition of deep eutectic solvents.TrAC Trends Anal Chem. 2023;161:117019. [DOI]
Uliah N, Tuzen M. A comprehensive review on recent developments and future perspectives of switchable solvents and their applications in sample preparation techniques.Green Chem. 2023;25:1729−48. [DOI]
El-Deen AK, Elmansi H, Belal F, Magdy G. Recent advances in dispersion strategies for dispersive liquid-liquid microextraction from green chemistry perspectives.Michrochem J. 2023;191:108807. [DOI]
Barzegar F, Kamankesh M, Mohammadi A. Development and application of microwave-assisted extraction and advanced low density microextraction technique coupled with high-performance liquid chromatography for the successful determination of heterocyclic aromatic amines in barbecued meat sample and method optimization using response surface methodology.J Food Meas Charact. 2019;13:1755−64. [DOI]
Mardani A, Torbati M, Farazjadeh MA, Mohebbi A, Alizadeh AA, Afshar Mogaddam MR. Development of temperature-assisted solidification of floating organic droplet-based dispersive liquid-liquid microextraction performed during centrifugation for extraction of organochlorine pesticide residues in cocoa powder prior to GC-ECD.Chem Pap. 2021;75:1691−700. [DOI]
Tian H, Feng Y, Yang X, Li S, Pang C, Ma C. Development of a new and facile method for determination of chlorpyrifos residues in green tea by dispersive liquid-liquid microextraction.Sci Rep. 2022;12:15542. [DOI] [PubMed] [PMC]
Fan C, Wang H, Liu Y, Cao X. New deep eutectic solvent based superparamagnetic nanofluid for determination of perfluoroalkyl substances in edible oils.Talanta. 2021;228:122214. [DOI] [PubMed]
Mostafa A, Shaaban H, Algarni AM, Alghamdi M, Alsultan S, Al-Saeed JS, et al. Vortex-assisted dispersive liquid-liquid microextraction using thymol based natural deep eutectic solvent for trace analysis of sulfonamides in water samples: assessment of the greenness profile using AGREE metric, GAPI and analytical eco-scale.Microchem J. 2022;183:107976. [DOI]
Zhang K, Guo R, Wang Y, Nie Q, Zhu G. One-step derivatization and temperature-controlled vortex-assisted liquid-liquid microextraction based on the solidification of floating deep eutectic solvents coupled to UV-Vis spectrophotometry for the rapid determination of total iron in water and food samples.Food Chem. 2022;384:132414. [DOI] [PubMed]
Feng J, Zhao Z, Li J, Shen Z, Yang Y, Wang Z, et al. Vortex-assisted dispersive liquid-liquid microextraction based on the solidification of sedimentary deep eutectic solvents for the determination of triazine and phenylurea herbicides in milk samples.Anal Methods. 2022;14:460−8. [DOI] [PubMed]
Wang M, Zhao L, Niu Y, Qin S, Zhang L, Jia L, et al. Magnetic deep eutectic solvent-based dispersive liquid−liquid microextraction in determination of strobilurin fungicides in water, juice, and vinegar by high-performance liquid chromatography.Food Chem X. 2023;18:100711. [DOI] [PubMed] [PMC]
Bai B, Guo Y, Meng S, Chen S, Bo T, Zhang J, et al. Determination of flavonoid compounds in Shanxi aged vinegars based on hydrophobic deep eutectic solvent VALLME-HPLC method: assessment of the environmental impact of the developed method.Molecules. 2023;28:5619. [DOI] [PubMed] [PMC]
Campone L, Celano R, Piccinelli AL, Pagano I, Cicero N, Sanzo RD, et al. Ultrsound assisted dispersive liquid-liquid microextraction for fast and accurate analysis of chloramphenicol in honey.Food Res Int. 2019;115:572−9. [DOI] [PubMed]
Tavakoli M, Jamali MR, Nezhadali A. Ultrasound-assisted dispersive liquid-liquid microextraction (DLLME) based on solidification of floating organic drop using a deep eutectic solvent for simultaneous preconcentration and determination of Nickel and Cobalt in food and water samples.Anal Lett. 2021;54:2863−73. [DOI]
Shirani M, Akbari-adergani B, Shahdadi F, Faraji M, Akbari A. A hydrophobic deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction for determination of β-lactam antibiotics residues in food samples.Food Anal Methods. 2022;15:391−400. [DOI]
Elik A, Altunay N. Ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of floating organic drop for analysis of propineb in water and food samples: experimental modeling.Sustainable Chem Pharm. 2023;35:101215. [DOI]
Elik A, Fesliyan S, Gürsoy N, Haq HU, Castro-Muñoz R, Altunay N. An air-assisted dispersive liquid phase microextraction method based on a hydrophobic magnetic deep eutectic solvent for the extraction and preconcentration of melamine from milk and milk-based products.Food Chem. 2023;426:136573. [DOI] [PubMed]
Mogaddam MRA, Farajzadeh MA, Tuzen M, Jouyban A, Kandaghi J. Organic solvent-free elevated temperature liquid−liquid extraction combined with a new switchable deep eutectic solvent-based dispersive liquid−liquid microextraction of three phenolic antioxidants from oil samples.Microchem J. 2021;168:106433. [DOI]
Santos LB, dos Santos de Assis R, Silva UN, Lemos VA. Switchable-hydrophilicity solvent-based liquid-phase microextraction in an on-line system: cobalt determination in food and water samples.Talanta. 2022;238:123038. [DOI] [PubMed]
Wang H, Wang T, Hong M, Wang Z, Jin X, Wu H. Direct solidification of switchable-hydrophilicity salicylic acid: a design for on-site dispersive liquid-liquid microextraction of benzoylurea insecticides in water and honey samples.J Chromatogr A. 2023;1688:463710. [DOI] [PubMed]
Ma W, Row KH. pH-induced deep eutectic solvents based homogeneous liquid-liquid microextraction for the extraction of two antibiotics from environmental water.Microchem J. 2021;160:105642. [DOI]
Yao T, Du K. Simultaneous determination of sulfonamides in milk: in-situ magnetic ionic liquid dispersive liquid-liquid microextraction coupled with HPLC.Food Chem. 2020;331:127342. [DOI] [PubMed]
Timofeeva I, Stepanova K, Bulatov A. In-a-syringe surfactant-assisted dispersive liquid-liquid microextraction of polycyclic aromatic hydrocarbons in supramolecular solvent from tea infusion.Talanta. 2021;224:121888. [DOI] [PubMed]
Nemati M, Afshar Mogaddam MR, Farazajdeh MA, Tuzen M, Khandaghi J. In-situ formation/decomposition of deep eutectic solvent during solidification of floating organic droplet-liquid-liquid microextraction method for the extraction of some antibiotics from honey prior to high performance liquid chromatography-tandem mass spectrometry.J Chromatogr A. 2021;1660:462653. [DOI] [PubMed]
Piao H, Jiang Y, Qin Z, Ma P, Sun Y, Wang X, et al. Application of an in-situ formulated magnetic deep eutectic solvent for the determination of triazine herbicides in rice.Talanta. 2021;222:121527. [DOI] [PubMed]
Ramos-Payán M. Liquid - phase microextraction and electromembrane extraction in millifluidic devices:a tutorial.Anal Chim Acta. 2019;1080:12−21. [DOI] [PubMed]
Timofeeva I, Nugbienyo L, Pochivalov A, Vakh C, Shishov A, Bulatov A. Flow-based methods and their applications in chemical analysis.ChemTexts. 2021;7:24. [DOI]
Yamamoto K, Ota N, Tanaka Y. Nanofluid devices and applications for biological analyses.Anal Chem. 2021;93:332−49. [DOI] [PubMed]
Schüller M, Hansen FA, Skaalvik TG, Pedersen-Bjergaard S. Conductive vial electromembrane extraction − Principles and practical operation.Anal Sci Adv. 2023;4:236−43. [DOI] [PubMed] [PMC]
Alidoust M, Baharfar M, Manouchehri M, Yamini Y, TajikM, Seidi S. Emergence of microfluidic devices in sample extraction; an overview of diverse methodologies, principals, and recent advancements.TrAC Trends Anal Chem. 2021;143:116352. [DOI]
Cunha ML, da Silva SS, Stracke MC, Zanette DL, Aoki MN, Blanes L. Sample preparation for lab-on-a-chip systems in molecular diagnosis: a review.Anal Chem. 2022;94:41−58. [DOI] [PubMed]
Hansen FA, Petersen NJ, Kutter JP, Pedersen-Bjergaard S. Electromembrane extraction in microfluidic formats.J Sep Sci. 2022;45:246−57. [DOI] [PubMed]
Mafra G, Will C, Huelsmann R, Merib J, Carasek E. A proof-of-concept of parallel single-drop microextraction for the rapid and sensitive biomonitoring of pesticides in urine.J Sep Sci. 2021;44:1961−8. [DOI] [PubMed]
Morelli DC, Bernardi G, Morés L, Pierri ME, Carasek E. A green - high throughput −extraction method based on hydrophobic natural deep eutectic solvent for the determination of emerging contaminants in water by high performance liquid chromatography − diode array detection.J Chromatogr A. 2020;1626:461377. [DOI] [PubMed]
Lopes D, Morés L, da Silva M, Schneider M, Merib J, Carasek E. Determination of hormones in urine by hollow fiber microporous membrane liquid−liquid extraction associated with 96-well plate system and HPLC-FLD detection.J Chromatogr B. 2022;1207:123406. [DOI] [PubMed]
Ju Z, Fan J, Meng Z, Lu R, Gao H, Zhou W. A high-throughput semi-automated dispersive liquid−liquid microextraction based on deep eutectic solvent for the determination of neonicotinoid pesticides in edible oils.Microchem J. 2023;185:108193. [DOI]
Schüller M, Tran KTT, Øiestad EL, Pedersen-Bjergaard S. Membrane-based liquid-phase microextraction of basic pharmaceuticals − A study on the optimal extraction window.J Chromatogr A. 2022;1664:462769. [DOI] [PubMed]
Santigosa-Murillo E, Moreno A, Ramos-Payán M, Ríos JM, Muñoz-Berbel X, Muñoz M, et al. A novel integrated platform enabling simultaneous microextraction and chemical analysis on-chip.Microchem J. 2023;193:109044. [DOI]
Zarghampour F, Yamini Y, Baharfar M, Faraji M. Electromembrane extraction of biogenic amines in food samples by a microfluidic-chip system followed by dabsyl derivatization prior to high performance liquid chromatography analysis.J Chromatogr A. 2018;1556:21−8. [DOI] [PubMed]
Lehotay SJ. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study.J AOAC Int. 2007;20:485−520. [PubMed]
AOAC official method 2007.01. Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. First action 2007.AOAC International; c2007 [cited 2023 Dec 12]. Available from: https://nucleus.iaea.org/sites/fcris/Shared%20Documents/SOP/AOAC_2007_01.pdf
Payá P, Anastassiades M, Mack D, Sigalova I, Tasdelen B, Oliva J, et al. Analysis of pesticide residue using the quick easy cheap effective rugged and safe (QuEChEERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection.Anal Bioanal Chem. 2007;389:1697−714. [DOI] [PubMed]
BS EN 15662:2018.Foods of plant origin. Metamethod for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE. Modular QuEChERS-method. European Standard; c2024 [cited 2023 Dec 12]. Available from: https://www.en-standard.eu/esn-en-15662
Casedo N, Perestrelo R, Silva CL, Sierra I, Câmara JS. An improved and miniaturized analytical strategy based on μ-QuEChERS for isolation of polyphenols. A powerful approach for quality control of baby foods.Microchem J. 2018;139:110−8. [DOI]
Izcara S, Casado N, Morante-Zercero S, Sierra I. A miniaturized QuEChERS method combined with ultrahigh liquid chromatography coupled to tandem mass spectrometry for the analysis of pyrrolizidine alkaloids in organic samples.Foods. 2020;9:1319. [DOI] [PubMed] [PMC]
González-Gómez L, Morante-Zarcero S, Pereira JAM, Câmara JS, Sierra I. Improved analytical approach for determination of tropane alkaloids in leafy vegetables based on μ-QuEChERS combined with HPLC-MS/MS.Toxins (Basel). 2022;14:650. [DOI] [PubMed] [PMC]
Câmara JS, Fernandes P, Barros N, Perestrelo R. An improve analytical approach based on μ-QuEChERS combined with LC-ESI/MS for monitoring the occurrence and levels of patulin in commercial apple juices.Separations. 2023;10:149. [DOI]
García-Cansino L, García MÁ, Marina ML, Câmara JS, Pereira JAM. Simultaneous microextraction of pesticides from wastewater using optimized μSPEed and μ-QuEChERS techniques for food contamination analysis.Heliyon. 2023;9:e16742. [DOI] [PubMed] [PMC]
Rodrigues CA, Lourenção Zomer AP, Faria DR, Kioshima ES, Boeing JS, de Oliveira Santos Júnior O, et al. A new miniaturized analytical method based on the μ-QuEChERS method for the determination of capsicinoids, cytotoxicity, antioxidant, and antifungal activities of red pepper extracts (Capsicum spp.). Cryptocurrency Research on SSRN [Preprint]. 2023 [cited 2024 Mar 13]. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4627193
Zhou S, Chen H, Wu B, Ma C, Ye Y. Sensitive determination of carbamates in fruit and vegetables by a combination of solid-phase extraction and dispersive liquid-liquid microextraction prior to HPLC.Microchim Acta. 2012;176:419−27. [DOI]
Kamankesh M, Barzegar F, Shariatifar N, Mohammadi A. The measurement of hazardous biogenic amines in non-alcoholic beers: efficient and applicable miniaturized electro-membrane extraction joined to gas chromatography-mass spectrometry.Foods. 2023;12:1141. [DOI] [PubMed] [PMC]
Kamal El-Deen A, Shimizu K. Modified μ-QuEChERS coupled to diethyl carbonate-based liquid microextraction for PAHs determination in coffee, tea, and water prior to GC-MS analysis: an insight to reducing the impact of caffein on the GC-MS measurement.J Chromatogr B. 2021;1171:122555. [DOI] [PubMed]
Li J, Shan J, Kong Z, Fan C, Zhang Z, Fan B. Determining multi-pesticide residues in teas by dispersive solid phase extraction combined with speed-regulated directly sustended droplet microextraction followed by gas chromatography−tandem mass spectrometry.J Sep Sci. 2020;43:486−95. [DOI] [PubMed]
Wang XC, Shu B, Li S, Yang ZG, Qui B. QuEChERS followed by dispersive liquid−liquid microextraction based on solidification of floating organic droplet method for organochlorine pesticides analysis in fish.Talanta. 2017;162:90−7. [DOI] [PubMed]
Lawal A, Wong RCS, Tan GH, Abdulra’uf LB, Alsharif AMA. Multi-pesticide residues determination in samples of fruits and vegetables using chemometrics approach to QuEChERS-dSPE coupled with ionic liquid-based DLLME and LC−MS/MS.Chromatographia. 2018;81:759−68. [DOI]
Abdel Ghani SB, Alhewairini SS, Hrouzková S. A fast and easy QuEChERS-DLLME method combined with GC-MS for Ethion and Bifenthrin residues determination and study of their dissipation dynamics in palm dates.Food Anal Methods. 2018;11:3542−50. [DOI]
Farazjadeh MA, Sohrabi H, Mohebbi A, Afshar mogaddam MR. Combination of a modified quick, easy, cheap, efficient, rugged, and safe extraction method with a deep eutectic solvent based microwave-assisted dispersive liquid-liquid microextraction: Application in extraction and preconcentration of multiclass pesticide residues in tomato samples.J Sep Sci. 2019;42:1273−80. [DOI] [PubMed]
Nagyová S, Tölgyessy P. Validation including uncertainty estimation of a GC−MS/MS method for determination of selected halogenated priority substances in fish using rapid and efficient lipid removing sample preparation.Foods. 2019;8:101. [DOI] [PubMed] [PMC]
Slámová T, Sadowska-Rociek A, Fraňková A, Surma M, Banout J. Application of QuEChERS-EMR-Lipid-DLLME method for the determination of polycyclic aromatic hydrocarbons in smoked food of animal origin.J Food Compos Anal. 2020;87:103420. [DOI]
Agus BAP, Hussain N, Selamat J. Quantification of PAH4 in roasted cocoa beans using QuEChERS and dispersive liquid-liquid micro-extraction (DLLME) coupled with HPLC-FLD.Food Chem. 2020;303:125398. [DOI] [PubMed]
Szarka A, Búčiková K, Kostić I, Hrouzková S. Development of a multiresidue QuEChERS−DLLME−fast GC−MS method for determination of selected pesticides in yogurt samples.Food Anal Methods. 2020;13:1829−41. [DOI]
Okšová L, Tölgyessy P. Determination of hexabromocyclododecanes in fish using modified QuEChERS method with efficient extract clean-up prior to liquid chromatography−tandem mass spectroscopy.Separations. 2020;7:44. [DOI]
Ma L, Wang Y, Li H, Peng F, Qiu B, Yang Z. Development of QuEChERS-DLLME method for determination of nicotinamide pesticide residues in grains by liquid chromatography-tandem mass spectrometry.Food Chem. 2020;331:127190. [DOI] [PubMed]
Zhao Q, Zhou YL, Yue SW, Lou YJ, Feng YQ. Combination of modified QuEChERS and disposable polyethylene pipet assisted DLLME based on low density solvent extraction for rapid and sensitive determination of fipronil and its metabolites in eggs by GC-MS.Food Anal Methods. 2021;14:1021−32. [DOI]
Lawal A, Low KH. Residual determination of multiple pesticides in vegetable samples by LC-MS/MS coupled with modified QuEChERS-dSPE ionic liquid-based DLLME method.J Turk Chem Soc Sect A. 2021;8:693−704. [DOI]
Yu L, Guo G, Zhao J, Zhao L, Xia A, He X, et al. Determination of organochlorine pesticides in green leafy vegetable samples via Fe3O4 magnetic nanoparticles modified QuEChERS integrated to dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry.J Anal Methods Chem. 2021;2021:6622063. [DOI] [PubMed] [PMC]