Scavenger receptors recognize and bind to modified LDL, particularly Ox-LDL. This uptake leads to the formation of foam cells within the arterial wall, a hallmark of atherosclerotic plaques [5].
Inflammation and foam cell formation
Scavenger receptor-mediated uptake of Ox-LDL triggers an inflammatory response. Foam cells accumulate in the intima (inner layer) of blood vessels, contributing to plaque formation [53].
Plaque stability and rupture
Scavenger receptors are involved in the balance between plaque stability and vulnerability. While they promote lipid accumulation, excessive scavenger receptor activity can lead to plaque rupture and thrombosis [54].
Matrix metalloproteinases (MMPs)
Scavenger receptors regulate MMP production. MMPs degrade the extracellular matrix, weakening the fibrous cap of a plaque. A vulnerable plaque with a thin cap is more likely to rupture [55].
Declarations
Acknowledgments
The author wishes to extend his heartfelt gratitude and sincere appreciation to Waddah Abdalla for the invaluable support and assistance he provided during the process of preparing and designing the figures.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Teo KK, Rafiq T. Cardiovascular Risk Factors and Prevention: A Perspective from Developing Countries.Can J Cardiol. 2021;37:733–43. [DOI] [PubMed]
Lu Y, Cui X, Zhang L, Wang X, Xu Y, Qin Z, et al. The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy.Aging Dis. 2022;13:491–520. [DOI] [PubMed] [PMC]
Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates.Clin Sci (Lond). 2018;132:1243–52. [DOI] [PubMed]
Babakr AT. Scavenger Receptors: Different Classes and their Role in the Uptake of Oxidized Low-Density Lipoproteins.Biomed Pharmacol J. 2024;17:699–712. [DOI]
Itabe H, Obama T. The Oxidized Lipoproteins In Vivo: Its Diversity and Behavior in the Human Circulation.Int J Mol Sci. 2023;24:5747. [DOI] [PubMed] [PMC]
Luchetti F, Crinelli R, Nasoni MG, Benedetti S, Palma F, Fraternale A, et al. LDL receptors, caveolae and cholesterol in endothelial dysfunction: oxLDLs accomplices or victims?Br J Pharmacol. 2021;178:3104–14. [DOI] [PubMed]
Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV, et al. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis.Oxid Med Cell Longev. 2020;2020:5245308. [DOI] [PubMed] [PMC]
Contois JH, Langlois MR, Cobbaert C, Sniderman AD. Standardization of Apolipoprotein B, LDL-Cholesterol, and Non-HDL-Cholesterol.J Am Heart Assoc. 2023;12:e030405. [DOI] [PubMed] [PMC]
Goldstein JL, Brown MS. The LDL receptor.Arterioscler Thromb Vasc Biol. 2009;29:431–8. [DOI] [PubMed] [PMC]
Zhou R, Stouffer GA, Frishman WH. Cholesterol Paradigm and Beyond in Atherosclerotic Cardiovascular Disease: Cholesterol, Sterol Regulatory Element-Binding Protein, Inflammation, and Vascular Cell Mobilization in Vasculopathy.Cardiol Rev. 2022;30:267–73. [DOI] [PubMed] [PMC]
Nour Eldin EEM, Almarzouki A, Assiri AM, Elsheikh OM, Mohamed BEA, Babakr AT. Oxidized low density lipoprotein and total antioxidant capacity in type-2 diabetic and impaired glucose tolerance Saudi men.Diabetol Metab Syndr. 2014;6:94. [DOI] [PubMed] [PMC]
Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake.Arterioscler Thromb Vasc Biol. 2006;26:1702–11. [DOI] [PubMed]
Alquraini A, El Khoury J. Scavenger receptors.Curr Biol. 2020;30:R790–5. [DOI] [PubMed] [PMC]
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis.J Mol Med (Berl). 2017;95:1153–65. [DOI] [PubMed]
Itabe H, Kato R, Sawada N, Obama T, Yamamoto M. The Significance of Oxidized Low-Density Lipoprotein in Body Fluids as a Marker Related to Diseased Conditions.Curr Med Chem. 2019;26:1576–93. [DOI] [PubMed]
Guo X, Guo Y, Wang Z, Cao B, Zheng C, Zeng Z, et al. Reducing the Damage of Ox-LDL/LOX-1 Pathway to Vascular Endothelial Barrier Can Inhibit Atherosclerosis.Oxid Med Cell Longev. 2022;2022:7541411. [DOI] [PubMed] [PMC]
Babakr AT, Nour Eldein MM. Assessment of lipid peroxidation and total antioxidant capacity in patients with breast cancer.Explor Target Antitumor Ther. 2025;6:1002284. [DOI] [PubMed] [PMC]
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and Atherosclerosis: Mechanistic Aspects.Biomolecules. 2019;9:301. [DOI] [PubMed] [PMC]
Gruber EJ, Aygun AY, Leifer CA. Macrophage uptake of oxidized and acetylated low-density lipoproteins and generation of reactive oxygen species are regulated by linear stiffness of the growth surface.PLoS One. 2021;16:e0260756. [DOI] [PubMed] [PMC]
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation.Oxid Med Cell Longev. 2019;2019:8563845. [DOI] [PubMed] [PMC]
Munno M, Mallia A, Greco A, Modafferi G, Banfi C, Eligini S. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process.Antioxidants (Basel). 2024;13:583. [DOI] [PubMed] [PMC]
Arai H. Oxidative modification of lipoproteins.Subcell Biochem. 2014;77:103–14. [DOI] [PubMed]
Jiang H, Zhou Y, Nabavi SM, Sahebkar A, Little PJ, Xu S, et al. Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis.Front Cardiovasc Med. 2022;9:925923. [DOI] [PubMed] [PMC]
Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology.Antioxid Redox Signal. 2010;13:39–75. [DOI] [PubMed] [PMC]
Thankam FG, Rai T, Liu J, Tam J, Agrawal DK. Minimally Oxidized-LDL-Driven Alterations in the Level of Pathological Mediators and Biological Processes in Carotid Atherosclerosis.Cardiol Cardiovasc Med. 2022;6:137–56. [DOI] [PubMed] [PMC]
Tsimikas S, Miller YI. Oxidative modification of lipoproteins: mechanisms, role in inflammation and potential clinical applications in cardiovascular disease.Curr Pharm Des. 2011;17:27–37. [DOI] [PubMed]
Prasad K, Mishra M. Mechanism of Hypercholesterolemia-Induced Atherosclerosis.Rev Cardiovasc Med. 2022;23:212. [DOI] [PubMed] [PMC]
Hartley A, Haskard D, Khamis R. Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis—Novel insights and future directions in diagnosis and therapy.Trends Cardiovasc Med. 2019;29:22–6. [DOI] [PubMed]
Van Den Berg VJ, Vroegindewey MM, Kardys I, Boersma E, Haskard D, Hartley A, et al. Anti-Oxidized LDL Antibodies and Coronary Artery Disease: A Systematic Review.Antioxidants (Basel). 2019;8:484. [DOI] [PubMed] [PMC]
Babakr AT, Elsheikh OM, Almarzouki AA, Assiri AM, Abdalla BEE, Zaki HY, et al. Relationship between oxidized low-density lipoprotein antibodies and obesity in different glycemic situations.Diabetes Metab Syndr Obes. 2014;7:513–20. [DOI] [PubMed] [PMC]
Qiao YN, Zou YL, Guo SD. Low-density lipoprotein particles in atherosclerosis.Front Physiol. 2022;13:931931. [DOI] [PubMed] [PMC]
Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis.Mediators Inflamm. 2013;2013:152786. [DOI] [PubMed] [PMC]
Frangie C, Daher J. Role of myeloperoxidase in inflammation and atherosclerosis (Review).Biomed Rep. 2022;16:53. [DOI] [PubMed] [PMC]
Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Essential metals in health and disease.Chem Biol Interact. 2022;367:110173. [DOI] [PubMed]
Shang D, Liu H, Tu Z. Pro-inflammatory cytokines mediating senescence of vascular endothelial cells in atherosclerosis.Fundam Clin Pharmacol. 2023;37:928–36. [DOI] [PubMed]
Sukhorukov VN, Karagodin VP, Orekhov AN. Atherogenic modification of low-density lipoproteins.Biomed Khim. 2016;62:391–402. Russian. [DOI] [PubMed]
Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N. Oxidized low-density lipoprotein.Methods Mol Biol. 2010;610:403–17. [DOI] [PubMed] [PMC]
Maiolino G, Rossitto G, Caielli P, Bisogni V, Rossi GP, Calò LA. The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts.Mediators Inflamm. 2013;2013:714653. [DOI] [PubMed] [PMC]
Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Myasoedova VA, Gerasimova EV, et al. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis.Front Pharmacol. 2021;11:613780. [DOI] [PubMed] [PMC]
Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis.Circ Res. 2016;118:620–36. [DOI] [PubMed] [PMC]
Behbodikhah J, Ahmed S, Elyasi A, Kasselman LJ, De Leon J, Glass AD, et al. Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target.Metabolites. 2021;11:690. [DOI] [PubMed] [PMC]
Suciu CF, Prete M, Ruscitti P, Favoino E, Giacomelli R, Perosa F. Oxidized low density lipoproteins: The bridge between atherosclerosis and autoimmunity. Possible implications in accelerated atherosclerosis and for immune intervention in autoimmune rheumatic disorders.Autoimmun Rev. 2018;17:366–75. [DOI] [PubMed]
Meng Z, Yan C, Deng Q, Dong X, Duan ZM, Gao DF, et al. Oxidized low-density lipoprotein induces inflammatory responses in cultured human mast cells via Toll-like receptor 4.Cell Physiol Biochem. 2013;31:842–53. [DOI] [PubMed]
Khan MA, Mohammad I, Banerjee S, Tomar A, Varughese KI, Mehta JL, et al. Oxidized LDL receptors: a recent update.Curr Opin Lipidol. 2023;34:147–55. [DOI] [PubMed]
Hu HL, Zheng HX, Yuan N, Zhai CL, Chen H, Pan HH, et al. CircUsp9x/miR-599/stim1 axis regulates proliferation and migration in vascular smooth muscle cells induced by oxidized-low density lipoprotein.Clin Exp Hypertens. 2023;45:2280758. [DOI] [PubMed]
Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease.Eur J Pharmacol. 2024;966:176338. [DOI] [PubMed]
Ye B, Liang X, Zhao Y, Cai X, Wang Z, Lin S, et al. Hsa_circ_0007478 aggravates NLRP3 inflammasome activation and lipid metabolism imbalance in ox-LDL-stimulated macrophage via miR-765/EFNA3 axis.Chem Biol Interact. 2022;368:110195. [DOI] [PubMed]
Woźniak A, Satała J, Gorzelak-Pabiś P, Pawlos A, Broncel M, Kaźmierski P, et al. OxLDL as a prognostic biomarker of plaque instability in patients qualified for carotid endarterectomy.J Cell Mol Med. 2024;28:e18459. [DOI] [PubMed] [PMC]
He Y, Liu T. Oxidized low-density lipoprotein regulates macrophage polarization in atherosclerosis.Int Immunopharmacol. 2023;120:110338. [DOI] [PubMed]
Brinkley TE, Nicklas BJ, Kanaya AM, Satterfield S, Lakatta EG, Simonsick EM, et al. Plasma oxidized low-density lipoprotein levels and arterial stiffness in older adults: the health, aging, and body composition study.Hypertension. 2009;53:846–52. [DOI] [PubMed] [PMC]
De Villiers WJ, Smart EJ. Macrophage scavenger receptors and foam cell formation.J Leukoc Biol. 1999;66:740–6. [DOI] [PubMed]
Tang Z, Xu Y, Tan Y, Shi H, Jin P, Li Y, et al. CD36 mediates SARS-CoV-2-envelope-protein-induced platelet activation and thrombosis.Nat Commun. 2023;14:5077. [DOI] [PubMed] [PMC]
Clemente C, Rius C, Alonso-Herranz L, Martín-Alonso M, Pollán Á, Camafeita E, et al. MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis.Nat Commun. 2018;9:910. [DOI] [PubMed] [PMC]