Concentration (mg g–1 of dry sample) of main phenolic compounds and antioxidant activity (DPPH and ABTS methods, expressed as TE, and TPC expressed as GAE) in SWE extracts of Mentha x rotundifolia from different annuities obtained with a s/v of 0.08 g mL–1 at 120ºC for 5 min and with 2 extraction cycles
Samples
Concentration (mg g–1 of dry sample)
TPC (GAE, mg mL–1)
ABTS (TE, mg mL–1)
DPPH (TE, mg mL–1)
Luteolin 7-O-glucoside
Rosmarinic acid
Salvianolic acid B
Caffeic acid
Chlorogenic acid
MR14
0.047 (0.003)*,a
4.16 (0.02)a
0.49 (0.01)a
0.059 (0.006)a
0.004 (0.001)a
6.8 (0.5)b
11.6 (1.4)a
11.0 (0.3)a
MR15
0.051 (0.001)a
3.62 (0.02)a,b
0.32 (0.02)a
0.06 (0.01)a
0.0044 (0.0003)a
8.2 (0.8)a
16.2 (0.6)a
11.0 (1.2)a
MR16
0.050 (0.006)a
3.36 (0.04)b
0.345 (0.001)a
0.039 (0.005)a
0.0032 (0.0003)a
5.7 (0.1)b
13.41 (1.69)a
12.4 (0.1)a
MR17
0.06 (0.03)a
2.5 (0.1)c
0.5 (0.1)a
0.043 (0.008)a
0.0033 (0.0007)a
6.5 (0.2)b
15.75 (1.17)a
10.4 (0.4)a
Mean value and standard deviation in parentheses (n = 3); a,b,c different letters in the same column indicate significant (P < 0.05) differences among extracts of M. rotundifolia collected in different annuities
Authors thank Dr. Julia Navarro Rocha for providing the M. rotundifolia samples under study, Dr. Mar Villamiel for her assistance on the use of UAE facilities, and Drashti Mansukhani for her technical support on SWE experiments.
The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This work is part of the I+D+I projects, funded by the Fundación Ramón Areces [CIVP17A2843]; Ministry of Science and Innovation [PID2019-106405GB-I00/MCIN/AEI/10.13039/501100011033]; the Comunidad of Madrid and European from FSE and FEDER programs [S2018/BAA-4393, AVANSECAL-II-CM]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Salehi B, Stojanović-Radić Z, Matejić J, Sharopov F, Antolak H, Kręgiel D, et al. Plants of genus Mentha: from farm to food factory.Plants (Basel). 2018;7:70. [DOI] [PubMed] [PMC]
Gholamipourfard K, Salehi M, Banchio E. Mentha piperita phytochemicals in agriculture, food industry and medicine: features and applications.S Afri J Bot. 2021;141:183–95. [DOI]
Wani SA, Naik HR, Wagay JA, Ganie NA, Mulla MZ, Dar BN. Mentha: a review on its bioactive compounds and potential health benefits.Qual Assur Saf Crops Foods. 2022;14:154–68. [DOI]
Anwar F, Abbas A, Mehmood T, Gilani AH, Rehman NU. Mentha: a genus rich in vital nutra-pharmaceuticals—a review.Phytother Res. 2019;33:2548–70. [DOI] [PubMed]
Leblalta A, Daoud H, Semcheddine C, Demirtas İ. Antifungal activity of Mentha rotundifolia essential oil against Fusarium oxysporum.IJIAAR. 2020;4:56–68. [DOI]
Yakhlef G, Hambaba L, Pinto DCGA, Silva AMS. Chemical composition and insecticidal, repellent and antifungal activities of essential oil of Mentha rotundifolia (L.) from Algeria.Ind Crops Prod. 2020;158:112988. [DOI]
Haouel-Hamdi S, Soltani A, Jmal R, Messaoud C, Zaouali Y, Boushih E, et al. Use of binary mixtures of three Mentha essential oils for the control of rice weevil Sitophilus oryzae (Curculionidae).Int J Trop Insect Sci. 2021;41:1333–42. [DOI]
García-Sarrió MJ, Sanz ML, Sanz J, González-Coloma A, Soria AC. A new method for microwave assisted ethanolic extraction of Mentha rotundifolia bioactive terpenoids.Electrophoresis. 2018;39:1957–65. [DOI] [PubMed]
Riahi L, Chakroun H, Klay I, Masmoudi AS, Cherif A, Zoghlami N. Metabolomic fingerprint of Mentha rotundifolia L. leaf tissues promotes this species as a potential candidate for sustainable production of biologically active molecules.J Complemen Integr Med. 2019;16:20180048. [DOI] [PubMed]
Herrero M, Sánchez-Camargo ADP, Cifuentes A, Ibáñez E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction.Trends Anal Chem. 2015;71:26–38. [DOI]
Dai J, Orsat V, Raghavan GSV, Yaylayan V. Investigation of various factors for the extraction of peppermint (Mentha piperita L.) leaves.J Food Eng. 2010;96:540–3. [DOI]
Kaoui S, Chebli B, Baddi GA, Basaid K, Mir Y. Response surface modeling and optimization of the extraction conditions using lactic acid-based deep eutectic solvents as green alternative extraction media for Mentha pulegium.Phytochem Anal. 2022;33:906–14. [DOI] [PubMed]
Mansoori S, Bahmanyar H, Ozumchelouei EJ, Najafipour I. Investigation and optimisation of the extraction of carvone and limonene from the Iranian Mentha spicata through the ultrasound-assisted extraction method.Indian Chem Eng. 2022;64:141–50. [DOI]
Naseem Z, Hanif MA, Zahid M, Tahir S, Anjum F, Bhatti HN. Ultrasound-assisted deep eutectic solvent-based extraction of phytochemicals from Mentha arvensis: optimization using Box-Behnken design.Biomass Convers Biorefin. 2022;12:35–45. [DOI]
Nejati-Yazdinejad M, Soozangar A. HPLC method for evaluation of antioxidant activity of Mentha pulegium leaves extract.Res J Chem Environ. 2013;17:22–6.
Ruiz-Aceituno L, García-Sarrió MJ, Alonso-Rodriguez B, Ramos L, Sanz ML. Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction.Food Chem. 2016;196:1156–62. [DOI] [PubMed]
Kubátová A, Lagadec AJM, Miller DJ, Hawthorne SB. Selective extraction of oxygenates from savory and peppermint using subcritical water.Flavour Fragr J. 2001;16:64–73. [DOI]
Çam M, Yüksel E, Alaşalvar H, Başyiğit B, Şen H, Yılmaztekin M, et al. Simultaneous extraction of phenolics and essential oil from peppermint by pressurized hot water extraction.J Food Sci Technol. 2019;56:200–7. [DOI] [PubMed] [PMC]
Nomura S, Lee WJ, Konishi M, Saitoh T, Murata M, Ohtsu N, et al. Characteristics of Japanese mint extracts obtained by subcritical-water treatment.Food Sci Technol Res. 2019;25:695–703.
Fatiha B, Didier H, Naima G, Khodir M, Martin K, Léocadie K, et al. Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae).Ind Crops Prod. 2015;74:722–30. [DOI]
Taamalli A, Arráez-Román D, Abaza L, Iswaldi I, Fernández-Gutiérrez A, Zarrouk M, et al. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana.Phytochem Anal. 2015;26:320–30. [DOI] [PubMed]
Ben Haj Yahia B, Zaouali Y, Ciavatta ML, Ligresti A, Jaouadi R, Boussaid M, Cutignano A. Polyphenolic profiling, quantitative assessment and biological activities of Tunisian native Mentha rotundifolia (L.) Huds.Molecules. 2019;24:2351. [DOI] [PubMed] [PMC]
Soria AC, Corzo-Martínez M, Montilla A, Riera E, Gamboa-Santos J, Villamiel M. Chemical and physicochemical quality parameters in carrots dehydrated by power ultrasound.J Agric Food Chem. 2010;58:7715–22. [DOI] [PubMed]
Moldovan RI, Oprean R, Benedec D, Hanganu D, Duma M, Oniga I, et al. LC-MS analysis, antioxidant and antimicrobial activities for five species of Mentha cultivated in Romania.Dig J Nanomater Biostruct. 2014;9:559–66.
Žlabur JŠ, Voća S, Dobričević N, Brnčić M, Dujmić F, Brnčić SR. Optimization of ultrasound assisted extraction of functional ingredients from Stevia rebaudiana Bertoni leaves.Int Agrophys. 2015;29:231–7. [DOI]
Silva EK, Saldaña MDA. High-intensity ultrasound-assisted recovery of cinnamyl alcohol glycosides from Rhodiola rosea roots: effect of probe diameter on the ultrasound energy performance for the extraction of bioactive compounds.Food Bioprod Process. 2020;122:245–53. [DOI]
Roshanpour S, Tavakoli J, Beigmohammadi F, Alaei S, Khaneghah AM. Extraction of phenol compound from Mentha piperita by ultrasonic waves based on a response surface methodology.Food Sci Nutr. 2021;11:613–26. [DOI] [PubMed] [PMC]
Benabdallah A, Rahmoune C, Boumendjel M, Aissi O, Messaoud C. Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from northeast of Algeria.Asian Pac J Trop Biomed. 2016;6:760–6. [DOI]
Ranjbar M, Kiani M, Nikpey A. Antioxidant and scolicidal activities of four Iranian Mentha species (Lamiaceae) in relation to phenolic elements.J Herbmed Pharmacol. 2020;9:200–8. [DOI]
Fialová S, Tekeľová D, Rendeková K, Klinčok J, Kolárik M, Kurucová K, et al. Phenolic compounds variation in Mentha L. species in the course of a four-years period.Acta Fac Pharm Univ Comen. 2015;62:2–7.
Križman M, Baričevič D, Prošek M. Determination of phenolic compounds in fennel by HPLC and HPLC-MS using a monolithic reversed-phase column.J Pharm Biolmed Anal. 2007;43:481–5. [DOI] [PubMed]
Papageorgiou V, Mallouchos A, Komaitis M. Investigation of the antioxidant behavior of air- and freeze-dried aromatic plant materials in relation to their phenolic content and vegetative cycle.J Agric Food Chem. 2008;56:5743–52. [DOI] [PubMed]
Riahi L, Elferchichi M, Ghazghazi H, Jebali J, Ziadi S, Aouadhi C, et al. Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia.Ind Crops Prod. 2013;49:883–9. [DOI]
Stagos D, Portesis N, Spanou C, Mossialos D, Aligiannis N, Chaita E, et al. Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from Greek domestic Lamiaceae species.Food Chem Toxicol. 2012;50:4115–24. [DOI]
Zeljković SĆ, Šišková J, Komzáková K, De Diego N, Kaffková K, Tarkowski P. Phenolic compounds and biological activity of selected Mentha species.Plants (Basel). 2021;10:550. [DOI] [PubMed] [PMC]