Relative abundance (%) of cecal microbiota at the genus level in the control (C) and allitol (A) groups
Domein
Phylum
Class
Ordaer
Family
Genus
C
A
P
Bacteria
Bacteroidota
Bacteroidia
Bacteroidales
Tannerellaceae
Tannerellaceae
0.01 ± 0.00
0.02 ± 0.01
0.027
Bacteria
Bacillota
Clostridia
Lachnospirales
Lachnospiraceae
Uncultured
0.00 ± 0.00
0.01 ± 0.00
0.047
Bacteria
Bacteroidota
Bacteroidia
Bacteroidales
Rikenellaceae
Alistipes
0.03 ± 0.00
0.19 ± 0.07
0.031
Bacteria
Bacillota
Bacilli
RF39
RF39
RF39
0.02 ± 0.00
0.15 ± 0.05
0.018
Bacteria
Pseudomonadota
Alphaproteobacteria
Rickettsiales
Mitochondria
Mitochondria
0.01 ± 0.00
0.07 ± 0.02
0.012
Bacteria
Bacillota
Clostridia
Lachnospirales
Lachnospiraceae
Anaerostipes
3.89 ± 2.37
18.7 ± 2.05
< 0.001
Bacteria
Bacteroidota
Bacteroidia
Bacteroidales
Bacteroidaceae
Bacteroides
0.76 ± 0.19
3.60 ± 0.01
0.023
Bacteria
Bacteroidota
Bacteroidia
Bacteroidales
Muribaculaceae
Muribaculaceae
1.23 ± 0.42
5.74 ± 1.95
0.035
Bacteria
Bacillota
Clostridia
Lachnospirales
Lachnospiraceae
Lachnospiraceae_UCG-010
0.18 ± 0.04
0.73 ± 0.26
0.049
Unassigned
Uncultured
Uncultured
Uncultured
Uncultured
Uncultured
0.05 ± 0.01
0.14 ± 0.02
0.005
Bacteria
Actinomycetota
Actinobacteria
Bifidobacteriales
Bifidobacteriaceae
Bifidobacterium
2.74 ± 0.77
1.21 ± 0.51
0.045
Bacteria
Actinomycetota
Coriobacteriia
Coriobacteriales
Eggerthellaceae
Parvibacter
0.06 ± 0.02
0.02 ± 0.01
0.044
Bacteria
Bacillota
Clostridia
Oscillospirales
Ruminococcaceae
Paludicola
0.03 ± 0.00
0.00 ± 0.00
0.007
Bacteria
Actinomycetota
Coriobacteriia
Coriobacteriales
Eggerthellacea
Adlercreutzia
0.07 ± 0.01
0.02 ± 0.01
0.008
Bacteria
Bacillota
Clostridia
Peptostreptococcales-Tissierellales
Peptostreptococcaceae
Romboutsia
7.01 ± 1.35
1.85 ± 0.37
0.008
Bacteria
Actinomycetota
Coriobacteriia
Coriobacteriales
Eggerthellaceae
Uncultured
0.08 ± 0.02
0.02 ± 0.00
0.041
Bacteria
Bacillota
Clostridia
Lachnospirales
Lachnospiraceae
Blautia
1.76 ± 0.37
0.35 ± 0.08
0.002
Bacteria
Bacillota
Clostridia
Lachnospirales
Lachnospiraceae
[Eubacterium]_xylanophilum_group
1.07 ± 0.38
0.20 ± 0.07
0.041
Bacteria
Bacillota
Bacilli
Lactobacillales
Streptococcaceae
Streptococcus
0.20 ± 0.07
0.03 ± 0.01
0.005
Bacteria
Bacillota
Clostridia
Peptostreptococcales-Tissierellales
Anaerovoracaceae
Uncultured
0.04 ± 0.00
0.00 ± 0.00
0.008
Bacteria
Bacillota
Bacilli
Erysipelotrichales
Erysipelatoclostridiaceae
Candidatus_Stoquefichus
3.13 ± 0.88
0.49 ± 0.18
0.026
Bacteria
Actinomycetota
Coriobacteriia
Coriobacteriales
Atopobiaceae
Uncultured
0.12 ± 0.03
0.01 ± 0.00
0.006
Bacteria
Desulfobacterota
Desulfovibrionia
Desulfovibrionales
Desulfovibrionaceae
Uncultured
0.18 ± 0.06
0.00 ± 0.00
0.033
Bacteria
Deferribacterota
Deferribacteres
Deferribacterales
Deferribacteraceae
Mucispirillum
0.16 ± 0.07
0.00 ± 0.00
0.046
Values are the mean ± SE for eight rats. The P-values were obtained using Welch’s t-test
Declarations
Acknowledgments
The authors thank Mr. Koki Takahashi for providing the animal care and technical assistance.
Author contributions
SM, AY, and KA: Resources. GT: Data curation, Investigation. SH and RI: Formal analysis. TM: Conceptualization, Data curation, Writing—original draft, Writing—review & editing, Investigation.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Ethical approval
All animal procedures were approved by the Animal Care and Use Committee for Kagawa University (approval number 23616).
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Data can be provided for any qualified researchers on reasonable request.
Funding
This study was partially supported by the JSPS KAKENHI [JP 22K05408]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
González-Muniesa P, Mártinez-González MA, Hu FB, Després JP, Matsuzawa Y, Loos RJF, et al. Obesity.Nat Rev Dis Primers. 2017;3:17034. [DOI] [PubMed]
Hayashi N, Yamada T, Takamine S, Iida T, Okuma K, Tokuda M. Weight reducing effect and safety evaluation of rare sugar syrup by a randomized double-blind, parallel-group study in human.J Functional Foods. 2014;11:152–9. [DOI]
Ochiai M, Misaki K, Yamada T, Iida T, Okuma K, Matsuo T. Comparison of Anti-Obesity Effect between Two Types of Syrup Containing Rare Sugars in Wistar Rats.J Nutr Sci Vitaminol (Tokyo). 2017;63:208–13. [DOI] [PubMed]
Chung MY, Oh DK, Lee KW. Hypoglycemic health benefits of D-psicose.J Agric Food Chem. 2012;60:863–9. [DOI] [PubMed]
Matsuo T, Baba Y, Hashiguchi M, Takeshita K, Izumori K, Suzuki H. Dietary D-psicose, a C-3 epimer of D-fructose, suppresses the activity of hepatic lipogenic enzymes in rats.Asia Pac J Clin Nutr. 2001;10:233–7. [DOI] [PubMed]
Matsuo T, Baba Y, Hashiguchi M, Takeshita K, Izumori K, Suzuki H. Less body fat accumulation with D-psicose diet versus D-fructose diet.J Clin Biochem Nutr. 2001;30:55–65. [DOI]
Yamada T, Hayashi N, Iida T, Takamine S, Okuma K, Matsuo T. Dietary D-sorbose decreases serum insulin levels in growing Sprague-Dawley rats.J Nutr Sci Vitaminol (Tokyo). 2014;60:297–9. [DOI] [PubMed]
Vastenavond C, Bertelsen H, Hansen S, Laursen RJ, Saunders J, Eriknauer K. Tagatose (D-tagatose). In: O’Brien-Nabors L, editor. Alternative Sweeteners. New York: CRC Press; 2011. pp. 197–222. [DOI]
Granström TB, Takata G, Tokuda M, Izumori K. Izumoring: a novel and complete strategy for bioproduction of rare sugars.J Biosci Bioeng. 2004;97:89–94. [DOI] [PubMed]
Takeshita K, Ishida Y, Takada G, Izumori K. Direct production of allitol from D-fructose by a coupling reaction using D-tagatose 3-epimerase, ribitol dehydrogenase and formate dehydrogenase.J Biosci Bioeng. 2000;90:545–8. [PubMed]
Hassanin HA, Mu W, Koko MY, Zhang T, Masamba K, Jiang B. Allitol: production, properties, and applications.Int J Food Sci Technol. 2017;52:91–7. [DOI]
Higaki S, Inai R, Matsuo T. Effects of Dietary Allitol on Body Fat Accumulation in Rats.J Nutr Sci Vitaminol (Tokyo). 2022;68:348–52. [DOI] [PubMed]
Miyoshi M, Yoshihara A, Mochizuki S, Kato S, Yoshida H, Matsuo T, et al. Safety evaluation and maximum use level for transient ingestion in humans of allitol.Biosci Biotechnol Biochem. 2023;87:1193–204. [DOI] [PubMed]
Matsuo T, Higaki S, Inai R, Mochizuki S, Yoshihara A, Akimitsu K. Effects of simultaneous intake of rare sugars allitol and D-allulose on intra-abdominal fat accumulation in rats.J Food Technol Res. 2023;10:37–46. [DOI]
Matsuo T, Ono K, Mochizuki S, Yoshihara A, Akimitsu K. Preliminary research on the energy value estimation of allitol using growing rats.Jpn Pharmacol Ther. 2022;50:1281–5.
Matsuo T, Ono K, Mochizuki S, Yoshihara A, Akimitsu K. Effects of dietary allitol on body fat accumulation and cecal morphology in rats.Tech Bull Fac Agr Kagawa Univ. 2023;75:57–62.
Matsuo T, Higaki S, Inai R, Takata G, Mochizuki S, Yoshihara A, et al. Effects of Dietary Allitol and D-Allulose on Body Fat Accumulation and Cecal Short-Chain Fatty Acid Production in Rats Fed a High-Fat Diet.J Oleo Sci. 2024;73:1329–37. [DOI] [PubMed]
Anachad O, Taouil A, Taha W, Bennis F, Chegdani F. The Implication of Short-Chain Fatty Acids in Obesity and Diabetes.Microbiol Insights. 2023;16:11786361231162720. [DOI] [PubMed] [PMC]
Peng K, Dong W, Luo T, Tang H, Zhu W, Huang Y, et al. Butyrate and obesity: Current research status and future prospect.Front Endocrinol (Lausanne). 2023;14:1098881. [DOI] [PubMed] [PMC]
Coppola S, Avagliano C, Calignano A, Berni Canani R. The Protective Role of Butyrate against Obesity and Obesity-Related Diseases.Molecules. 2021;26:682. [DOI] [PubMed] [PMC]
van Deuren T, Blaak EE, Canfora EE. Butyrate to combat obesity and obesity-associated metabolic disorders: Current status and future implications for therapeutic use.Obes Rev. 2022;23:e13498. [DOI] [PubMed] [PMC]
Mickelsen O, Anderson AA. A method for preparing intact animals for carcass analyses.J Lab Clin Med. 1959;53:282–90. [PubMed]
Paik HS, Yearick ES. The influence of dietary fat and meal frequency on lipoprotein lipase and hormone-sensitive lipase in rat adipose tissue.J Nutr. 1978;108:1798–805. [DOI] [PubMed]
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions.Nat Biotechnol. 2020;38:685–8. [DOI] [PubMed] [PMC]
Rymer TL, Pillay N. The effects of antibiotics and illness on gut microbial composition in the fawn-footed mosaic-tailed rat (Melomys cervinipes).PLoS One. 2023;18:e0281533. [DOI] [PubMed] [PMC]
He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism.Int J Mol Sci. 2020;21:6356. [DOI] [PubMed] [PMC]
Kimura I. Host energy regulation via SCFAs receptors, as dietary nutrition sensors, by gut microbiota.Yakugaku Zasshi. 2014;134:1037–42. Japanese. [DOI] [PubMed]
Shimizu H, Ohue-Kitano R, Kimura I. Regulation of host energy metabolism by gut microbiota-derived short-chain fatty acids.Glycative Stress Res. 2019; 6:181–91. [DOI]
Tang M, Marroquin E. The role of the gut microbiome in the intergenerational transmission of the obesity phenotype: A narrative review.Front Med (Lausanne). 2022;9:1057424. [DOI] [PubMed] [PMC]
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology.Proc Natl Acad Sci U S A. 2005;102:11070–5. [DOI] [PubMed] [PMC]
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity.Nature. 2006;444:1022–3. [DOI] [PubMed]
Nakayama J, Yamamoto A, Palermo-Conde LA, Higashi K, Sonomoto K, Tan J, et al. Impact of Westernized Diet on Gut Microbiota in Children on Leyte Island.Front Microbiol. 2017;8:197. [DOI] [PubMed] [PMC]
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest.Nature. 2006;444:1027–31. [DOI] [PubMed]
Clarke SF, Murphy EF, Nilaweera K, Ross PR, Shanahan F, O’Toole PW, et al. The gut microbiota and its relationship to diet and obesity: new insights.Gut Microbes. 2012;3:186–202. [DOI] [PubMed] [PMC]
Bui TPN, Mannerås-Holm L, Puschmann R, Wu H, Troise AD, Nijsse B, et al. Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health.Nat Commun. 2021;12:4798. [DOI] [PubMed] [PMC]
Sibai M, Altuntaş E, Yıldırım B, Öztürk G, Yıldırım S, Demircan T. Microbiome and Longevity: High Abundance of Longevity-Linked Muribaculaceae in the Gut of the Long-Living Rodent Spalax leucodon.OMICS. 2020;24:592–601. [DOI] [PubMed]
Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women.Br J Nutr. 2010;104:83–92. [DOI] [PubMed]
Squillario M, Bonaretti C, La Valle A, Di Marco E, Piccolo G, Minuto N, et al. Gut-microbiota in children and adolescents with obesity: inferred functional analysis and machine-learning algorithms to classify microorganisms.Sci Rep. 2023;13:11294. [DOI] [PubMed] [PMC]
Dekker Nitert M, Mousa A, Barrett HL, Naderpoor N, de Courten B. Altered Gut Microbiota Composition Is Associated With Back Pain in Overweight and Obese Individuals.Front Endocrinol (Lausanne). 2020;11:605. [DOI] [PubMed] [PMC]
Zhao L, Chen Y, Xia F, Abudukerimu B, Zhang W, Guo Y, et al. A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota.Front Endocrinol (Lausanne). 2018;9:233. [DOI] [PubMed] [PMC]
Fu J, Wang Y, Tan S, Wang J. Effects of Banana Resistant Starch on the Biochemical Indexes and Intestinal Flora of Obese Rats Induced by a High-Fat Diet and Their Correlation Analysis.Front Bioeng Biotechnol. 2021;9:575724. [DOI] [PubMed] [PMC]
Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice.Diabetes. 2009;58:1509–17. [DOI] [PubMed] [PMC]
Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases.World J Gastroenterol. 2011;17:1519–28. [DOI] [PubMed] [PMC]
Gheorghe AS, Negru ȘM, Preda M, Mihăilă RI, Komporaly IA, Dumitrescu EA, et al. Biochemical and Metabolical Pathways Associated with Microbiota-Derived Butyrate in Colorectal Cancer and Omega-3 Fatty Acids Implications: A Narrative Review.Nutrients. 2022;14:1152. [DOI] [PubMed] [PMC]
Alpino GCÁ, Pereira-Sol GA, Dias MME, Aguiar AS, Peluzio MDCG. Beneficial effects of butyrate on brain functions: A view of epigenetic.Crit Rev Food Sci Nutr. 2024;64:3961–70. [DOI] [PubMed]
O’Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota.Front Microbiol. 2016;7:925. [DOI] [PubMed] [PMC]