Artificial intelligence (AI) model for histological grading and prognostic identification of various epithelial dysplasia
Organ | Purpose | WSI scanning system | Magnification | Patches | AI model | Model performance | Reference |
---|---|---|---|---|---|---|---|
Oral cavity | Histological grading | Aperio | 20× | 299 × 299 pixels | VGG16 | Testing AUC: 0.65 | Araújo et al. [16], Brazil (2023) |
Prognostic identification | Nanozoomer | 20× | 512 × 512 pixels | ResNet50 and lightGBM | Testing AUC: 0.81 (95% CI, 0.73–0.90) | Cai et al. [3], China (2023) | |
Aperio, Nanozoomer | 20×, 40× | 512 × 512 pixels | IDaRS | Testing AUC: 0.78 | Bashir et al. [12], UK (2023) | ||
Aperio, Nanozoomer | 10× | NA | NuClick (for cell detection) | Testing AUC: 0.76 (95% CI, 0.68–0.85) | Mahmood et al. [11], UK (2023) | ||
Larynx | Histological grading | Nanozoomer | 20× | 224 × 224 pixels | DenseNet121 | Testing AUC: 0.89 (95% CI, 0.81–0.95) | Lubrano et al. [2], France (2024) |
Esophagus | Histological grading | Mirax Desk | 20× | 224 × 224 pixels | ResNet50 | Testing AUC: 0.80 | Beuque et al. [9], Netherlands (2021) |
Aperio | 40× | 1,280 × 1,280 pixels | YOLOv5 and ResNet101 | 0.89 accuracy for 3-class, 0.96 accuracy for 2-class | Faghani et al. [5], USA (2022) | ||
Stomach | Histological grading | Iscan Coreo | 20× | 320 × 320 pixels | ResNet50 and domain adaption | Testing AUC: 0.82 | Shi et al. [4], China (2022) |
Colorectum | Histological grading | AT2 | 20× | 224 × 224 pixels | ResNet18 | Testing AUC: 0.97 (95% CI, 0.95–0.99) | Kim et al. [15], USA (2023) |
Cervix | Histological grading | PloidyScanner | 20× | 224 × 224 pixels | VGG16 | Testing AUC: 0.76 (95% CI, 0.73–0.78) | Bao et al. [8], China (2020) |
WSI: whole slide image; lightGBM: light gradient boosting machine; IDaRS: iterative draw-and-rank sampling; AUC: area under the receiver operating characteristic curve; 95% CI: lower and upper values of the 95% confidence interval; NA: not applicable; VGG16: visual geometry group 16; ResNet50: residual neural network 50; DenseNet121: dense convolutional network 121; YOLOv5: You Only Look Once version 5