Davis EP, Narayan AJ. Pregnancy as a period of risk, adaptation, and resilience for mothers and infants.Dev Psychopathol. 2020;32:1625–39. [DOI] [PubMed] [PMC]
Amruta N, Kandikattu HK, Intapad S. Cardiovascular Dysfunction in Intrauterine Growth Restriction.Curr Hypertens Rep. 2022;24:693–708. [DOI] [PubMed]
Lacagnina S. The Developmental Origins of Health and Disease (DOHaD).Am J Lifestyle Med. 2019;14:47–50. [DOI] [PubMed] [PMC]
Kumar H, Chaudhary A, Singh A, Sukhija N, Panwar A, Saravanan K, et al. A review on epigenetics: Manifestations, modifications, methods & challenges.J Entomol Zool Stud. 2020;8:780–6.
G N, Zilbauer M. Epigenetics in IBD: a conceptual framework for disease pathogenesis.Frontline Gastroenterol. 2022;13:e22–7. [DOI] [PubMed] [PMC]
Maugeri A, Barchitta M, Magnano San Lio R, Favara G, Agodi A. Nutrition and Epigenetic Modifications During Pregnancy. In: In: Vaschetto LM, editor. Molecular Mechanisms in Nutritional Epigenetics. Cham: Springer; 2024. pp. 71–104. [DOI]
Yang C, Baker PN, Granger JP, Davidge ST, Tong C. Long-Term Impacts of Preeclampsia on the Cardiovascular System of Mother and Offspring.Hypertension. 2023;80:1821–33. [DOI] [PubMed]
Xu P, Dong S, Wu L, Bai Y, Bi X, Li Y, et al. Maternal and Placental DNA Methylation Changes Associated with the Pathogenesis of Gestational Diabetes Mellitus.Nutrients. 2022;15:70. [DOI] [PubMed] [PMC]
Salmeri N, Carbone IF, Cavoretto PI, Farina A, Morano D. Epigenetics Beyond Fetal Growth Restriction: A Comprehensive Overview.Mol Diagn Ther. 2022;26:607–26. [DOI] [PubMed]
Zhang Y, Sun Z, Jia J, Du T, Zhang N, Tang Y, et al. Overview of Histone Modification.Adv Exp Med Biol. 2021;1283:1–16. [DOI] [PubMed]
Das J, Maitra A. Maternal DNA Methylation During Pregnancy: a Review.Reprod Sci. 2021;28:2758–69. [DOI] [PubMed]
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics.Nat Rev Genet. 2024;25:211–32. [DOI] [PubMed]
Munjas J, Sopić M, Stefanović A, Košir R, Ninić A, Joksić I, et al. Non-Coding RNAs in Preeclampsia—Molecular Mechanisms and Diagnostic Potential.Int J Mol Sci. 2021;22:10652. [DOI] [PubMed] [PMC]
Chen A, Yu R, Jiang S, Xia Y, Chen Y. Recent Advances of MicroRNAs, Long Non-coding RNAs, and Circular RNAs in Preeclampsia.Front Physiol. 2021;12:659638. [DOI] [PubMed] [PMC]
Filardi T, Catanzaro G, Mardente S, Zicari A, Santangelo C, Lenzi A, et al. Non-Coding RNA: Role in Gestational Diabetes Pathophysiology and Complications.Int J Mol Sci. 2020;21:4020. [DOI] [PubMed] [PMC]
Silvestris DA, Scopa C, Hanchi S, Locatelli F, Gallo A. De Novo A-to-I RNA Editing Discovery in lncRNA.Cancers (Basel). 2020;12:2959. [DOI] [PubMed] [PMC]
Almomani SN, Alsaleh AA, Weeks RJ, Chatterjee A, Day RC, Honda I, et al. Identification and validation of DNA methylation changes in pre-eclampsia.Placenta. 2021;110:16–23. [DOI] [PubMed]
Dhar GA, Saha S, Mitra P, Chaudhuri RN. DNA methylation and regulation of gene expression: Guardian of our health.Nucleus (Calcutta). 2021;64:259–70. [DOI] [PubMed] [PMC]
Aminuddin A, Lazim MRMLM, Hamid AA, Hui CK, Yunus MHM, Kumar J, et al. The Association between Inflammation and Pulse Wave Velocity in Dyslipidemia: An Evidence-Based Review.Mediators Inflamm. 2020;2020:4732987. [DOI] [PubMed] [PMC]
Scorza P, Duarte CS, Lee S, Wu H, Posner JE, Baccarelli A, et al. Epigenetic Intergenerational Transmission: Mothers’ Adverse Childhood Experiences and DNA Methylation.J Am Acad Child Adolesc Psychiatry. 2020;59:900–1. [DOI] [PubMed] [PMC]
Unternaehrer E, Meier M, Bouvette-Turcot A-A, Dass SAH. Long-term epigenetic effects of parental caregiving.In: Developmental Human Behavioral Epigenetics. Elsevier; 2021. pp. 105–17. [DOI]
Shi Y, Zhang H, Huang S, Yin L, Wang F, Luo P, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials.Signal Transduct Target Ther. 2022;7:200. [DOI] [PubMed] [PMC]
Zuccarello D, Sorrentino U, Brasson V, Marin L, Piccolo C, Capalbo A, et al. Epigenetics of pregnancy: looking beyond the DNA code.J Assist Reprod Genet. 2022;39:801–16. [DOI] [PubMed] [PMC]
Ashraf UM, Hall DL, Rawls AZ, Alexander BT. Epigenetic processes during preeclampsia and effects on fetal development and chronic health.Clin Sci (Lond). 2021;135:2307–27. [DOI] [PubMed] [PMC]
Alexander BT, South AM, August P, Bertagnolli M, Ferranti EP, Grobe JL, et al.; American Heart Association Council on the Kidney in Cardiovascular Disease; Council on Cardiovascular and Stroke Nursing; Council on Cardiovascular Radiology and Intervention; Council on Hypertension; Council on Lifestyle and Cardiometabolic Health. Appraising the Preclinical Evidence of the Role of the Renin-Angiotensin-Aldosterone System in Antenatal Programming of Maternal and Offspring Cardiovascular Health Across the Life Course: Moving the Field Forward: A Scientific Statement From the American Heart Association.Hypertension. 2023;80:e75–89. [DOI] [PubMed] [PMC]
Majhi PP, Padhy M, Nanda SS, Dash S. ROLE OF NF-kB POLYMORPHISM AND GLOBAL DNA METHYLATION IN SCREENING GESTATIONAL DIABETES MELLITUS.J Posit Sch Psychol. 2022;6:1496–505.
Vince K, Perković P, Matijević R. What is known and what remains unresolved regarding gestational diabetes mellitus (GDM).J Perinat Med. 2020;48:757–63. [DOI] [PubMed]
Porcuna J, Mínguez-Martínez J, Ricote M. The PPARα and PPARγ Epigenetic Landscape in Cancer and Immune and Metabolic Disorders.Int J Mol Sci. 2021;22:10573. [DOI] [PubMed] [PMC]
Yang M, Huang R, Zheng T, Dong Y, Wang W, Xu Y, et al. Genome-wide placental DNA methylations in fetal overgrowth and associations with leptin, adiponectin and fetal growth factors.Clin Epigenetics. 2022;14:192. [DOI] [PubMed] [PMC]
Cao J, Chen Y, Wang H. 11β-hydroxysteroid dehydrogenases and biomarkers in fetal development.Toxicology. 2022;479:153316. [DOI] [PubMed]
Mortillo M, Marsit CJ. Select Early-Life Environmental Exposures and DNA Methylation in the Placenta.Curr Environ Health Rep. 2023;10:22–34. [DOI] [PubMed] [PMC]
Armengaud JB, Yzydorczyk C, Siddeek B, Peyter AC, Simeoni U. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood.Reprod Toxicol. 2021;99:168–76. [DOI] [PubMed]
Svigkou A, Katsi V, Kordalis VG, Tsioufis K. The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy.Int J Mol Sci. 2024;25:5455. [DOI] [PubMed] [PMC]
Lurbe E, Ingelfinger J. Developmental and Early Life Origins of Cardiometabolic Risk Factors: Novel Findings and Implications.Hypertension. 2021;77:308–18. [DOI] [PubMed]
Deaton AM, Bird A. CpG islands and the regulation of transcription.Genes Dev. 2011;25:1010–22. [DOI] [PubMed] [PMC]
Vos S, Nawrot TS, Martens DS, Byun H, Janssen BG. Mitochondrial DNA methylation in placental tissue: a proof of concept study by means of prenatal environmental stressors.Epigenetics. 2021;16:121–31. [DOI] [PubMed] [PMC]
Rossi JLS, Barbalho SM, Araujo RRd, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors.Diabetes Metab Res Rev. 2022;38:e3502. [DOI] [PubMed]
Shi J, Yang Y, Cheng A, Xu G, He F. Metabolism of vascular smooth muscle cells in vascular diseases.Am J Physiol Heart Circ Physiol. 2020;319:H613–31. [DOI] [PubMed]
Zhang X, Hocher B. Parental genetic effects on the offspring's phenotype without transmission of the gene itself—pathophysiology and clinical evidence.Am J Physiol Cell Physiol. 2024;327:C750–77. [DOI] [PubMed]
Hocher B, Slowinski T, Stolze T, Pleschka A, Neumayer HH, Halle H. Association of maternal G protein β3 subunit 825T allele with low birthweight.Lancet. 2000;355:1241–2. [DOI] [PubMed]
Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.Nat Genet. 2019;51:804–14. [DOI] [PubMed] [PMC]
Biel M, Wascholowski V, Giannis A. Epigenetics—an epicenter of gene regulation: histones and histone-modifying enzymes.Angew Chem Int Ed Engl. 2005;44:3186–216. [DOI] [PubMed]
Pons D, Vries FRd, Elsen PJvd, Heijmans BT, Quax PHA, Jukema JW. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease.Eur Heart J. 2009;30:266–77. [DOI] [PubMed]
Fang Z, Wang X, Sun X, Hu W, Miao QR. The Role of Histone Protein Acetylation in Regulating Endothelial Function.Front Cell Dev Biol. 2021;9:672447. [DOI] [PubMed] [PMC]
Rice JC, Allis CD. Histone methylation versus histone acetylation: new insights into epigenetic regulation.Curr Opin Cell Biol. 2001;13:263–73. [DOI] [PubMed]
Li Y, Chen X, Lu C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications.EMBO Rep. 2021;22:e51803. [DOI] [PubMed] [PMC]
Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease.Circulation. 2011;123:2145–56. [DOI] [PubMed] [PMC]
Yi X, Zhu Q, Wu X, Tan T, Jiang X. Histone Methylation and Oxidative Stress in Cardiovascular Diseases.Oxid Med Cell Longev. 2022;2022:6023710. [DOI] [PubMed] [PMC]
Gaikwad AB, Sayyed SG, Lichtnekert J, Tikoo K, Anders H. Renal Failure Increases Cardiac Histone H3 Acetylation, Dimethylation, and Phosphorylation and the Induction of Cardiomyopathy-Related Genes in Type 2 Diabetes.Am J Pathol. 2010;176:1079–83. [DOI] [PubMed] [PMC]
Brien M, Boufaied I, Bernard N, Forest J, Giguere Y, Girard S. Specific inflammatory profile in each pregnancy complication: A comparative study.Am J Reprod Immunol. 2020;84:e13316. [DOI] [PubMed]
Lacolley P, Regnault V, Laurent S. Mechanisms of Arterial Stiffening: From Mechanotransduction to Epigenetics.Arterioscler Thromb Vasc Biol. 2020;40:1055–62. [DOI] [PubMed]
Joung KE, Lee J, Kim JH. Long-term metabolic consequences of intrauterine growth restriction.Curr Pediatr Rep. 2020;8:45–55. [DOI]
Szyf M. Perinatal stress and epigenetics.Handb Clin Neurol. 2021;180:125–48. [DOI] [PubMed]
Santosh B, Varshney A, Yadava PK. Non-coding RNAs: biological functions and applications.Cell Biochem Funct. 2015;33:14–22. [DOI] [PubMed]
Baptista B, Riscado M, Queiroz JA, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications.Biochem Pharmacol. 2021;189:114469. [DOI] [PubMed]
Aryan L, Medzikovic L, Umar S, Eghbali M. Pregnancy-associated cardiac dysfunction and the regulatory role of microRNAs.Biol Sex Differ. 2020;11:14. [DOI] [PubMed] [PMC]
Pankiewicz K, Fijałkowska A, Issat T, Maciejewski TM. Insight into the Key Points of Preeclampsia Pathophysiology: Uterine Artery Remodeling and the Role of MicroRNAs.Int J Mol Sci. 2021;22:3132. [DOI] [PubMed] [PMC]
Yu B, Jiang Y, Wang X, Wang S. An integrated hypothesis for miR-126 in vascular disease.Med Res Arch. 2020;8:2133. [DOI] [PubMed] [PMC]
Joshi A, Azuma R, Akumuo R, Goetzl L, Pinney SE. Gestational diabetes and maternal obesity are associated with sex-specific changes in miRNA and target gene expression in the fetus.Int J Obes (Lond). 2020;44:1497–507. [DOI] [PubMed] [PMC]
Fernández-Tussy P, Ruz-Maldonado I, Fernández-Hernando C. MicroRNAs and Circular RNAs in Lipoprotein Metabolism.Curr Atheroscler Rep. 2021;23:33. [DOI] [PubMed] [PMC]
Sessa F, Salerno M, Esposito M, Cocimano G, Pomara C. miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives.Int J Mol Sci. 2023;24:5192. [DOI] [PubMed] [PMC]
Çakmak HA, Demir M. MicroRNA and Cardiovascular Diseases.Balkan Med J. 2020;37:60–71. [DOI] [PubMed] [PMC]
Herman AB, Occean JR, Sen P. Epigenetic dysregulation in cardiovascular aging and disease.J Cardiovasc Aging. 2021;1:10. [DOI] [PubMed] [PMC]
Chen P, Chu A, Liao W, Rubbi L, Janzen C, Hsu F, et al. Prenatal Growth Patterns and Birthweight Are Associated With Differential DNA Methylation and Gene Expression of Cardiometabolic Risk Genes in Human Placentas: A Discovery-Based Approach.Reprod Sci. 2018;25:523–39. [DOI] [PubMed] [PMC]
Girchenko P, Lahti J, Czamara D, Knight AK, Jones MJ, Suarez A, et al. Associations between maternal risk factors of adverse pregnancy and birth outcomes and the offspring epigenetic clock of gestational age at birth.Clin Epigenetics. 2017;9:49. [DOI] [PubMed] [PMC]
Ordovás JM, Smith CE. Epigenetics and cardiovascular disease.Nat Rev Cardiol. 2010;7:510–9. [DOI] [PubMed] [PMC]
Schiano C, Benincasa G, Franzese M, Mura ND, Pane K, Salvatore M, et al. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases.Pharmacol Ther. 2020;210:107514. [DOI] [PubMed]
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases.Front Genet. 2019;10:950. [DOI] [PubMed] [PMC]
Santaló J, Berdasco M. Ethical implications of epigenetics in the era of personalized medicine.Clin Epigenetics. 2022;14:44. [DOI] [PubMed] [PMC]
Roy M, Dupras C, Ravitsky V. The epigenetic effects of assisted reproductive technologies: ethical considerations.J Dev Orig Health Dis. 2017;8:436–42. [DOI] [PubMed]