Summary of bone related effects of GSK3 inhibitors, AZD2858, BIO, and LiCl in pre-clinical fracture and defect models. Reproduced from Ref. [234] with permission from Elsevier
Species
Models
Treatment
Dose
Healing and Strength
Major Findings
Refs
Mice
Femur Fracture
AZD2858 controlled releaseAZD2858 injection
0.168 mg
↑ BV/TV, strength↔ BV/TV
Nanoparticles from controlled release over 9 days showed greater accumulation in fracture bone and accelerated fracture healing (4 weeks)At same dose, free AZD failed to accelerate bone healing
Micellar delivery of 6BIO controlled release over 7 days showed accelerated fracture healing compared with free 6BIO and control (3wks)At same dose, free 6BIO failed to accelerate bone healing
Polymeric nanoparticles showed greater accumulation in fractured bone but failed to improve bone healing (3 wks)At same dose, free 6BIO failed to accelerate bone healing
The authors wish to acknowledge the financial support of the CIHR and NSERC Collaborative Health Research Program, as well as the Canada Research Chair – Tier 1 in Regenerative Medicine and Nanomedicine, and the FRQS funding. However, the funders had no role in study design, data collection, analysis, decision to publish, or preparation of the manuscript. Schematic figures were made using a paid subscription to the Biorender Software and graphs were created using Microsoft Excel.
Maryam Tabrizian is Editor-in-Chief of Exploration of BioMat-X, and Aldo Roberto Boccaccini is an Associate Editor of the journal. They were not involved in the decision-making or the review process of this manuscript. The remaining authors declare no conflict of interest.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Hart NH, Newton RU, Tan J, Rantalainen T, Chivers P, Siafarikas A, et al. Biological basis of bone strength: anatomy, physiology and measurement.J Musculoskelet Neuronal Interact. 2020;20:347–71. [PubMed] [PMC]
Morgan EF, Gerstenfeld LC. Chapter 2 - The bone organ system: form and function.In: Marcus and Feldman’s Osteoporosis (Fifth Edition). Academic Press; 2021. pp. 15–35. [DOI]
Abdelaziz AG, Nageh H, Abdo SM, Abdalla MS, Amer AA, Abdal-Hay A, et al. A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges.Bioengineering (Basel). 2023;10:204. [DOI] [PubMed] [PMC]
Rosa N, Moura MFSF, Olhero S, Simoes R, Magalhães FD, Marques AT, et al. Bone: An Outstanding Composite Material.Appl Sci. 2022;12:3381. [DOI]
Huggins C. The composition of bone and the function of the bone cell.Physiol Rev. 1937;17:119–43. [DOI]
Weiner S, Wagner HD. The material bone: structure-mechanical function relations.Annu Rev Mater Sci. 1998;28:271–98. [DOI]
Sheen JR, Mabrouk A, Garla VV. Fracture Healing Overview. Treasure Island (FL): StatPearls Publishing; 2025. [PubMed]
Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions.Nat Rev Rheumatol. 2015;11:45–54. [DOI] [PubMed] [PMC]
Pfeiffenberger M, Damerau A, Lang A, Buttgereit F, Hoff P, Gaber T. Fracture Healing Research-Shift towards In Vitro Modeling?Biomedicines. 2021;9:748. [DOI] [PubMed] [PMC]
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions.Nat Rev Rheumatol. 2012;8:133–43. [DOI] [PubMed]
Gao H, Huang J, Wei Q, He C. Advances in Animal Models for Studying Bone Fracture Healing.Bioengineering (Basel). 2023;10:201. [DOI] [PubMed] [PMC]
Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective.Eng Regener. 2020;1:6–18. [DOI]
Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, et al. Tissue-engineered bone regeneration.Nat Biotechnol. 2000;18:959–63. [DOI] [PubMed]
Einhorn TA. The cell and molecular biology of fracture healing.Clin Orthop Relat Res. 1998;355:S7–21. [DOI] [PubMed]
Rodan GA. Introduction to bone biology.Bone. 1992;13:S3–6. [DOI] [PubMed]
Nauth A, Schemitsch E, Norris B, Nollin Z, Watson JT. Critical-Size Bone Defects: Is There a Consensus for Diagnosis and Treatment?J Orthop Trauma. 2018;32:S7–S11. [DOI] [PubMed]
Stahl A, Yang YP. Regenerative Approaches for the Treatment of Large Bone Defects.Tissue Eng Part B Rev. 2021;27:539–47. [DOI] [PubMed] [PMC]
Jahan K, Tabrizian M. Composite biopolymers for bone regeneration enhancement in bony defects.Biomater Sci. 2016;4:25–39. [DOI] [PubMed]
Nayef L, Mekhail M, Benameur L, Rendon JS, Hamdy R, Tabrizian M. A combinatorial approach towards achieving an injectable, self-contained, phosphate-releasing scaffold for promoting biomineralization in critical size bone defects.Acta Biomater. 2016;29:389–97. [DOI] [PubMed]
Smrke D, Rožman P, Veselko M, Gubina B. Treatment of bone defects—allogenic platelet gel and autologous bone technique. In: Andrades JA, editor. Regenerative medicine and tissue engineering. IntechOpen; 2013.
Allesina L, Alessio-Mazzola M, Belluati A, Mosca S, Placella G, Salini V. Surgical treatment of critical size bone defects with Masquelet technique versus bone transport: a systematic review and meta-analysis of comparative studies.Arch Orthop Trauma Surg. 2023;143:7081–96. [DOI] [PubMed]
Valtanen RS, Yang YP, Gurtner GC, Maloney WJ, Lowenberg DW. Synthetic and Bone tissue engineering graft substitutes: What is the future?Injury. 2021;52:S72–7. [DOI] [PubMed]
Schemitsch EH. Size Matters: Defining Critical in Bone Defect Size!J Orthop Trauma. 2017;31:S20–2. [DOI] [PubMed]
Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects.J Am Acad Orthop Surg. 2015;23:143–53. [DOI] [PubMed]
Gugala Z, Lindsey RW, Gogolewski S. New Approaches in the Treatment of Critical-Size Segmental Defects in Long Bones.Macromol Symp. 2007;253:147–61. [DOI]
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.Nat Biotechnol. 2005;23:47–55. [DOI] [PubMed]
Perez JR, Kouroupis D, Li DJ, Best TM, Kaplan L, Correa D. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects.Front Bioeng Biotechnol. 2018;6:105. [DOI] [PubMed] [PMC]
Xue N, Ding X, Huang R, Jiang R, Huang H, Pan X, et al. Bone Tissue Engineering in the Treatment of Bone Defects.Pharmaceuticals (Basel). 2022;15:879. [DOI] [PubMed] [PMC]
Manzini BM, Machado LMR, Noritomi PY, DA Silva JVL. Advances in Bone tissue engineering: A fundamental review.J Biosci. 2021;46:17. [PubMed]
Qi J, Yu T, Hu B, Wu H, Ouyang H. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine.Int J Mol Sci. 2021;22:10233. [DOI] [PubMed] [PMC]
Jang JW, Min KE, Kim C, Shin J, Lee J, Yi S. Review: Scaffold Characteristics, Fabrication Methods, and Biomaterials for the Bone Tissue Engineering.Int J Precis Eng Manuf. 2023;24:511–29. [DOI]
Lobb DC, DeGeorge BR Jr, Chhabra AB. Bone Graft Substitutes: Current Concepts and Future Expectations.J Hand Surg Am. 2019;44:497–505.e2. [DOI] [PubMed]
Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering.Nat Rev Mater. 2020;5:584–603. [DOI]
Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM. Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering.Adv Funct Mater. 2021;31:2010609. [DOI]
Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering.Acta Biomater. 2018;80:1–30. [DOI] [PubMed]
Perić Kačarević Ž, Rider P, Alkildani S, Retnasingh S, Pejakić M, Schnettler R, et al. An introduction to bone tissue engineering.Int J Artif Organs. 2020;43:69–86. [DOI] [PubMed]
Willie BM, Petersen A, Schmidt-Bleek K, Cipitria A, Mehta M, Strube P, et al. Designing biomimetic scaffolds for bone regeneration: why aim for a copy of mature tissue properties if nature uses a different approach?Soft Matter. 2010;6:4976–87. [DOI]
Koushik TM, Miller CM, Antunes E. Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds.Adv Healthc Mater. 2023;12:e2202766. [DOI] [PubMed] [PMC]
Dorozhkin S. Calcium Orthophosphate (CaPO4) Scaffolds for Bone Tissue Engineering Applications.J Biotechnol Biomed Sci. 2018;1:25–93. [DOI]
Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.Mater Sci Eng C Mater Biol Appl. 2017;78:1246–62. [DOI] [PubMed]
Andrzejowski P, Giannoudis PV. The ‘diamond concept’ for long bone non-union management.J Orthop Traumatol. 2019;20:21. [DOI] [PubMed] [PMC]
Guo L, Liang Z, Yang L, Du W, Yu T, Tang H, et al. The role of natural polymers in bone tissue engineering.J Control Release. 2021;338:571–82. [DOI] [PubMed]
Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review.Adv Mater Sci Eng. 2019;2019:3429527. [DOI]
Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering.Ann Biomed Eng. 2004;32:477–86. [DOI] [PubMed]
Mekhail M, Daoud J, Almazan G, Tabrizian M. Rapid, guanosine 5'-diphosphate-induced, gelation of chitosan sponges as novel injectable scaffolds for soft tissue engineering and drug delivery applications.Adv Healthc Mater. 2013;2:1126–30. [DOI] [PubMed]
Kondiah PJ, Choonara YE, Kondiah PPD, Marimuthu T, Kumar P, du Toit LC, et al. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.Molecules. 2016;21:1580. [DOI] [PubMed] [PMC]
Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, et al. Injectable hydrogels for cartilage and bone tissue regeneration: A review.Int J Biol Macromol. 2023;246:125674. [DOI] [PubMed]
Mekhail M, Almazan G, Tabrizian M. Purine-crosslinked injectable chitosan sponges promote oligodendrocyte progenitor cells’ attachment and differentiation.Biomater Sci. 2015;3:279–87. [DOI] [PubMed]
Karoichan A, Baudequin T, Al-Jallad H, Tabrizian M. Encapsulation and differentiation of adipose-derived mesenchymal stem cells in a biomimetic purine cross-linked chitosan sponge.J Biomed Mater Res A. 2022;110:585–94. [DOI] [PubMed]
Jahan K, Mekhail M, Tabrizian M. One-step fabrication of apatite-chitosan scaffold as a potential injectable construct for bone tissue engineering.Carbohydr Polym. 2019;203:60–70. [DOI] [PubMed]
Jahan K, Manickam G, Tabrizian M, Murshed M. In vitro and in vivo investigation of osteogenic properties of self-contained phosphate-releasing injectable purine-crosslinked chitosan-hydroxyapatite constructs.Sci Rep. 2020;10:11603. [DOI] [PubMed] [PMC]
Benameur L, Baudequin T, Mekhail M, Tabrizian M. The bioconjugation mechanism of purine cross-linkers affects microstructure and cell response to ultra rapidly gelling purine-chitosan sponges.J Mater Chem B. 2018;6:602–13. [DOI] [PubMed]
Baudequin T, Agnes C, Tabrizian M. A core-shell guanosine diphosphate crosslinked chitosan scaffold as a potential co-encapsulation platform.Carbohydr Polym. 2021;256:117499. [DOI] [PubMed]
Rosemeyer H. The chemodiversity of purine as a constituent of natural products.Chem Biodivers. 2004;1:361–401. [DOI] [PubMed]
Keenan RT, Krasnokutsky S, Pillinger MH. Kelley and Firestein’s Textbook of Rheumatology (Tenth Edition). In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O’Dell JR, editors. Elsevier; 2016. pp. 1597–619.
Aaron JJ, Trajkovska S. Encyclopedia of Analytical Science (Second Edition). In: Worsfold P, Townshend A, Poole C, editors. Elsevier; 2005.
Florea DA, Albuleț D, Grumezescu AM, Andronescu E. Surface modification – A step forward to overcome the current challenges in orthopedic industry and to obtain an improved osseointegration and antimicrobial properties.Mater Chem Phys. 2020;243:122579. [DOI]
Yu P, Zhu X, Wang X, Wang S, Li W, Tan G, et al. Periodic Nanoneedle and Buffer Zones Constructed on a Titanium Surface Promote Osteogenic Differentiation and Bone Calcification In Vivo.Adv Healthc Mater. 2016;5:364–72. [DOI] [PubMed]
Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, et al. The effect of ultraviolet functionalization of titanium on integration with bone.Biomaterials. 2009;30:1015–25. [DOI] [PubMed]
Roddy E, DeBaun MR, Daoud-Gray A, Yang YP, Gardner MJ. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives.Eur J Orthop Surg Traumatol. 2018;28:351–62. [DOI] [PubMed]
Kargozar S, Mozafari M, Hamzehlou S, Brouki Milan P, Kim HW, Baino F. Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations.Appl Sci. 2019;9:174. [DOI]
Szpalski C, Barbaro M, Sagebin F, Warren SM. Bone tissue engineering: current strategies and techniques--part II: Cell types.Tissue Eng Part B Rev. 2012;18:258–69. [DOI] [PubMed]
Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration.Eur Spine J. 2001;10:S96–101. [DOI] [PubMed] [PMC]
Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing.Organogenesis. 2012;8:114–24. [DOI] [PubMed] [PMC]
Khan WS, Rayan F, Dhinsa BS, Marsh D. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we?Stem Cells Int. 2012;2012:236231. [DOI] [PubMed] [PMC]
Garg T, Singh O, Arora S, Murthy R. Scaffold: a novel carrier for cell and drug delivery.Crit Rev Ther Drug Carrier Syst. 2012;29:1–63. [DOI] [PubMed]
Mishra R, Bishop T, Valerio IL, Fisher JP, Dean D. The potential impact of bone tissue engineering in the clinic.Regen Med. 2016;11:571–87. [DOI] [PubMed] [PMC]
Shi R, Huang Y, Ma C, Wu C, Tian W. Current advances for bone regeneration based on tissue engineering strategies.Front Med. 2019;13:160–88. [DOI] [PubMed]
Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics.Biomaterials. 2011;32:2757–74. [DOI] [PubMed]
Bostrom MP, Saleh KJ, Einhorn TA. Osteoinductive growth factors in preclinical fracture and long bone defects models.Orthop Clin North Am. 1999;30:647–58. [DOI] [PubMed]
Laiuppa JA, Santillán GE. Involvement of GSK3/β-catenin in the action of extracellular ATP on differentiation of primary cultures from rat calvaria into osteoblasts.J Cell Biochem. 2018;119:8378–88. [DOI] [PubMed]
Vijaykumar A, Mina M. Lithium Chloride Exerts Differential Effects on Dentinogenesis and Osteogenesis in Primary Pulp Cultures.Front Dent Med. 2021;2:649500. [DOI]
Huang L, Yin X, Chen J, Liu R, Xiao X, Hu Z, et al. Lithium chloride promotes osteogenesis and suppresses apoptosis during orthodontic tooth movement in osteoporotic model via regulating autophagy.Bioact Mater. 2021;6:3074–84. [DOI] [PubMed] [PMC]
Park J, Seo J, Lee H. Enhanced osteogenic differentiation of mesenchymal stem cells by surface lithium modification in a sandblasted/acid-etched titanium implant.J Biomater Appl. 2022;37:447–58. [DOI] [PubMed]
Vachhani K, Pagotto A, Wang Y, Whyne C, Nam D. Design of experiments confirms optimization of lithium administration parameters for enhanced fracture healing.J Biomech. 2018;66:153–8. [DOI] [PubMed]
Arioka M, Takahashi-Yanaga F, Sasaki M, Yoshihara T, Morimoto S, Hirata M, et al. Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis.Biochem Pharmacol. 2014;90:397–405. [DOI] [PubMed]
Sisask G, Marsell R, Sundgren-Andersson A, Larsson S, Nilsson O, Ljunggren O, et al. Rats treated with AZD2858, a GSK3 inhibitor, heal fractures rapidly without endochondral bone formation.Bone. 2013;54:126–32. [DOI] [PubMed]
Marsell R, Sisask G, Nilsson Y, Sundgren-Andersson AK, Andersson U, Larsson S, et al. GSK-3 inhibition by an orally active small molecule increases bone mass in rats.Bone. 2012;50:619–27. [DOI] [PubMed]
Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration.J Cell Physiol. 2018;233:2937–48. [DOI] [PubMed]
Hayrapetyan A, Jansen JA, van den Beucken JJJP. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine.Tissue Eng Part B Rev. 2015;21:75–87. [DOI] [PubMed]
Iñiguez-Ariza NM, Clarke BL. Bone biology, signaling pathways, and therapeutic targets for osteoporosis.Maturitas. 2015;82:245–55. [DOI] [PubMed]
de Gorter DJJ, ten Dijke P. Signal Transduction Cascades Controlling Osteoblast Differentiation. In: Rosen CJ, editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. pp. 15–24. [DOI]
Zhao X, Yang Z, Gao Z, Ge J, Wei Q, Ma B. 6-Bromoindirubin-3'-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway.An Acad Bras Cienc. 2019;91:e20180459. [DOI] [PubMed]
Li J, Khavandgar Z, Lin S, Murshed M. Lithium chloride attenuates BMP-2 signaling and inhibits osteogenic differentiation through a novel WNT/GSK3- independent mechanism.Bone. 2011;48:321–31. [DOI] [PubMed]
Ma J, Zhang Z, Hu X, Wang X, Chen A. Metformin promotes differentiation of human bone marrow derived mesenchymal stem cells into osteoblast via GSK3β inhibition.Eur Rev Med Pharmacol Sci. 2018;22:7962–8. [DOI] [PubMed]
Fukuda T, Kokabu S, Ohte S, Sasanuma H, Kanomata K, Yoneyama K, et al. Canonical Wnts and BMPs cooperatively induce osteoblastic differentiation through a GSK3beta-dependent and beta-catenin-independent mechanism.Differentiation. 2010;80:46–52. [DOI] [PubMed]
Zhu Z, Yin J, Guan J, Hu B, Niu X, Jin D, et al. Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3β-dependent β-catenin/Wnt pathway activation.FEBS J. 2014;281:5371–89. [DOI] [PubMed]
Piters E, Boudin E, Hul WV. Wnt signaling: a win for bone.Arch Biochem Biophys. 2008;473:112–6. [DOI] [PubMed]
Goldring SR, Goldring MB. Eating bone or adding it: the Wnt pathway decides.Nat Med. 2007;13:133–4. [DOI] [PubMed]
Albers J, Keller J, Baranowsky A, Beil FT, Catala-Lehnen P, Schulze J, et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin.J Cell Biol. 2013;200:537–49. [DOI] [PubMed] [PMC]
Kubota T, Michigami T, Ozono K. Wnt signaling in bone metabolism.J Bone Miner Metab. 2009;27:265–71. [DOI] [PubMed]
Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases.Ther Adv Musculoskelet Dis. 2013;5:13–31. [DOI] [PubMed] [PMC]
Suamte L, Tirkey A, Barman J, Jayasekhar Babu P. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications.Smart Mater Manuf. 2023;1:100011. [DOI]
Nallusamy J, Das RK. Hydrogels and Their Role in Bone Tissue Engineering: An Overview.J Pharm Bioallied Sci. 2021;13:S908–12. [DOI] [PubMed] [PMC]
Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends.Macromol Biosci. 2004;4:743–65. [DOI] [PubMed]
Zhang Z, Li Y, He P, Liu F, Li L, Zhang H, et al. Nanotube-decorated hierarchical tantalum scaffold promoted early osseointegration.Nanomedicine. 2021;35:102390. [DOI] [PubMed]
Wang H, Su K, Su L, Liang P, Ji P, Wang C. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis.Mater Sci Eng C Mater Biol Appl. 2019;104:109908. [DOI] [PubMed]
Wang Q, Zhang H, Gan H, Wang H, Li Q, Wang Z. Application of combined porous tantalum scaffolds loaded with bone morphogenetic protein 7 to repair of osteochondral defect in rabbits*.Int Orthop. 2018;42:1437–48. [DOI] [PubMed]
Guo Y, Xie K, Jiang W, Wang L, Li G, Zhao S, et al. In Vitro and in Vivo Study of 3D-Printed Porous Tantalum Scaffolds for Repairing Bone Defects.ACS Biomater Sci Eng. 2019;5:1123–33. [DOI] [PubMed]
Vangapally S, Agarwal K, Sheldon A, Cai S. Effect of Lattice Design and Process Parameters on Dimensional and Mechanical Properties of Binder Jet Additively Manufactured Stainless Steel 316 for Bone Scaffolds.Procedia Manuf. 2017;10:750–9. [DOI]
Čapek J, Machová M, Fousová M, Kubásek J, Vojtěch D, Fojt J, et al. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.Mater Sci Eng C Mater Biol Appl. 2016;69:631–9. [DOI] [PubMed]
Han C, Yao Y, Cheng X, Luo J, Luo P, Wang Q, et al. Electrophoretic Deposition of Gentamicin-Loaded Silk Fibroin Coatings on 3D-Printed Porous Cobalt-Chromium-Molybdenum Bone Substitutes to Prevent Orthopedic Implant Infections.Biomacromolecules. 2017;18:3776–87. [DOI] [PubMed]
Caravaggi P, Liverani E, Leardini A, Fortunato A, Belvedere C, Baruffaldi F, et al. CoCr porous scaffolds manufactured via selective laser melting in orthopedics: Topographical, mechanical, and biological characterization.J Biomed Mater Res B Appl Biomater. 2019;107:2343–53. [DOI] [PubMed]
Hoffmann W, Bormann T, Rossi A, Müller B, Schumacher R, Martin I, et al. Rapid prototyped porous nickel-titanium scaffolds as bone substitutes.J Tissue Eng. 2014;5:2041731414540674. [DOI] [PubMed] [PMC]
Dong J, Li Y, Lin P, Leeflang MA, van Asperen S, Yu K, et al. Solvent-cast 3D printing of magnesium scaffolds.Acta Biomater. 2020;114:497–514. [DOI] [PubMed]
Jiang N, Guo Z, Sun D, Li Y, Yang Y, Chen C, et al. Promoting Osseointegration of Ti Implants through Micro/Nanoscaled Hierarchical Ti Phosphate/Ti Oxide Hybrid Coating.ACS Nano. 2018;12:7883–91. [DOI] [PubMed]
Ge M, Ge K, Gao F, Yan W, Liu H, Xue L, et al. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair.Int J Nanomedicine. 2018;13:1707–21. [DOI] [PubMed] [PMC]
Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, et al. 3D bioactive composite scaffolds for bone tissue engineering.Bioact Mater. 2017;3:278–314. [DOI] [PubMed] [PMC]
Dabrowski B, Swieszkowski W, Godlinski D, Kurzydlowski KJ. Highly porous titanium scaffolds for orthopaedic applications.J Biomed Mater Res B Appl Biomater. 2010;95:53–61. [DOI] [PubMed]
Cheng M, Wahafu T, Jiang G, Liu W, Qiao Y, Peng X, et al. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration.Sci Rep. 2016;6:24134. [DOI] [PubMed] [PMC]
Chen Y, Frith JE, Dehghan-Manshadi A, Attar H, Kent D, Soro NDM, et al. Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering.J Mech Behav Biomed Mater. 2017;75:169–74. [DOI] [PubMed]
Peng C, Izawa T, Zhu L, Kuroda K, Okido M. Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility.ACS Appl Mater Interfaces. 2019;11:45489–97. [DOI] [PubMed]
Diba M, Camargo WA, Brindisi M, Farbod K, Klymov A, Schmidt S, et al. Composite Colloidal Gels Made of Bisphosphonate-Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects.Adv Funct Mater. 2017;27:1703438. [DOI]
Feng Q, Wei K, Lin S, Xu Z, Sun Y, Shi P, et al. Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration.Biomaterials. 2016;101:217–28. [DOI] [PubMed]
Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms.Nat Protoc. 2016;11:727–46. [DOI] [PubMed]
Shi L, Wang F, Zhu W, Xu Z, Fuchs S, Hilborn J, et al. Self-Healing Silk Fibroin-Based Hydrogel for Bone Regeneration: Dynamic Metal-Ligand Self-Assembly Approach.Adv Funct Mater. 2017;27:1700591. [DOI]
Partlow BP, Hanna CW, Rnjak-Kovacina J, Moreau JE, Applegate MB, Burke KA, et al. Highly tunable elastomeric silk biomaterials.Adv Funct Mater. 2014;24:4615–24. [DOI] [PubMed] [PMC]
Han H, Ning H, Liu S, Prof QL, Fan Z, Lu H, et al. Silk Biomaterials with Vascularization Capacity.Adv Funct Mater. 2016;26:421–36. [DOI] [PubMed] [PMC]
Lin Z, Wu J, Qiao W, Zhao Y, Wong KHM, Chu PK, et al. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration.Biomaterials. 2018;174:1–16. [DOI] [PubMed]
Luo Z, Pan J, Sun Y, Zhang S, Yang Y, Liu H, et al. Injectable 3D Porous Micro-Scaffolds with a Bio-Engine for Cell Transplantation and Tissue Regeneration.Adv Funct Mater. 2018;28:1804335. [DOI]
Luo Z, Zhang S, Pan J, Shi R, Liu H, Lyu Y, et al. Time-responsive osteogenic niche of stem cells: A sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation.Biomaterials. 2018;163:25–42. [DOI] [PubMed]
Jeon O, Lee K, Alsberg E. Spatial Micropatterning of Growth Factors in 3D Hydrogels for Location-Specific Regulation of Cellular Behaviors.Small. 2018;14:e1800579. [DOI] [PubMed] [PMC]
Lai Y, Li Y, Cao H, Long J, Wang X, Li L, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect.Biomaterials. 2019;197:207–19. [DOI] [PubMed]
Zhang J, Jia J, Kim JP, Shen H, Yang F, Zhang Q, et al. Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration.Adv Mater. 2017;29. [DOI] [PubMed]
Wang S, Kempen DHR, de Ruiter GCW, Cai L, Spinner RJ, Windebank AJ, et al. Molecularly Engineered Biodegradable Polymer Networks with a Wide Range of Stiffness for Bone and Peripheral Nerve Regeneration.Adv Funct Mater. 2015;25:2715–24. [DOI]
Wilson JA, Luong D, Kleinfehn AP, Sallam S, Wesdemiotis C, Becker ML. Magnesium Catalyzed Polymerization of End Functionalized Poly(propylene maleate) and Poly(propylene fumarate) for 3D Printing of Bioactive Scaffolds.J Am Chem Soc. 2018;140:277–84. [DOI] [PubMed]
Cai L, Chen J, Rondinone AJ, Wang S. Injectable and Biodegradable Nanohybrid Polymers with Simultaneously Enhanced Stiffness and Toughness for Bone Repair.Adv Funct Mater. 2012;22:3181–90. [DOI]
Jakus AE, Rutz AL, Jordan SW, Kannan A, Mitchell SM, Yun C, et al. Hyperelastic “bone”: A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial.Sci Transl Med. 2016;8:358ra127. [DOI] [PubMed]
Nasajpour A, Ansari S, Rinoldi C, Rad AS, Aghaloo T, Shin SR, et al. A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics.Adv Funct Mater. 2018;28:1703437. [DOI]
Li L, Li J, Guo J, Zhang H, Zhang X, Yin C, et al. 3D Molecularly Functionalized Cell-Free Biomimetic Scaffolds for Osteochondral Regeneration.Adv Funct Mater. 2019;29:1807356. [DOI]
Geuli O, Metoki N, Eliaz N, Mandler D. Electrochemically Driven Hydroxyapatite Nanoparticles Coating of Medical Implants.Adv Funct Mater. 2016;26:8003–10. [DOI]
Shen X, Zhang Y, Gu Y, Xu Y, Liu Y, Li B, et al. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration.Biomaterials. 2016;106:205–16. [DOI] [PubMed]
Feng P, Wu P, Gao C, Yang Y, Guo W, Yang W, et al. A Multimaterial Scaffold With Tunable Properties: Toward Bone Tissue Repair.Adv Sci (Weinh). 2018;5:1700817. [DOI] [PubMed] [PMC]
Bohner M, Baroud G, Bernstein A, Döbelin N, Galea L, Hesse B, et al. Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes.Mater Today. 2017;20:106–15. [DOI]
Gao F, Xu Z, Liang Q, Liu B, Li H, Wu Y, et al. Direct 3D Printing of High Strength Biohybrid Gradient Hydrogel Scaffolds for Efficient Repair of Osteochondral Defect.Adv Funct Mater. 2018;28:1706644. [DOI]
Lin D, Chai Y, Ma Y, Duan B, Yuan Y, Liu C. Rapid initiation of guided bone regeneration driven by spatiotemporal delivery of IL-8 and BMP-2 from hierarchical MBG-based scaffold.Biomaterials. 2019;196:122–37. [DOI] [PubMed]
Kang MS, Lee N, Singh RK, Mandakhbayar N, Perez RA, Lee J, et al. Nanocements produced from mesoporous bioactive glass nanoparticles.Biomaterials. 2018;162:183–99. [DOI] [PubMed]
Quinlan E, Partap S, Azevedo MM, Jell G, Stevens MM, O’Brien FJ. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.Biomaterials. 2015;52:358–66. [DOI] [PubMed]
Cheng P, Han P, Zhao C, Zhang S, Wu H, Ni J, et al. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF.Biomaterials. 2016;81:14–26. [DOI] [PubMed]
Lee J, Han H, Han K, Park J, Jeon H, Ok M, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy.Proc Natl Acad Sci U S A. 2016;113:716–21. [DOI] [PubMed] [PMC]
Shimizu M, Kobayashi Y, Mizoguchi T, Nakamura H, Kawahara I, Narita N, et al. Carbon nanotubes induce bone calcification by bidirectional interaction with osteoblasts.Adv Mater. 2012;24:2176–85. [DOI] [PubMed]
Nardecchia S, Serrano MC, Gutiérrez MC, Portolés MT, Ferrer ML, del Monte F. Osteoconductive Performance of Carbon Nanotube Scaffolds Homogeneously Mineralized by Flow-Through Electrodeposition.Adv Funct Mater. 2012;22:4411–20. [DOI]
Lu J, Cheng C, He Y, Lyu C, Wang Y, Yu J, et al. Multilayered Graphene Hydrogel Membranes for Guided Bone Regeneration.Adv Mater. 2016;28:4025–31. [DOI] [PubMed]
Ruan J, Wang X, Yu Z, Wang Z, Xie Q, Zhang D, et al. Enhanced Physiochemical and Mechanical Performance of Chitosan-Grafted Graphene Oxide for Superior Osteoinductivity.Adv Funct Mater. 2016;26:1085–97. [DOI]
Li K, Zhang Z, Li D, Zhang W, Yu X, Liu W, et al. Biomimetic Ultralight, Highly Porous, Shape-Adjustable, and Biocompatible 3D Graphene Minerals via Incorporation of Self-Assembled Peptide Nanosheets.Adv Funct Mater. 2018;28:1801056. [DOI]
Ma H, Jiang C, Zhai D, Luo Y, Chen Y, Lv F, et al. A Bifunctional Biomaterial with Photothermal Effect for Tumor Therapy and Bone Regeneration.Adv Funct Mater. 2016;26:1197–208. [DOI]
Arnold AM, Holt BD, Daneshmandi L, Laurencin CT, Sydlik SA. Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration.Proc Natl Acad Sci U S A. 2019;116:4855–60. [DOI] [PubMed] [PMC]
Wu L, Zhou C, Zhang B, Lei H, Wang W, Pu X, et al. Construction of Biomimetic Natural Wood Hierarchical Porous-Structure Bioceramic with Micro/Nanowhisker Coating to Modulate Cellular Behavior and Osteoinductive Activity.ACS Appl Mater Interfaces. 2020;12:48395–407. [DOI] [PubMed]
Kim C, Lee JW, Heo JH, Park C, Kim D, Yi GS, et al. Natural bone-mimicking nanopore-incorporated hydroxyapatite scaffolds for enhanced bone tissue regeneration.Biomater Res. 2022;26:7. [DOI] [PubMed] [PMC]
Rathbone CR, Guda T, Singleton BM, Oh DS, Appleford MR, Ong JL, et al. Effect of cell-seeded hydroxyapatite scaffolds on rabbit radius bone regeneration.J Biomed Mater Res A. 2014;102:1458–66. [DOI] [PubMed]
Tanaka M, Haniu H, Kamanaka T, Takizawa T, Sobajima A, Yoshida K, et al. Physico-Chemical, In Vitro, and In Vivo Evaluation of a 3D Unidirectional Porous Hydroxyapatite Scaffold for Bone Regeneration.Materials (Basel). 2017;10:33. [DOI] [PubMed] [PMC]
Zhang Q, Ma L, Ji X, He Y, Cui Y, Liu X, et al. High-Strength Hydroxyapatite Scaffolds with Minimal Surface Macrostructures for Load-Bearing Bone Regeneration.Adv Funct Mater. 2022;32:2204182. [DOI]
Diao J, OuYang J, Deng T, Liu X, Feng Y, Zhao N, et al. 3D-Plotted Beta-Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve In Vivo Bone Regeneration and Biomechanical Properties in a Critical-Sized Calvarial Defect Rat Model.Adv Healthc Mater. 2018;7:e1800441. [DOI] [PubMed] [PMC]
Diao J, Ding H, Huang M, Fu X, Zou F, Li T, et al. Bone Defect Model Dependent Optimal Pore Sizes of 3D-Plotted Beta-Tricalcium Phosphate Scaffolds for Bone Regeneration.Small Methods. 2019;3:1900237. [DOI]
Zhang J, Liu X, Li H, Chen C, Hu B, Niu X, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway.Stem Cell Res Ther. 2016;7:136. [DOI] [PubMed] [PMC]
Li X, Yuan Y, Liu L, Leung YS, Chen Y, Guo Y, et al. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration.Bio-Des Manuf. 2020;3:15–29. [DOI]
Guéhennec LL, Van Hede D, Plougonven E, Nolens G, Verlée B, De Pauw M, et al. In vitro and in vivo biocompatibility of calcium-phosphate scaffolds three-dimensional printed by stereolithography for bone regeneration.J Biomed Mater Res A. 2020;108:412–25. [DOI] [PubMed]
Zhu Y, Zhang K, Zhao R, Ye X, Chen X, Xiao Z, et al. Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs.Biomaterials. 2017;147:133–44. [DOI] [PubMed]
Kim HJ, Park IK, Kim JH, Cho CS, Kim MS. Gas foaming fabrication of porous biphasic calcium phosphate for bone regeneration.Tissue Eng Regen Med. 2012;9:63–8. [DOI]
El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.Acta Biomater. 2017;62:1–28. [DOI] [PubMed]
Piatti E, Miola M, Verné E. Tailoring of bioactive glass and glass-ceramics properties for in vitro and in vivo response optimization: a review.Biomater Sci. 2024;12:4546–89. [DOI] [PubMed]
Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity.Biomaterials. 2013;34:422–33. [DOI] [PubMed]
Flaig I, Radenković M, Najman S, Pröhl A, Jung O, Barbeck M. In Vivo Analysis of the Biocompatibility and Immune Response of Jellyfish Collagen Scaffolds and its Suitability for Bone Regeneration.Int J Mol Sci. 2020;21:4518. [DOI] [PubMed] [PMC]
Nakamura S, Ito T, Okamoto K, Mima T, Uchida K, Siddiqui YD, et al. Acceleration of bone regeneration of horizontal bone defect in rats using collagen-binding basic fibroblast growth factor combined with collagen scaffolds.J Periodontol. 2019;90:1043–52. [DOI] [PubMed] [PMC]
Oliveira SM, Ringshia RA, Legeros RZ, Clark E, Yost MJ, Terracio L, et al. An improved collagen scaffold for skeletal regeneration.J Biomed Mater Res A. 2010;94:371–9. [DOI] [PubMed] [PMC]
Li J, Wang W, Li M, Song P, Lei H, Gui X, et al. Biomimetic Methacrylated Gelatin Hydrogel Loaded With Bone Marrow Mesenchymal Stem Cells for Bone Tissue Regeneration.Front Bioeng Biotechnol. 2021;9:770049. [DOI] [PubMed] [PMC]
Creste CFZ, Orsi PR, Landim-Alvarenga FC, Justulin LA, Golim MA, Barraviera B, et al. Highly effective fibrin biopolymer scaffold for stem cells upgrading bone regeneration.Materials (Basel). 2020;13:2747. [DOI] [PubMed] [PMC]
Kim BS, Shkembi F, Lee J. In Vitro and In Vivo Evaluation of Commercially Available Fibrin Gel as a Carrier of Alendronate for Bone Tissue Engineering.Biomed Res Int. 2017;2017:6434169. [DOI] [PubMed] [PMC]
Abarrategi A, Lópiz-Morales Y, Ramos V, Civantos A, López-Durán L, Marco F, et al. Chitosan scaffolds for osteochondral tissue regeneration.J Biomed Mater Res A. 2010;95:1132–41. [DOI] [PubMed]
Ho M, Yao C, Liao M, Lin P, Liu S, Chen R. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway.Int J Nanomedicine. 2015;10:5941–54. [DOI] [PubMed] [PMC]
Bae MS, Yang DH, Lee JB, Heo DN, Kwon Y, Youn IC, et al. Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold.Biomaterials. 2011;32:8161–71. [DOI] [PubMed]
Patterson J, Siew R, Herring SW, Lin ASP, Guldberg R, Stayton PS. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration.Biomaterials. 2010;31:6772–81. [DOI] [PubMed] [PMC]
Diomede F, Gugliandolo A, Cardelli P, Merciaro I, Ettorre V, Traini T, et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair.Stem Cell Res Ther. 2018;9:104. [DOI] [PubMed] [PMC]
Velioglu ZB, Pulat D, Demirbakan B, Ozcan B, Bayrak E, Erisken C. 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization.Connect Tissue Res. 2019;60:274–82. [DOI] [PubMed]
Song X, Li X, Wang F, Wang L, Lv L, Xie Q, et al. Bioinspired Protein/Peptide Loaded 3D Printed PLGA Scaffold Promotes Bone Regeneration.Front Bioeng Biotechnol. 2022;10:832727. [DOI] [PubMed] [PMC]
Ge Z, Tian X, Heng BC, Fan V, Yeo JF, Cao T. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model.Biomed Mater. 2009;4:021001. [DOI] [PubMed]
Wu Y, Xia H, Zhang B, Zhao Y, Wang Y. Assessment of polyglycolic acid scaffolds for periodontal ligament regeneration.Biotechnol Biotechnol Equip. 2018;32:701–6. [DOI]
Yilgor P, Sousa RA, Reis RL, Hasirci N, Hasirci V. Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration.J Mater Sci Mater Med. 2010;21:2999–3008. [DOI] [PubMed]
Shi C, Yuan Z, Han F, Zhu C, Li B. Polymeric biomaterials for bone regeneration.Ann Joint. 2016;1. [DOI]
Romagnoli C, D’Asta F, Brandi ML. Drug delivery using composite scaffolds in the context of bone tissue engineering.Clin Cases Miner Bone Metab. 2013;10:155–61. [PubMed] [PMC]
Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds.Expert Rev Med Devices. 2005;2:303–17. [DOI] [PubMed]
Sallum GCB, Sacramento CM, Alves T, Alves PLM, Jozala AF, Grotto D, et al. Enhanced bone matrix formation through a dense lamellar scaffold of chitosan, collagen type I, and hyaluronic acid.Carbohydr Polym Technol Appl. 2024;8:100549. [DOI]
Nguyen TBL, Lee B. A combination of biphasic calcium phosphate scaffold with hyaluronic acid-gelatin hydrogel as a new tool for bone regeneration.Tissue Eng Part A. 2014;20:1993–2004. [DOI] [PubMed] [PMC]
Soriente A, Fasolino I, Gomez-Sánchez A, Prokhorov E, Buonocore GG, Luna-Barcenas G, et al. Chitosan/hydroxyapatite nanocomposite scaffolds to modulate osteogenic and inflammatory response.J Biomed Mater Res A. 2022;110:266–72. [DOI] [PubMed] [PMC]
Fu Z, Li D, Cui J, Xu H, Yuan C, Wang P, et al. Promoting bone regeneration via bioactive calcium silicate nanowires reinforced poly (ε-caprolactone) electrospun fibrous membranes.Mater Des. 2023;226:111671. [DOI]
Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.Biomaterials. 2006;27:3413–31. [DOI] [PubMed]
Jain S, Gujjala R, Abdul Azeem P, Ojha S, Samudrala RK. A review on mechanical and In-vitro studies of polymer reinforced bioactive glass-scaffolds and their fabrication techniques.Ceram Int. 2022;48:5908–21. [DOI]
Cui Z, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering.Nat Commun. 2019;10:3523. [DOI] [PubMed] [PMC]
Singh BN, Veeresh V, Mallick SP, Sinha S, Rastogi A, Srivastava P. Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering.Int J Biol Macromol. 2020;153:1–16. [DOI] [PubMed]
Sun H, Zhang C, Zhang B, Song P, Xu X, Gui X, et al. 3D printed calcium phosphate scaffolds with controlled release of osteogenic drugs for bone regeneration.Chem Eng J. 2022;427:130961. [DOI]
Nguyen TL, Tseng CC, Cheng TC, Nguyen VT, Chang YH. Formation and characterization of calcium phosphate ceramic coatings on Ti-6Al-4V alloy.Mater Today Commun. 2022;31:103686. [DOI]
Farshid S, Ebrahimian-Hosseinabadi M, Rafienia M. Electrophoretic deposition of biphasic calcium phosphate/graphene nanocomposite coatings on Ti6Al4V substrate for biomedical applications.J Alloys Compd. 2022;892:162150. [DOI]
Zhang B, Li J, He L, Huang H, Weng J. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration.Acta Biomater. 2020;114:431–48. [DOI] [PubMed]
Su S, Chen W, Zheng M, Lu G, Tang W, Huang H, et al. Facile Fabrication of 3D-Printed Porous Ti6Al4V Scaffolds with a Sr-CaP Coating for Bone Regeneration.ACS Omega. 2022;7:8391–402. [DOI] [PubMed] [PMC]
Hu C, Ashok D, Nisbet DR, Gautam V. Bioinspired surface modification of orthopedic implants for bone tissue engineering.Biomaterials. 2019;219:119366. [DOI] [PubMed]
Mohamad Yunos D, Bretcanu O, Boccaccini AR. Polymer-bioceramic composites for tissue engineering scaffolds.J Mater Sci. 2008;43:4433–42. [DOI]
Motealleh A, Eqtesadi S, Pajares A, Miranda P, Salamon D, Castkova K. Case study: Reinforcement of 45S5 bioglass robocast scaffolds by HA/PCL nanocomposite coatings.J Mech Behav Biomed Mater. 2017;75:114–8. [DOI] [PubMed]
Monavari M, Homaeigohar S, Fuentes-Chandía M, Nawaz Q, Monavari M, Venkatraman A, et al. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering.Mater Sci Eng C Mater Biol Appl. 2021;131:112470. [DOI] [PubMed]
Agnes CJ, Karoichan A, Tabrizian M. The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering.ACS Appl Bio Mater. 2023;6:2515–45. [DOI] [PubMed] [PMC]
Hoffman AS. Hydrogels for biomedical applications.Ann N Y Acad Sci. 2001;944:62–73. [DOI]
Park JB. The use of hydrogels in bone-tissue engineering.Med Oral Patol Oral Cir Bucal. 2011;16:e115–8. [DOI] [PubMed]
Gutowska A, Jeong B, Jasionowski M. Injectable gels for tissue engineering.Anat Rec. 2001;263:342–9. [DOI] [PubMed]
Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering.Bone Res. 2017;5:17014. [DOI] [PubMed] [PMC]
Chuang E, Lin Y, Huang Y, Chen C, Yeh Y, Rethi L, et al. Biofunctionalized hydrogel composed of genipin-crosslinked gelatin/hyaluronic acid incorporated with lyophilized platelet-rich fibrin for segmental bone defect repair.Carbohydr Polym. 2024;339:122174. [DOI] [PubMed]
Chen F, Liu Y, Zou Y, Zhu J, Liu L, Fan Y. Preparation of nanochitin hydrogel with adjustable inter-structure by sequencial genipin crosslinking and ice-templating under acid condition.Int J Biol Macromol. 2022;221:1022–30. [DOI] [PubMed]
Lu J, Xu R, Chen Y, Chan L, Feng X, Lin L, et al. Injectable Col-Ⅰ/CS hydrogel enhances bone regeneration in mice tibial mono-cortical defect with impaired osteogenesis.Mater Today Commun. 2022;32:104070. [DOI]
Chen M, Tan H, Xu W, Wang Z, Zhang J, Li S, et al. A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair.Acta Biomater. 2022;153:159–77. [DOI] [PubMed]
Samirah, Budiatin AS, Mahyudin F, Khotib J. Fabrication and characterization of bovine hydroxyapatite-gelatin-alendronate scaffold cross-linked by glutaraldehyde for bone regeneration.J Basic Clin Physiol Pharmacol. 2021;32:555–60. [DOI] [PubMed]
Kim S, Kim Y, Chong S, Lee K, Lee M. Osteogenic Effect of a Biodegradable BMP-2 Hydrogel Injected into a Cannulated Mg Screw.ACS Biomater Sci Eng. 2020;6:6173–85. [DOI] [PubMed]
Uswatta SP, Okeke IU, Jayasuriya AC. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration.Mater Sci Eng C Mater Biol Appl. 2016;69:505–12. [DOI] [PubMed] [PMC]
Shimojo AAM, Galdames SEM, Perez AGM, Ito TH, Luzo ÂCM, Santana MHA. In vitro performance of injectable chitosan-tripolyphosphate scaffolds combined with platelet-rich plasma.Tissue Eng Regen Med. 2016;13:21–30. [DOI]
Fang Y, Zhang T, Song Y, Sun W. Assessment of various crosslinking agents on collagen/chitosan scaffolds for myocardial tissue engineering.Biomed Mater. 2020;15:045003. [DOI] [PubMed]
Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds.Int J Biol Macromol. 2018;107:678–88. [DOI] [PubMed]
Krishnakumar GS, Sampath S, Muthusamy S, John MA. Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review.Mater Sci Eng C Mater Biol Appl. 2019;96:941–54. [DOI] [PubMed]
Lim W, Mayer B, Pawson T. Cell signaling. New York: Garland Science; 2014. [DOI]
Lanznaster D, Dal-Cim T, Piermartiri TCB, Tasca CI. Guanosine: a Neuromodulator with Therapeutic Potential in Brain Disorders.Aging Dis. 2016;7:657–79. [DOI] [PubMed] [PMC]
Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration.J Sci Adv Mater Devices. 2020;5:1–9. [DOI]
Ungaro F, Biondi M, d’Angelo I, Indolfi L, Quaglia F, Netti PA, et al. Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics.J Control Release. 2006;113:128–36. [DOI] [PubMed]
Yusop AH, Sarian MN, Januddi FS, Ahmed QU, Kadir MR, Hartanto D, et al. Structure, degradation, drug release and mechanical properties relationships of iron-based drug eluting scaffolds: The effects of PLGA.Mater Des. 2018;160:203–17. [DOI]
Tajvar S, Hadjizadeh A, Samandari SS. Scaffold degradation in bone tissue engineering: An overview.Int Biodeterior Biodegrad. 2023;180:105599. [DOI]
Addison WN, Azari F, Sørensen ES, Kaartinen MT, McKee MD. Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity.J Biol Chem. 2007;282:15872–83. [DOI] [PubMed]
Grover LM, Wright AJ, Gbureck U, Bolarinwa A, Song J, Liu Y, et al. The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation.Biomaterials. 2013;34:6631–7. [DOI] [PubMed]
Shabestari M, Eriksen EF, Paschalis EP, Roschger P, Gamsjaeger S, Klaushofer K, et al. Presence of pyrophosphate in bone from an atypical femoral fracture site: A case report.Bone Rep. 2017;6:81–6. [DOI] [PubMed] [PMC]
Fleisch H. Diphosphonates: history and mechanisms of action.Metab Bone Dis Relat Res. 1981;3:279–87. [DOI] [PubMed]
Tenenbaum HC, Torontali M, Sukhu B. Effects of bisphosphonates and inorganic pyrophosphate on osteogenesis in vitro.Bone. 1992;13:249–55. [DOI] [PubMed]
Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization.Proc Natl Acad Sci U S A. 2002;99:9445–9. [DOI] [PubMed] [PMC]
Allen NB, Abar B, Johnson L, Burbano J, Danilkowicz RM, Adams SB. 3D-bioprinted GelMA-gelatin-hydroxyapatite osteoblast-laden composite hydrogels for bone tissue engineering.Bioprinting. 2022;26:e00196. [DOI]
Wang D, Liao X, Qin X, Shi W, Zhou B. A novel chimeric peptide binds MC3T3E1 cells to titanium and enhances their proliferation and differentiation.Mol Med Rep. 2013;7:1437–41. [DOI] [PubMed]
Schupbach D, Comeau-Gauthier M, Harvey E, Merle G. Wnt modulation in bone healing.Bone. 2020;138:115491. [DOI] [PubMed]
Takahashi-Yanaga F. Activator or inhibitor? GSK-3 as a new drug target.Biochemical Pharmacology. 2013;86:191–9. [DOI] [PubMed]
Nelson AL, Fontana G, Miclau E, Rongstad M, Murphy W, Huard J, et al. Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration.J Tissue Eng Regen Med. 2022;16:961–76. [DOI] [PubMed] [PMC]
Bonnet C, Brahmbhatt A, Deng SX, Zheng JJ. Wnt signaling activation: targets and therapeutic opportunities for stem cell therapy and regenerative medicine.RSC Chem Biol. 2021;2:1144–57. [DOI] [PubMed] [PMC]
Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases.Expert Opin Ther Targets. 2009;13:485–96. [DOI] [PubMed] [PMC]
Newman MR, Benoit DS. Local and targeted drug delivery for bone regeneration.Curr Opin Biotechnol. 2016;40:125–32. [DOI] [PubMed] [PMC]
Comeau-Gauthier M, Tarchala M, Luna JLR, Harvey E, Merle G. Unleashing β-catenin with a new anti-Alzheimer drug for bone tissue regeneration.Injury. 2020;51:2449–59. [DOI] [PubMed]
Wang Y, Newman MR, Ackun-Farmmer M, Baranello MP, Sheu T, Puzas JE, et al. Fracture-Targeted Delivery of β-Catenin Agonists via Peptide-Functionalized Nanoparticles Augments Fracture Healing.ACS Nano. 2017;11:9445–58. [DOI] [PubMed] [PMC]
Low SA, Galliford CV, Jones-Hall YL, Roy J, Yang J, Low PS, et al. Healing efficacy of fracture-targeted GSK3β inhibitor-loaded micelles for improved fracture repair.Nanomedicine (Lond). 2017;12:185–93. [DOI] [PubMed]
Scarpa E, Janeczek AA, Hailes A, de Andrés MC, De Grazia A, Oreffo RO, et al. Polymersome nanoparticles for delivery of Wnt-activating small molecules.Nanomedicine. 2018;14:1267–77. [DOI] [PubMed]
Beier EE, Sheu T, Buckley T, Yukata K, O’Keefe R, Zuscik MJ, et al. Inhibition of beta-catenin signaling by Pb leads to incomplete fracture healing.J Orthop Res. 2014;32:1397–405. [DOI] [PubMed] [PMC]
Chen Y, Whetstone HC, Lin AC, Nadesan P, Wei Q, Poon R, et al. Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing.PLoS Med. 2007;4:e249. [DOI] [PubMed] [PMC]
Loiselle AE, Lloyd SAJ, Paul EM, Lewis GS, Donahue HJ. Inhibition of GSK-3β rescues the impairments in bone formation and mechanical properties associated with fracture healing in osteoblast selective connexin 43 deficient mice.PLoS One. 2013;8:e81399. [DOI] [PubMed] [PMC]
Bernick J, Wang Y, Sigal IA, Alman BA, Whyne CM, Nam D. Parameters for lithium treatment are critical in its enhancement of fracture-healing in rodents.J Bone Joint Surg Am. 2014;96:1990–8. [DOI] [PubMed] [PMC]
Clough BH, Zeitouni S, Krause U, Chaput CD, Cross LM, Gaharwar AK, et al. Rapid Osteogenic Enhancement of Stem Cells in Human Bone Marrow Using a Glycogen-Synthease-Kinase-3-Beta Inhibitor Improves Osteogenic Efficacy In Vitro and In Vivo.Stem Cells Transl Med. 2018;7:342–53. [DOI] [PubMed] [PMC]
Hao X, Zhang X, Hu Y, Ren C, Liu C, Wang L, et al. Brasenia-inspired hydrogel with sustained and sequential release of BMP and WNT activators for improved bone regeneration.Chin Chem Lett. 2023;34:107965. [DOI]
Kornsuthisopon C, Rochanavibhata S, Nowwarote N, Tompkins KA, Sukarawan W, Osathanon T. 6-Bromoindirubin-3'-Oxime Regulates Colony Formation, Apoptosis, and Odonto/Osteogenic Differentiation in Human Dental Pulp Stem Cells.Int J Mol Sci. 2022;23:8676. [DOI] [PubMed] [PMC]
Shen S, Zhang Y, Zhang S, Wang B, Shang L, Shao J, et al. 6-Bromoindirubin-3'-oxime Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells and Facilitates Bone Regeneration in a Mouse Periodontitis Model.ACS Biomater Sci Eng. 2021;7:232–41. [DOI] [PubMed]
Agnes CJ, Murshed M, Takada A, Willie BM, Tabrizian M. A 6-bromoindirubin-3'-oxime incorporated chitosan-based hydrogel scaffold for potential osteogenic differentiation: Investigation of material properties in vitro.Int J Biol Macromol. 2023;227:71–82. [DOI] [PubMed]
Low SA, Galliford CV, Yang J, Low PS, Kopeček J. Biodistribution of Fracture-Targeted GSK3β Inhibitor-Loaded Micelles for Improved Fracture Healing.Biomacromolecules. 2015;16:3145–53. [DOI] [PubMed] [PMC]
Gaboriaud-Kolar N, Vougogiannopoulou K, Skaltsounis A. Indirubin derivatives: a patent review (2010 - present).Expert Opin Ther Pat. 2015;25:583–93. [DOI] [PubMed]
Yang L, Li X, Huang W, Rao X, Lai Y. Pharmacological properties of indirubin and its derivatives.Biomed Pharmacother. 2022;151:113112. [DOI] [PubMed]