Significance (※) of components when sampling grouping is based on resin extraction time (samples with resins obtained naturally are examined separately from those with conventionally obtained resins)
Compound
VIP (PLS-DA)
P-value (t-test)
Log2 fold change†
N
C
N
C
N
C
2-Nonanone
1.8572
1.1057
0.0136
0.0589
0.4583
–0.2722
1,4-Cineole
1.6265
0.8026
0.0134
0.4160
–0.9115
–0.3663
α-Pinene
1.2039
0.8319
0.0974
0.2956
–0.9995
–0.5578
Estragole
1.1668
1.0240
0.1048
0.6759
–0.3820
0.1919
β-Myrcene
1.1416
1.1866
0.1100
0.1947
–0.6123
–0.2262
β-Caryophyllene
1.1261
1.7728
0.1137
8.03E-04
–0.4416
–1.0345
Limonene
0.9558
0.8518
0.3650
0.3900
–0.1783
–0.2329
α-Terpineol
0.9117
0.8886
0.7888
0.4768
–0.0641
–0.3160
α-Terpinolene
0.9007
0.9319
0.4711
0.9490
–0.2490
–0.0290
Endo-borneol
0.8390
1.3495
0.9198
0.0212
0.0157
–0.5233
Terpinen-4-ol
0.8336
0.9068
0.6665
0.2568
–0.0617
–0.4837
Fenchol
0.8269
0.8566
0.9257
0.9511
–0.0158
0.0225
γ-Terpinene
0.8072
1.0198
0.5739
0.5817
–0.1490
0.2297
Camphene
0.7398
0.9006
0.6209
0.2391
–0.1736
–0.4076
α-Copaene
0.7351
0.8533
0.5420
0.1928
0.1493
–0.4364
Linalool
0.6921
0.5125
0.3370
0.7632
–0.2647
–0.1480
p-Cymene
0.6786
0.7500
0.5792
0.3222
–0.0967
–0.1619
2-Nonanol
0.4068
0.8026
0.9584
0.4950
0.0083
–0.2355
Myrtenol
0.2016
1.0162
0.8387
0.0963
0.0589
–0.3925
※: significant values with VIP > 1.0 for multivariate analysis and P < 0.05 for univariate analysis are denoted in bold; †: a negative Log2 fold change indicates a direction towards the group of longer extraction time; N: naturally obtained resins; C: conventionally obtained resins
This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE [T2EDK-03382]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Commission regulation (EC) No 1308/2013 of 17 December 2013 establishing a common organisation of the markets in agricultural products and repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007 [Internet].[Cited 2024 Aug 26]. Available from: https://eur-lex.europa.eu/eli/reg/2013/1308/2024-05-13
Beck CW, Stout EC, Wovkulich KM, Karageorghis V, Aloupi E. The Uses of Cypriote White-Slip Ware inferred from Organic Residue Analysis.Egypt Levant. 2004;1:13–44. [DOI]
McGovern PE, Glusker DL, Exner LJ, Mc Govern PE. Neolithic resinated wine.Nature. 1996;381:480–1. [DOI]
Fujii H, Krausz S, Olmer F, Mathe C, Vieillescazes C. Analysis of organic residues from the Châteaumeillant oppidum (Cher, France) using GC–MS.J Cult Herit. 2021;51:50–8. [DOI]
Zareva S, Kuleff I. The application of the derivative IR-spectroscopy and HPLC-ESI-MS/MS in the analysis of archaeology resin.Spectrochim Acta A Mol Biomol Spectrosc. 2010;76:283–6. [DOI] [PubMed]
Zlateva B, Rangelov M. Chemical Analysis of Organic Residues Found in Hellenistic Time Amphorae from SE Bulgaria.J Appl Spectrosc. 2015;82:221–7. [DOI]
Alonso González P, Parga-Dans E. Vino de Tea (pine heartwood wine) from La Palma (Spain): ethnographic and physic-chemical characterization of a unique fermented product.J Ethn Foods. 2020;7:36. [DOI]
Hornsey IS. The chemistry and biology of winemaking. Cambridge, UK: Royal Society of Chemistry; 2007. [DOI]
Liang Z, Zhang P, Zeng XA, Fang Z. The art of flavored wine: Tradition and future.Trends Food Sci Technol. 2021;116:130–45. [DOI]
Buglass AJ, editor. Handbook of Alcoholic Beverages: Technical, Analytical and Nutritional Aspects. United Kingdom: John Wiley & Sons, Ltd; 2011. [DOI]
Proestos C, Bakogiannis A, Psarianos C, Koutinas AA, Kanellaki M, Komaitis M. High performance liquid chromatography analysis of phenolic substances in Greek wines.Food Control. 2005;16:319–23. [DOI]
Marinaki M, Sampsonidis I, Lioupi A, Arapitsas P, Thomaidis N, Zinoviadou K, et al. Development of two-level Design of Experiments for the optimization of a HS-SPME-GC-MS method to study Greek monovarietal PDO and PGI wines.Talanta. 2023;253:123987. [DOI]
Nanou E, Mavridou E, Milienos FS, Papadopoulos G, Tempère S, Kotseridis Y. Odor Characterization of White Wines Produced from Indigenous Greek Grape Varieties Using the Frequency of Attribute Citation Method with Trained Assessors.Foods. 2020;9:1396. [DOI] [PubMed] [PMC]
Kechagia D, Paraskevopoulos Y, Symeou E, Galiotou-Panayotou M, Kotseridis Y. Influence of prefermentative treatments to the major volatile compounds of Assyrtiko wines.J Agric Food Chem. 2008;56:4555–63. [DOI] [PubMed]
Roussis V, Papadogianni K, Vagias C, Harvala C, Petrakis PV, Ortiz A. Volatile Constituents of Three Pinus Species Grown in Greece.J Essent Oil Res. 2001;13:118–21. [DOI]
Schiller G, Grunwald C. Xylem resin monoterpene composition of Pinus halepensis Mill. in Israel.Isr J Bot. 1986;35:23–33. [DOI]
Liu Y, Wang Z, Zhao F, Zeng M, Li F, Chen L, et al. Efficient resin production using stimulant pastes in Pinus elliottii × P. caribaea families.Sci Rep. 2022;12:13129. [DOI] [PubMed] [PMC]
López-Álvarez Ó, Zas R, Martínez E, Marey-Perez M. Resin yield response to different tapping methods and stimulant pastes in Pinus pinaster Ait.Eur J Forest Res. 2023;142:1281–92. [DOI]
López-Álvarez Ó, Zas R, Marey-Perez M. Resin tapping: A review of the main factors modulating pine resin yield.Ind Crops Prod. 2023;202:117105. [DOI]
Iconomou N, Valkanas C, Büchi J. Composition of gum turpentine of Pinus halepensis and Pinus brutia grown in Greece.J Chromatogr. 1964;16:29–33. [DOI]
Gallis AT, Panetsos KP. Use of Cortical Terpenes to Discriminate Pinus brutia (TEN.), Pinus halepensis (MILL.) and their Hybrids.Silvae Genet. 1997;46:82–8.
Schiller G, Grunwald C. Cortex resin monoterpene composition in Pinus brutia provenances grown in Israel.Biochem Syst Ecol. 1987;15:389–94. [DOI]
Alonso González P, Parga Dans E, Ballester J. Volatile composition of light red wines aged in Canary pine barrels from La Palma (Canary Islands, Spain).OENO One. 2022;56:29–40. [DOI]
Dob T, Berramdane T, Chelgoum C. Chemical composition of essential oil of Pinus halepensis Miller growing in Algeria.Comptes Rendus Chim. 2005;8:1939–45. [DOI]
Fekih N, Allali H, Merghache S, Chaïb F, Merghache D, El Amine M, et al. Chemical composition and antibacterial activity of Pinus halepensis Miller growing in West Northern of Algeria.Asian Pac J Trop Dis. 2014;4:97–103. [DOI]
Trapp S, Croteau R. Defensive resin biosynthesis in conifers.Annu Rev Plant Physiol Plant Mol Biol. 2001;52:689–724. [DOI] [PubMed]
Zerroug MM, Haichour N, Mezaache Aichour S, Soltani E, Kada S, Martinez JR, et al. Lyophilized aqueous extract of Pinus halepensis (Mill.) resin: Chemical composition, antioxidant and antidermatophytic activities.J Microbiol Biotechnol Food Sci. 2021;11:e3423. [DOI]
Benouadah N, Pranovich A, Aliouche D, Hemming J, Smeds A, Willför S. Analysis of extractives from Pinus halepensis and Eucalyptus camaldulensis as predominant trees in Algeria.Holzforschung. 2018;72:97–104. [DOI]
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI).Metabolomics. 2007;3:211–21. [DOI] [PubMed] [PMC]
Han S, Yang J, Choi K, Kim J, Adhikari K, Lee J. Chemical Analysis of Commercial White Wines and Its Relationship with Consumer Acceptability.Foods. 2022;11:603. [DOI] [PubMed] [PMC]
Pérez-Olivero SJ, Pérez Trujillo JP, Conde JE. Minor Volatile Compounds in White Wines from Canary Islands, Madeira, and Pico (Azores) by Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry: A Qualitative Study.ISRN Anal Chem. 2013;2013:1–9. [DOI]
Karabagias IK, Karabagias VK, Badeka AV. Volatilome of white wines as an indicator of authenticity and adulteration control using statistical analysis.Aust J Grape Wine Res. 2021;27:269–79. [DOI]
Spillman PJ, Pollnitz AP, Liacopoulos D, Pardon KH, Sefton MA. Formation and Degradation of Furfuryl Alcohol, 5-Methylfurfuryl Alcohol, Vanillyl Alcohol, and Their Ethyl Ethers in Barrel-Aged Wines.J Agric Food Chem. 1998;46:657–63. [DOI] [PubMed]
Sgouros G, Mallouchos A, Dourou D, Banilas G, Chalvantzi I, Kourkoutas Y, et al. Torulaspora delbrueckii May Help Manage Total and Volatile Acidity of Santorini-Assyrtiko Wine in View of Global Warming.Foods. 2023;12:191. [DOI] [PubMed] [PMC]
Comuzzo P, Voce S, Fabris J, Cavallaro A, Zanella G, Karpusas M, et al. Effect of the combined application of heat treatment and proteases on protein stability and volatile composition of Greek white wines.OENO One. 2020;54:175–88. [DOI]
Lemos Junior WJF, Binati RL, Bersani N, Torriani S. Investigating the glutathione accumulation by non-conventional wine yeasts in optimized growth conditions and multi-starter fermentations.LWT. 2021;142:110990. [DOI]
Chatzistavridi MM, Christofi S, Kallithraka S. Fortification of White Wines with Antioxidants and Se: Impacts on Browning Development and Phenolic Content.Beverages. 2024;10:31. [DOI]
Nikolantonaki M, Waterhouse AL. A Method to Quantify Quinone Reaction Rates with Wine Relevant Nucleophiles: A Key to the Understanding of Oxidative Loss of Varietal Thiols.J Agric Food Chem. 2012;60:8484–91. [DOI]