The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
The authors gratefully acknowledge the financial support provided by the Secretaría de Investigación y Posgrado at the Instituto Politécnico Nacional [SIP20130428, 20140169, 20150758, 20160607 and 20170808], and CONACYT to DNVL [237250] and LVC [254415]; and COMECYT to DNVL [CAT2021-0012]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Valdés A, Álvarez-Rivera G, Socas-Rodríguez B, Herrero M, Ibáñez E, Cifuentes A. Foodomics: analytical opportunities and challenges.Anal Chem. 2021;94:366–81. [DOI] [PubMed] [PMC]
Liang T, Wei F, Lu Y, Kodani Y, Nakada M, Miyakawa T, et al. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.J Agric Food Chem. 2015;63:683–91. [DOI] [PubMed]
Liu W, Zhao Y, Sun J, Li G, Shan Y, Chen P. Study the effects of drying processes on chemical compositions in daylily flowers using flow injection mass spectrometric fingerprinting method and chemometrics.Food Res Int. 2017;102:493–503. [DOI] [PubMed]
Villalón-López N, Serrano-Contreras JI, Téllez-Medina DI, Zepeda LG. An 1H NMR-based metabolomic approach to compare the chemical profiling of retail samples of ground roasted and instant coffees.Food Res Int. 2018;106:263–70. [DOI] [PubMed]
Munekata PE, Pateiro M, Rocchetti G, Dominguez R, Rocha JM, Lorenzo JM. Application of metabolomics to decipher the role of bioactive compounds in plant and animal foods.Curr Opin Food Sci. 2022;46:100851. [DOI]
Putri SP, Ikram MMM, Sato A, Dahlan HA, Rahmawati D, Ohto Y, et al. Application of gas chromatography-mass spectrometry-based metabolomics in food science and technology.J Biosci Bioeng. 2022;133:425–35. [DOI] [PubMed]
Consonni R, Cagliani LR. The potentiality of NMR‐based metabolomics in food science and food authentication assessment.Magn Reson Chem. 2019;57:558–78. [DOI] [PubMed]
Cardoso PHS, de Oliveira ES, Lião LM, Oliveira GdAR. 1H NMR as a simple methodology for differentiating barn and free-range chicken eggs.Food Chem. 2022;396:133720. [DOI] [PubMed]
Huang S, Lim SY, Lau H, Ni W, Fong Yau Li S. Effect of glycinebetaine on metabolite profiles of cold-stored strawberry revealed by 1H NMR-based metabolomics.Food Chem. 2022;393:133452. [DOI] [PubMed]
Riswanto FDO, Windarsih A, Lukitaningsih E, Rafi M, Fadzilah NA, Rohman A. Metabolite fingerprinting based on 1H-NMR spectroscopy and liquid chromatography for the authentication of herbal products.Molecules. 2022;27:1198. [DOI] [PubMed] [PMC]
Hernández-Ortega M, Plazola-Jacinto CP, Valadez-Carmona L. State-of-the-art chocolate manufacture. In: Galanakis CM, editor. Trends in sustainable chocolate production. Springer Cham. 2022. pp.1–39.
Forero-Nuñez CA, Jochum J, Sierra F. Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets.Ing Invest. 2015;35:17–23. [DOI]
Aregheore EM. Chemical evaluation and digestibility of cocoa (Theobroma cacao) byproducts fed to goats.Trop Anim Health Prod. 2002;34:339–48. [DOI] [PubMed]
Dewi SR, Stevens LA, Pearson AE, Ferrari R, Irvine DJ, Binner ER. Investigating the role of solvent type and microwave selective heating on the extraction of phenolic compounds from cacao (Theobroma cacao L.) pod husk.Food Bioprod Process. 2022;134:210–22. [DOI]
de Souza Vandenberghe LP, Valladares-Diestra KK, Bittencourt GA, de Mello AFM, Vásquez ZS, de Oliveira PZ, et al. Added-value biomolecules’ production from cocoa pod husks: a review.Bioresour Technol. 2022;344:126252. [DOI] [PubMed]
Campos-Vega R, Nieto-Figueroa KH, Oomah BD. Cocoa (Theobroma cacao L.) pod husk: renewable source of bioactive compounds.Trends Food Sci Technol. 2018;81:172–84. [DOI]
Valadez-Carmona L, Plazola-Jacinto CP, Hernández-Ortega M, Hernández-Navarro MD, Villarreal F, Necoechea-Mondragón H, et al. Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.).Innov Food Sci Emerg Technol. 2017;41:378–86. [DOI]
Cabugsa IMG, Afalla JC, Fernandez MJF, Cabugsa ZH. Current cacao OMICS and future prospects.J Agric Sci Technol. 2019;6:194–9. [DOI]
Chung BY, Iiyama K, Han KW. Compositional characterization of cacao (Theobroma cacao L.) hull.J Appl Biol Chem. 2003;46:12–6.
Li F, Wu B, Yan L, Qin X, Lai J. Metabolome and transcriptome profiling of Theobroma cacao provides insights into the molecular basis of pod color variation.J Plant Res. 2021;134:1323–34. [DOI] [PubMed]
Arlorio M, Locatelli M, Travaglia F, Coïsson JD, Del Grosso E, Minassi A, et al. Roasting impact on the contents of clovamide (N-caffeoyl-L-DOPA) and the antioxidant activity of cocoa beans (Theobroma cacao L.).Food Chem. 2008;106:967–75. [DOI]
Cádiz-Gurrea M, Lozano-Sanchez J, Contreras-Gámez M, Legeai-Mallet L, Fernández-Arroyo S, Segura-Carretero A. Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract.J Funct Foods. 2014;10:485–98. [DOI]
Elwers S, Zambrano A, Rohsius C, Lieberei R. Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.).Eur Food Res Technol. 2009;229:937–48. [DOI]
Pura Naik J. Improved high-performance liquid chromatography method to determine theobromine and caffeine in cocoa and cocoa products.J Agric Food Chem. 2001;49:3579–83. [DOI] [PubMed]
Hatano T, Miyatake H, Natsume M, Osakabe N, Takizawa T, Ito H, et al. Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects.Phytochemistry. 2002;59:749–58. [DOI] [PubMed]
Bindereif SG, Brauer F, Schubert JM, Schwarzinger S, Gebauer G. Complementary use of 1H NMR and multi-element IRMS in association with chemometrics enables effective origin analysis of cocoa beans (Theobroma cacao L.).Food Chem. 2019;299:125105. [DOI] [PubMed]
Caligiani A, Acquotti D, Cirlini M, Palla G. 1H NMR study of fermented cocoa (Theobroma cacao L.) beans.J Agric Food Chem. 2010;58:12105–11. [DOI] [PubMed]
Castellanos J, Quintero C, Carreno R. Changes on chemical composition of cocoa beans due to combined convection and infrared radiation on a rotary dryer.IOP Publishing. 2018;437:012011. [DOI]
Marseglia A, Acquotti D, Consonni R, Cagliani L, Palla G, Caligiani A. HR MAS 1H NMR and chemometrics as useful tool to assess the geographical origin of cocoa beans – comparison with HR 1H NMR.Food Res Int. 2016;85:273–81. [DOI] [PubMed]
Peres I, Rocha S, do Carmo Pereira M, Coelho M, Rangel M, Ivanova G. NMR structural analysis of epigallocatechin gallate loaded polysaccharide nanoparticles.Carbohydr Polym. 2010;82:861–6. [DOI]
FOODB [Internet].Canadian Institutes of Health Research, Canada Foundation for Innovation, The Metabolomics Innovation Centre (TMIC); [cited 2022 Sep 20]. Available from: https://foodb.ca/
Jokić S, Gagić T, Knez Ž, Šubarić D, Škerget M. Separation of active compounds from food by-product (cocoa shell) using subcritical water extraction.Molecules. 2018;23:1408. [DOI] [PubMed] [PMC]
Mu W, Zhang T, Jiang B. An overview of biological production of L-theanine.Biotechnol Adv. 2015;33:335–42. [DOI] [PubMed]
Redgwell R, Trovato V, Merinat S, Curti D, Hediger S, Manez A. Dietary fibre in cocoa shell: characterisation of component polysaccharides.Food Chem. 2003;81:103–12. [DOI]
Muñoz-Almagro N, Valadez-Carmona L, Mendiola JA, Ibáñez E, Villamiel M. Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction.Carbohydr Polym. 2019;217:69–78. [DOI] [PubMed]
Vriesmann LC, Amboni RDdMC, de Oliveira Petkowicz CL. Cacao pod husks (Theobroma cacao L.): composition and hot-water-soluble pectins.Ind Crops Prod. 2011;34:1173–81. [DOI]
Becerra LD, Zuluaga M, Mayorga EY, Moreno FL, Ruíz RY, Escobar S. Cocoa seed transformation under controlled process conditions: modelling of the mass transfer of organic acids and reducing sugar formation analysis.Food Bioprod Process. 2022;136:211–25. [DOI]
Aprotosoaie AC, Luca SV, Miron A. Flavor chemistry of cocoa and cocoa products—an overview.Compr Rev Food Sci Food Saf. 2016;15:73–91. [DOI] [PubMed]
Kongor JE, Hinneh M, Van de Walle D, Afoakwa EO, Boeckx P, Dewettinck K. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—a review.Food Res Int. 2016;82:44–52. [DOI]
Rusconi M, Conti A. Theobroma cacao L., the food of the gods: a scientific approach beyond myths and claims.Pharmacol Res. 2010;61:5–13. [DOI] [PubMed]
Redgwell R, Trovato V, Curti D. Cocoa bean carbohydrates: roasting-induced changes and polymer interactions.Food Chem. 2003;80:511–6. [DOI]
Vriesmann LC, Teofilo RF, de Oliveira Petkowicz CL. Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid.LWT. 2012;49:108–16. [DOI]
Jaiswal R, Matei MF, Golon A, Witt M, Kuhnert N. Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies.Food Funct. 2012;3:976–84. [DOI] [PubMed]
Caligiani A, Palla L, Acquotti D, Marseglia A, Palla G. Application of 1H NMR for the characterisation of cocoa beans of different geographical origins and fermentation levels.Food Chem. 2014;157:94–9. [DOI] [PubMed]
Kiani A, Paolacci S, Calogero A, Cannarella R, Di Renzo G, Gerli S, et al. From Myo-inositol to D-chiro-inositol molecular pathways.Eur Rev Med Pharmacol Sci. 2021;25:2390–402. [DOI] [PubMed]
Marseglia A, Palla G, Caligiani A. Presence and variation of γ-aminobutyric acid and other free amino acids in cocoa beans from different geographical origins.Food Res Int. 2014;63:360–6. [DOI]
Leathers R, Scragg A. The effect of different temperatures on the growth, lipid content and fatty acid composition of Theobroma cacao cell suspension cultures.Plant Sci. 1989;62:217–27. [DOI]
Rand JM, Pisithkul T, Clark RL, Thiede JM, Mehrer CR, Agnew DE, et al. A metabolic pathway for catabolizing levulinic acid in bacteria.Nat Microbiol. 2017;2:1624–34. [DOI] [PubMed] [PMC]
Zhai S, Zhang L, Zhao X, Wang Q, Yan Y, Li C, et al. Enzymatic synthesis of a novel solid–liquid phase change energy storage material based on levulinic acid and 1,4-butanediol.Bioresour Bioprocess. 2022;9:12. [DOI]