A summary of parameters and performances of the used models

ModelParametersAccuracySensitivitySpecificityPPVNPV
LRInput = MFCC vector0.71 ± 0.040.62 ± 0.110.73 ± 0.030.39 ± 0.120.87 ± 0.05
SVMInput = MFCC vector, kernel = rbf, C = 1, gamma = 0.0010.81 ± 0.040.87 ± 0.010.80 ± 0.030.54 ± 0.080.96 ± 0.03
CNNInput = MFCC images, input shape = (150,150,3), loss = binary crossentropy, optimizer = adam, activation = softmax0.59 ± 0.110.38 ± 0.320.69 ± 0.310.33 ± 0.200.72 ± 0.11
LSTMInput = MFCC vector, loss = mean absolute error, optimizer = adam, activation = sigmoid0.81 ± 0.030.63 ± 0.060.90 ± 0.040.77 ± 0.080.83 ± 0.03
CNNInput = Mel-spectrogram images, input shape = (150,150,3), loss = binary crossentropy, optimizer = adam, activation = softmax0.78 ± 0.030.65 ± 0.120.85 ± 0.040.70 ± 0.040.82 ± 0.04
HuBERTInput = Encoder features0.86 ± 0.030.80 ± 0.090.89 ± 0.070.82 ± 0.080.90 ± 0.04